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We give a brief introduction to the stochastic immersed boundary method which allows for simulation of small length-scale
physical systems in which elastic structures interact with a fluid flow in the presence of thermal fluctuations. The conventional
immersed boundary method is extended to account for thermal fluctuations by introducing stochastic forcing terms in the
fluid equations. This gives a system of stiff SPDE’s for which standard numerical approaches perform poorly. We discuss a
numerical method derived using stochastic calculus to overcome the stifffeatures of the equations. We then discuss results
which indicate that the method captures physical features predicted by statistical mechanics for small length-scale systems.
The stochastic immersed boundary method holds promise as a numericalapproach in simulating microscopic mechanical
systems in which thermal fluctuations play a fundamental role. A more detailed discussion of this work is given in [1, 2, 3].
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1 Stochastic Immersed Boundary Method

1.1 Time Dependent Stokes Flow

For a fluid flow modeled by the time dependent Stokes equationsthe stochastic immersed boundary method is given by:

ρ
∂u(x, t)

∂t
= µ∆u(x, t) −∇p(x, t) + fS(x, t) + fT (x, t) (1)

∇ · u(x, t) = 0 (2)

dX[j]

dt
=

∫

δa(y − X[j])u(y, t)dy (3)

fS(x, t) = F[j]δa(x − X[j]) (4)

The termp is the pressure,ρ is the fluid density,µ is the dynamic viscosity. The force densityfS accounts for momentum
transferred to the fluid by elastic deformations of immersedstructures. The force densityfT is a Gaussian random fieldδ-
correlated in time which accounts for the thermal fluctuations of the fluid-structure system. Structures are modeled byM

control pointsX[j] along with a force interaction law. The force acting on thejth control point is denoted byF[j]({X[j′]}).
The structure dynamics are given by equation 3, which corresponds to advection of the control points with the local fluid
velocity. The termδa(x) approximates the Diracδ-function. In the immersed boundary method theδa functions are taken so
that they integrate to one and vanish outside a disk of radiusa. This gives a brief formulation of the equations of the stochastic
immersed boundary method. We now discuss the extension of the conventional immersed boundary method to account for
thermal fluctuations.

1.2 Thermal Fluctuations

To account for thermal fluctuations an appropriate choice must be made for the stochastic forcing of the fluid-structure system.
It is shown in [3] that in order for the model to be consistent with the principles of statistical mechanics only the fluid degrees
of freedom should be stochastically forced. The spatial covariance structure of the Gaussian random fieldfT is determined
from thefluctuation-dissipation principleof statistical mechanics which relates equilibrium fluctuations of the system to the
dissipative mechanism of the dynamics. For brevity we shalldiscuss only the case in which the equations above have been
spatially discretized by