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nique for measuring nanoscale distances from changes in the non-radiative trans-

Fé')rster resonance energy transfer (FRET) is a widely used single-molecule tech-
For macromolecules

fer of energy between donor and acceptor fluorophores.
and complexes this observed transfer efficiency is used to infer changes in molecular
conformation under differing experimental conditions. However, sometimes shifts are
observed in the FRET efficiency even when there is strong experimental evidence that
the molecular conformational state is unchanged. We investigate ways in which such
discrepancies can arise from kinetic effects. We show that significant shifts can arise
from the interplay between excitation kinetics, orientation diffusion of fluorophores,

separation diffusion of fluorophores, and non-emitting quenching.

1 Introduction

Forster resonance energy transfer (FRET) is a
widely used single-molecule technique for measur-
ing distances within and between molecules [13,
20]. FRET is based on non-radiative transfer of
energy between an excited donor molecule and
an acceptor molecule. Forster developed theory
for non-radiative transfer based on dipole-dipole
interactions [19,20]. For the separation distance
R, Forster’s theory predicts an energy transfer
efficiency scaling as ~ (R/Rp)~°. In practice one
typically has Ry ~ 1nm [13,19,20]. Experimen-
tal realization using FRET as a ”spectrocopic
ruler” for distance measurements within single
molecules was introduced in the experiments of
Stryer and Haugland in the 1960’s [13, 69, 75].
Since this time, FRET has continued to be de-
veloped and has become a versatile tool widely

used in the biological sciences and biotechnol-
ogy [26,53,55,67,81].

In the biological sciences, FRET has been used
to report on protein-protein interactions [49,52].
At the single-molecule level, FRET has been used
to measure distances between labels in charac-
terizing the structures and dynamics of macro-
molecules including RNA, DNA, proteins, and
their molecular complexes [2,17,72,81]. Time-
depend FRET measurements have been devel-
oped to characterize reaction kinetics of en-
zymes [15, 24, 65, 81], ligand-receptor interac-
tions [18,50,67,82], conformational dynamics of
proteins [2,29,61], and movement of molecular
motor proteins [44, 83].

Many types of molecules can be used for
acceptor-donor pairing in FRET. Some molecules
have photophysics that result in non-emitting
quenching when interacting with surrounding
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chemical species or intramolecular chemical
groups [12, 36, 39,42, 68]. This provides ways
for FRET probes to be used to report on the
localized concentration of chemical species, such
as metal ions [14,39] in water or Ca™ ions re-
leased during neuronal activity [72]. In emerging
biotechnology, FRET is also being used to de-
velop new types of high-fidelity sensors for single-
molecule detection and high-throughput assays
for screening [18,53,67].

In single-pair FRET (spFRET), a single pair
of acceptor and donor molecules are used to mea-
sure intramolecular distances [69]. To character-
ize different molecular conformational states or
the heterogeneous states of subpopulations, a ra-
tiometric analysis is used to estimate the transfer
efficiency F [15,23]. Over repeated measurements
this is reported typically as a histogram of the
efficiency values F. Under differing experimental
conditions, such as introduction of a denaturant,
shifts in the observed efficiency histogram are
interpreted as changes in the molecular conforma-
tional state [17,29,47,81]. In recent experiments
by Lipman et al. [62,80], it has been observed
that in some situations such FRET shifts may
occur even when there are no apparent changes
in the conformational state. This is supported by
experiments where x-ray scattering of molecules
indicate no conformational change or the molec-
ular structure involved is inherently rigid such as
a polyproline chain [62,80].

This presents the important issue of why such
shifts in FRET occur in the apparent absence of
any change in the conformational state. We in-
vestigate using theory and stochastic simulations
the roles played by excitation kinetics, orientation
diffusion of fluorophores, separation diffusion of
fluorophores, and non-emitting quenching. Our
results aim to quantify the magnitude of these
effects and to help identify regimes in which these
factors could impact experimental measurements.

2 Forster Resonance Energy
Transfer (FRET)

2.1 Transfer Efficiency

The FRET efficiency is the fraction of energy that
is transferred non-radiatively from the donor to
the acceptor molecule. Initially, it will be as-
sumed that the energy can only be emitted as a
donor photon or non-radiatively transferred to
the acceptor ultimately to be emitted as an ac-
ceptor photon. In this case, the transfer efficiency
is related to the rates k4 and kp of the photon
emission of the donor and acceptor as

p=_" (1)
KA+ KD

For some systems it may be important to consider
also additional photo-chemical states as in [10,46]
or transfer of energy from collisions with other
molecules in solution that results in non-emitting
quenching [12,42,68]. We consider some of these
effects in subsequent sections.
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Figure 1: Single-Molecule FRET Event. A FRET
event starts when a molecule labelled by a donor and
acceptor pair diffuse into a volume of sufficiently large
laser intensity near the focal point (left). The counts
for detected photon emissions for the acceptor na and
donor np are recorded until the molecule diffuses out
of the focal volume (top right). During the donor
excitation either a photon is emitted or energy is non-
radiatively transferred to the acceptor and emitted
with rates that depend on the molecular conformation
(lower right).
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Forster theory predicts that the non-radiative
transfer rate xp depends on the donor-acceptor
separation distance R as

L (RN
" 5 \Ro '

This is based on dipole-dipole interactions and
separation distances smaller than the emitting
photon wave-length [13,19,20]. The 7p = 1/kp
denotes the average lifetime of the excited state
of the donor in the absence of the acceptor. The
characteristic Forster distance Ry depends on the
photophysics of the donor and acceptor molecules
through

(2)

9 (In(10)) x2®pJ

Rf =
0 1287mn4N 4

(3)

The N4 is Avogodros’ number, % a factor as-
sociated with the donor-acceptor dipole-dipole
relative orientations [75,76], ®p is the quantum
yield of the donor fluorescence in the abscence of
the acceptor, J is the overlap integral associated
with the adsorption spectrum of the donor and
acceptor, n is the index of refraction. For a more
detailed discussion see [4,13,19,20,55,75].
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Figure 2: Férster Resonance Energy Transfer
(FRET). The donor molecule is excited to a higher
energy state by an adsorbed photon. The donor relazes
back to its ground state either by emitting a photon
or transferring energy to the acceptor molecule. The
excited state of the acceptor molecule relaxes by emit-
ting photons. Shown are the two widely used donor-
acceptor dyes Cy3 and Cyb.

When all transferred energy is immediately
emitted as an acceptor photon, we have k4 = k7.
The distance dependence of the FRET efficiency
can then be expressed as
- (4)

1+ (R/Ro)®
Forster theory has the important utility that
the donor-acceptor separation distance R can
be inferred from observations of E. To obtain
Ry only requires in principle knowledge of a few
properties of the photo-physics of the donor and
acceptor molecules. This allows for FRET to be

used as an effective nanoscale ruler for molecular
systems [29, 36,58, 69, 83].

E

2.2 Single-pair FRET for Molecules
Diffusing in Free Solution

To obtain single molecule measurements for freely
diffusing molecules, the donor is typically excited
by waiting for an individual molecule to diffuse
into the focus of a laser beam [15,29,81,83]. When
the molecule is in a region near enough to the
focal point of the laser (within the focal volume)
the donor is excited with high probability and
a sequence of donor and acceptor photon emis-
sions occur, see Figure 1. During the time the
molecule dwells in the focal volume, the number
of detected donor and acceptor photons np,n4
can be counted. This allows for a ratio-metric

estimate of the transfer efficiency as [15, 23]
E=_—"4 (5)

na+mnp

This experimental data for the FRET efficiency
is then typically aggregated to form a histogram
of the observed energy transfer efficiencies £. We
remark that there are a number of important
considerations in practice for such experiments,
such as the development of criteria for when such
a sequence of emissions is to be considered a
significant FRET event or when there are short

durations in the focal volume or shot noise.
The efficiency histogram provides a character-
ization of the relative proportions of different
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conformational states or sub-populations of the
molecules encountered during a measurement.
For the case of homogeneous molecules in the
same conformational state, the efficiency his-
togram is expected to exhibit a narrow peak
around the characteristic FRET efficiency cor-
responding to the donar-acceptor separation of
the conformation. It is then natural to con-
sider changes in the conformational state of the
molecule by looking for shifts in the location
of the peak in the FRET histogram. This is
widely used in experimental practice to charac-
terize biomolecular systems [2,17,61,81].
However, in recent experiments by Lipman et
al. [62,80], it has been found that in some cir-
cumstances a significant shift can occur in the
FRET efficiency histogram while there is no ap-
parent change in conformational state. We use
theory and stochastic simulations to investigate
the roles played by kinetics. We initially investi-
gate the role played by the rotational and transla-
tional diffusion of fluorophores on the time-scale
of the excitation kinetics of the donor and ac-
ceptor molecules. We then consider the role of
additional effects such as non-emitting quenching.

3 Importance of Donor-Acceptor
Kinetics

3.1 Donor-Acceptor Excitation and
Relaxation

We consider the role of the kinetics of donor and
acceptor excitation, energy-transfer, and relax-
ation. We model the event of donor excitation as
occurring at the rate kp = 1/7p. The 7p is the
mean donor excitation life-time in the absence of
the acceptor. A donor molecule in the excited
state either relaxes by emitting a photon at the
rate kp or by transferring energy to the accep-
tor molecule at the rate k7 in accordance with
equation 2. We emphasize that in practice the
rate kr depends on a number of factors. This
includes the separation distance R between the

donor and acceptor. This also depends on the
relative orientations of the donor and acceptor
which is captured by the x? term in equation 3.

We investigate how such dependence of the
energy transfer on the donor and acceptor config-
urations competes with the other excitation and
relaxation kinetics. For this purpose we develop
a stochastic model of the excitation-relaxation
kinetics and perform simulations of the rotational
and translational diffusion of the acceptor and
donor molecules. We investigate the impact of
these effects on the effective k7 and observed
FRET transfer efficiencies E.

3.2 Donor-Acceptor Orientation Diffusion

The relative orientation of the dipole moments
of the donor and acceptor molecules can signifi-
cantly influence the efficiency of energy transfer
[4,30,75-77]. This can be seen from the factor
k2 that contributes in equation 3. The factor
is given by [4,75,76]

m:d-é—?)(&-f)(é-f). (6)
The & and d denote the unit vectors representing
the orientations of the dipole moments of the
acceptor and donor molecules. The 1t gives the
separation unit vector pointing from the donor
to acceptor.

Contributions from orientation effects are of-
ten approximated by averaging assuming that
the orientation rapidly diffuses isotropically on a
time-scale much longer than the donor excitation
time. The averaged orientation factor is often
used (k?) = 2/3, [4,76]. However, in many situa-
tions the orientation diffusion can be comparable
to the time-scale of excitations or from molecular-
level sterics it may not be isotropic sampling all
orientations [34,52,76,77]. Also, even for rapid
diffusion, experimental measurements often in-
volve a small sample of the x? values which can
range between 0 and 4. This is sampled from a
distribution with irregular and asymmetric fea-
tures, see Figure 3.
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Figure 3: Distribution of the Orientation Factor k2.
Shown is the random acceptor-donor orientations for
k2 that is distributed between 0 and 4. The distribu-
tion exhibits a well-known cusp at k*> =1 (see inset).
The majority of the distribution falls between k% = 0
and k? = 1 with a significant bias toward k% = 0.
The histogram was constructed from 107 random dye
orientation pairs.

We investigate the role of orientation diffusion
and its role on observed FRET efficiencies leading
to possible shifts. Since only the relative angle be-
tween the donor and acceptor is relevant, we can
model rotational diffusion by a Brownian motion
on the surface of a sphere [8]. This can be ex-
pressed in spherical coordinates by the stochastic
process

4,  1Dp 1 |pgp awlV
i 2 (tan(©y))” " + e It
(2)
4o , 1 [Dr aw,
dftt = (sin(©))"" 2 d; : (7)

The Dpg denotes the diffusion coefficent on the
surface and p the radius of the sphere. The equa-
tions are to be interpreted in the sense of Ito
Calculus [21,51]. The Wt(l) and Wt(2) denote in-
dependent Brownian motions. For a sphere of ra-
dius p, a configuration associated with the spher-
ical coordinates (O, ®;) are to be interpreted in
cartesean coordinates as X; = psin(0©;) cos(P;),
Y = psin(©y) sin(P;), and Z; = pcos(Oy).
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Figure 4: Rotational Diffusion and Shifts in FRET
Transfer Efficiency E. From top to bottom are dyes
with decreasing rotational diffusion having character-
istic diffusion times tr/Tp = 19.5,97.5,195.0,975.
The average efficiencies in each case are respectively
E = 0486, F = 0.456, F = 0.438, and E = 0.403.
The shift in average efficiency from the slowest to
fastest diffusion considered is about 20%. A notable
feature for decreasing diffusivity is that the distribu-
tion of observed efficiencies broadens. The reference
efficiency Ey = 0.5 is indicated by the red line.

We perform simulations by numerically com-
puting time-steps approximating the stochastic
process in equation 7. This is accomplished by
projecting Brownian motion to the surface of the
sphere. In particular, we use the time-stepping
procedure

w'tl = w" 4+ \/DrAtny

n+l (WnJrl/HwnJrlH)p'

(8)
(9)

The n% is generated each step as a three-
dimensional Gaussian random variable with in-
dependent components having mean zero and
variance one. We remark this approach avoids
complications associated with the spherical coor-
dinates by avoiding the need to switch coordinate
charts when configurations approach the degen-
eracies near the poles of the sphere [66].

We characterize the time-scale of the rotational
diffusion by 75 = 4m2p?/Dp. We use for the dye
length p = 1Inm and the sphere circumference

w
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2mp. The sphere circumference serves as the ref-
erence length-scale for the diffusion time-scale 7p.
We perform stochastic simulations using these pa-
rameters with a time step at most At = 7r/500.

We consider the case when the acceptor and
donor are free to rotate but are held at a fixed
separation distance R. We take R = Ry so that
for perfect averaging over all of the orientation
configurations the transfer efficiency is £ = 0.5.
We consider the rotational dynamics relative to
the donor excitation life-time characterized by
™D/TR.
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Figure 5: Orientation Factor at Time of Transfer.
Shown are the factors k% that occurred in the simula-
tion at the time of energy transfer from the donor to
the acceptor. We compare the case of slow rotational
diffusion 7p/Tr = 0.001 and fast rotational diffusion
7p/TrR = 0.05. For the slow rotational diffusion k2
factors exhibit a significant shift toward smaller values.
This is a consequence of the fast rotational diffusion
having more opportunities to be in favourable orienta-
tions for energy transfer.

We consider both fast rotational diffusion
where most configurations are well-sampled over
the donor lifetime 7p/7r > 1, and slow rota-
tional diffusion where only a very limited subset
of configurations are sampled over the donor life-
time 7p/Tr < 1. For slow rotational diffusion,
we find that the limited sampling over the donor
lifetime can result in significant shifts of the ob-

served FRET transfer E toward lower efficiencies,
see Figure 4.
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Figure 6: Rotational Diffusion and Shifts in FRET
Transfer Efficiency E. As the rotational diffusion de-
creases the mean transfer efficiency shifts significantly.
In the inset, we show the percentage shift measured as
% shift = |E,,, — Eo|/Eo where we take the reference
efficiency Eqg = 0.5. The first few data points have
7p/Tr = 0.001, 0.003, and 0.005.

The orientation configurations are all equally
likely and the factor x? contributes linearly to
the transfer efficiency in equation 3. As a conse-
quence, the shift exhibited is a result of purely
kinetic effects. In particular, for the fastest ro-
tational diffusion the donor and acceptor have
more opportunities to occupy orientations that
are favourable to energy transfer. In other words,
when the diffusion is large the donor and acceptor
have time to diffuse to encounter configurations
that are in a ”sweet spot” having the largest
chance of triggering energy transfer. When the
rotational diffusion is much slower than the donor
lifetime, the donor and acceptor orientation re-
main close to the initial starting configuration
which primarily determines the rate of energy
transfer. This manifests as a shift in the x? val-
ues toward the smaller values corresponding to
less efficient transfer when the rotational diffusion
is slow relative to the donor lifetime, see Figure 5.
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The shift in transfer efficiencies resulting from
the rotational kinetics can be significant. For a
relatively fast rotational diffusion on the time-
scale Tr/Tp = 19.5, we find the energy transfer
is E = 0.486. This is close to when orienta-
tion is fully averaged to yield the energy transfer
E = 0.5. For a slow rotational diffusion time-
scale of Tr/Tp = 975 we have a transfer efficiency
of E = 0.403. In this case, the rotational kinet-
ics has resulted in a shift in the average transfer
efficiency of 17%.

Our results indicate on way that the FRET
transfer efficiency E can exhibit a significant shift
without any change in the conformational state
of the measured molecule. These changes arise
purely from different rates of rotational diffusion.
In practice, this could arise from changes in the
viscosity of the surrounding solvent or from tran-
sient binding events with molecules present in
the solvent that transiently restrict rotation of
the donor and acceptor. We show over a range of
diffusivities the shifts that can occur from these
effects in Figure 6.

3.3 Donor-Acceptor Diffusion in
Separation Distance

We consider the role of the relative translational
diffusion of the donor and acceptor molecules.
We are particularly interested in the case when
the measured molecule’s conformational state in-
volves a sampling over an ensemble of different
configurations. In this case, the donor and accep-
tor could undergo significant translational diffu-
sion over the donor lifetime [5,22]. For instance,
for a disordered protein or a polymer subjected
to different solvation conditions FRET could be
used to get an indication of the radius of gyra-
tion [25,43,63,80]. When the ensemble of config-
urations remains unchanged, we investigate the
role of the kinetics associated with the diffusion
of the separation distance.

Distribution of Separation Distances

Probability

0 4 8
Distance (nm)

12

Figure 7: Fquilibrium Distribution of Donor-
Acceptor Separation Distances. The results of simu-
lated steps of the acceptor-donor labels of the polymer
diffusion (histogram) are compared with the predicted
distribution of separation distances from equation 12
(red-curve). Results are obtained from 1.8 x 105 sam-
pled simulation steps fit with mean u = Ry and vari-
ance 02 = 0.14R%.

We model the diffusion of the separation dis-
tance R by the stochastic process

% _ —i@’(Rt)dt 4 \/2DS%. (10)
The v denotes the effective drag, ® the poten-
tial of free energy for the separation distance R,
Dg the effective diffusivity in separation, and
W, Brownian motion. The equation is to be in-
terepreted in the sense of Ito Calculus [51]. We
model the separation of the donor and acceptor
labels attached to the polymer by the potential
of free energy

(11)

We parameterize the model using the diffusivity
Dg and take the drag v = kgT'/Dg where kg is
Boltzmann’s constant and T is temperature. To
model what happens as the separation distance
approaches zero, we avoid negative lengths by a
reflecting boundary condition at zero [21]. We
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characterize this diffusive dynamics by the time-
scale 7¢ = £?/Dg where / is the same length that
appears in equation 11.

Parameter | Value

Ry 5.4nm

™ 4dns

kgT 41x10721J
k 0.25kpT

J4 5.4nm

Table 1: Parameter Values for the Simulations.

At equilibrium this diffusion process has the
separation distribution

U(r) = %exp (=®(r)/KpT),

where Z = [*°_exp (—®(|r|)/KgT) dr is the par-
tition function [57]. To simulate this process we

generate time-steps using the Euler-Marayuma
method [33]

(12)

1
R = R — ;(I)’(R”)At + /2DgAty™. (13)

The n™ is generated each time-step as an inde-
pendent standard Gaussian random variable with
mean zero and variance one. The time-step du-
ration is denoted by At. In practice, we use a
time-step with At = 75/10*. To give some in-
tuition for the separation fluctuations and as a
validation of our simulation methods, we show
numerical results for the equilibrium distribution
in Figure 7.

We consider the role of the separation kinet-
ics of the donor and acceptor over the donor
excitation life-time. We consider the transfer effi-
ciency for different rates of separation diffusion
Dg relative to the donor life-time 7p. This can
be characterized by 7p/7s where 7g = ¢/ Dg.

We find that a decrease in the separation dif-
fusivity results in a significant shift in the FRET
transfer efficiency, see Figure 8. We also find
that as the separation diffusivity decreases the
distribution of observed efficiencies broadens sig-
nificantly. For the fastest translational diffusivity

we have a mean transfer efficiency of £ = 0.723
verses for the slowest translational diffusivity con-
sidered E = 0.508. This gives a relative shift in
the FRET transfer efficiency of 30%.

The ensemble of configurations is the same
for both the fastest and the slowest diffusion so
the shift in transfer efficiency arises purely from
kinetic effects. Over the donor life-time, the diffu-
sion influences how likely the donor and acceptor
are to encounter configurations favourable to en-
ergy transfer. In the case of slow diffusion, the
rate of energy transfer is primarily governed by
the initial configuration of the donor and accep-
tor.

Distance Diffusion and Transfer Efficiency
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Figure 8: Separation Diffusivity and FRET Trans-
fer Efficiency. The separation diffusivities correspond
to 7p/7s = 0.69, 0.07, and 0.007. These have mean
transfer efficiencies respectively E = 0.723, E = 0.553,
and E = 0.508. This represents a relative shift of 30%
in the transfer efficiency. As the separation diffusiv-
ity decreases the distribution of transfer efficiencies
significantly broadens.

In the case of fast diffusion relative to the donor
life-time, the donor and acceptor have more of
an opportunity to encounter favorable configura-
tions for energy transfer. This difference in how
often such ”sweet spots” for energy transfer are
encountered over the donor life-time is supported
by the observed separation distances that occur
at the time of energy transfer, see Figure 10.
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Figure 9: Distance Diffusion and Shifts in FRET
Transfer Efficiency. As the distance diffusion de-
creases the mean transfer efficiency shifts significantly.
In the inset, we show the shift as a relative percent-
age given by % shift = |E,,, — Eo|/Eo with reference
efficiency Ey = 0.5.

For the fastest diffusivity, we see that signifi-
cantly smaller separation distances occur at the
time of energy transfer and thus yield on aver-
age larger FRET efficiencies. In the case of the
slowest diffusivity, we see that the distribution of
separation distances is broader and more closely
follows the equilibrium distribution of separa-
tion distances since the rate of energy transfer
is largely determined by the initial configuration
of the donor and acceptor. We show the shifts
in energy transfer for a wide range of separation
diffusivities in Figure 9.

3.4 Role of Non-emitting Quenching

We also consider the case when the donor can
de-excite through a non-emitting pathway [12].
One possible mechanism is dynamic quenching
where the donor de-excites by making contact
with chemical species diffusing in the surround-
ing solution [36,39,42]. Some donors have photo-
physics that are significantly impacted by the
presence of ions. This is used in some experiments
as a reporter on ion concentration [14,39,72].
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Figure 10: Separation Distance at Time of En-
ergy Transfer. Shown are the separation distances
that occurred in the simulation at the time of en-
ergy transfer. We compare the case of slow distance
diffusion Tp/7s = 0.007 and fast distance diffusion
7p/Ts = 0.69. For the case of fast diffusion we see
that the energy transfer occurs much more frequently
at shorter separation distances.

We take these effects into account by devel-
oping some theory for how an additional non-
emitting pathway would shift the observed FRET
efficiency. A non-emitting quenching pathway can
be modelled in our kinetics by killing some frac-
tion of the donor de-excitation events that would
have resulted in energy transfer to the acceptor
and ultimately emission of acceptor photons. For
the FRET transfer efficiency this corresponds to
augmenting equation 5 to

- an4

E(a) = (14)

np +ana

The quantity 1 — « gives the fraction of donor
de-excitations that result in some type of non-
emitting quencher event. The E(a) gives the
corresponding shifted FRET efficiency when in-
cluding the quenching pathway.
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Quenching and Transfer Efficiency
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Figure 11: Non-emitting Quenching and Shifts in
FRET Transfer Efficiency. The observed FRET trans-
fer efficiency E’(a) is shown when incorporating an
additional non-emitting pathway in the donor-acceptor
kinetics. For different rates a of non-emitting quench-
ing events, the results show how a reference transfer
efficiency E in the case of no quenching is augmented.

The case a = 1 corresponds to the situation
when no non-emitting quenching events occur. In
this case we have E(1) = E. In the case of o = 0,
all observed de-excitations result in non-emitting
quencher events instead of donor de-excitation
through FRET transfer events and emission of
acceptor photons. In this case we have F (0) =0,
see Figure 11.

The FRET efficiency can be conveniently ex-
pressed as

~ 1
=" 15
alf+1 (15)
where f = (Z—’j . This provides a reference f cor-

responding to the ratio of donor to acceptor emis-
sions when there is no non-emitting quenching.
The reference fraction f is related to a reference
FRET transfer efficiency E by f = E~! —1. The
percentage shift of the observed FRET efficiency
that arises from quenching is given by

_E—E(a)_ 1
E al(1-E)+E’

(16)

S

We see that the percentage shift in FRET that
occurs from quenching has a dependence on the
reference FRET transfer efficiency F. In fact, the
shift that occurs becomes increasingly sensitive
as E decreases, see Figure 12.
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Figure 12: Non-emitting Quenching and Shifts in
FRET Transfer Efficiency. The relative percentage
shift s = E — E(a)/E in transfer efficiency is shown
when non-emitting quenching occurs as part of the
donor-acceptor kinetics.

4 Discussion

We have shown a few different ways that FRET ef-
ficiency can be shifted as a consequence of kinetic
effects while the underlying molecular conforma-
tional state in fact has remained the same. We
consider how such kinetic mechanisms relate to
some recent experiments investigating the origins
of shifts in FRET efficiency [62,80, 82, 85].
FRET is often used to measure conformational
changes or folding of proteins as denaturant con-
ditions are varied [43,61,80]. In the recent work
by Lipman, Plaxco, et al [80], the radius of gy-
ration of polyethylene glycol (PEG) polymers
are considered in solvation conditions that yield
random-coils. Unlike proteins, the ensemble of
PEG polymer configurations is not expected to
change significantly when varying the denaturant.
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This is substantiated in the experiments by x-
ray scattering measurements that show indeed
the PEG radius of gyration remains unchanged
when varying the denaturant [80,85]. This pro-
vides a useful control to investigate FRET as the
denaturant conditions are varied.

An interesting finding is that FRET measure-
ments under the same conditions exhibit a sig-
nificant shift in the measured transfer efficiency.
For a 3kDa PEG polymer in denaturant GuHcl
ranging in concentration from 0 — 6M molar a
shift was observed in the transfer efficiency of
~ 20% referenced from Ey = 0.5. For the same
polymer in the denaturant urea ranging in con-
centration from 0 — 8M a shift was observed in
efficiency of ~ 24% referenced from Ey = 0.5.
Similar shifts were found for experiments per-
formed using 5kDa PEG [80].

Our results show that significant shifts can oc-
cur in the observed FRET efficiency even when
there is no underlying change in the conforma-
tional ensemble. We showed how the transfer
efficiency can shift purely from kinetic effects
arising from changes in the rate of diffusion of
the acceptor-donor orientation, diffusion of the
separation distance between the donor and ac-
ceptor, and from non-emitting quenching. For
diffusion of the donor-acceptor separation dis-
tance, we found such kinetic effects can cause
shifts in efficiency as large as 48%. This occurred
as the distance diffusion time-scale approached
that of the donor life-time, see Figure 9.

One way to try to account for the experimen-
tally observed shifts is to consider how the denatu-
rant augments the viscosity of the solvent [32,80].
Changes in the solvent viscosity are expected
to be closely related to changes in the rate of
diffusion as suggested by the Stokes-Einstein re-
lation [21]. Such a mechanism was explored the-
oretically in the work [45,85]. We discuss here
how our simulation results relate to changes in
the solvent viscosity.

The purported change in bulk solvent viscosity
under changes in the urea denaturant concen-

tration at 8M is the factor 1.66 and for GuHcl
6M the factor 1.61 according to the experiments
in [32]. To relate viscosity to diffusivity, the
Stokes-Einstein relation can be used D = kgT'/7.
The drag is given by v = 6mpa where p is the
solvent viscosity and a is a reference length-scale
characterizing the size of the diffusing molecule.
This suggests that by increasing the solvent vis-
cosity by a factor of 1.61 reduces the diffusivity
by a factor of 0.6.

In our simulations taking as the base-line case
Tp/Ts = 0.1, such a change in viscosity shifts the
transfer efficiency by ~ 12%. This contribution
solely from the diffusive kinetics of the donor-
acceptor separation accounts for about half the
~ 24% shift observed for 8M urea and the ~ 20%
observed for 6M GuHcl in [80]. This is consistent
with the findings in [85] suggesting other mecha-~
nisms may also play a role in the observed shift
in transfer efficiency.

There are a number of potential subtleties when
interpreting these effects. For one the donor and
acceptor molecules are comparable in size to the
viscogen denaturant molecules and the changes
in diffusivity could possibly be more significant
owing to more complicated interactions than sug-
gested by the use of simple bulk theory for vis-
cosity and diffusion [6,37,64]. Another consider-
ation is the role played by non-emitting quench-
ing caused by collisional contact of the denatu-
rant molecules with the donor [12]. Combined
with the kinetic changes in diffusion, even a mod-
est amount of excitations resulting in quenching
events < 5% would lead to an overall combined
shift of ~ 20% in the observed transfer efficiency,
see Figure 12.

5 Conclusion

We have shown that kinetics can play a significant
role in shifting the observed FRET transfer effi-
ciency even when there is no underlying change
in the conformational state of the molecule being
measured. We found that changes in the orien-
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tation diffusion can in the most extreme cases
shift the transfer efficiency by up to 20%. For the
considered diffusion of the donor-acceptor sepa-
ration distance, we found in the most extreme
cases shifts up to 48%. We found that the diffu-
sive kinetics of both orientation and separation
exhibit a distinct signature in the histogram of ob-
served transfer efficiencies as a broadening of the
peaks. We also found that non-emitting quench-
ing events that occur even at a modest level can
result in significant shifts in the observed trans-
fer efficiency. For analysing FRET data sets, we
hope our results provide a few useful benchmarks
to help determine the significance of observed
shifts in FRET transfer efficiency and the role of
kinetic effects.
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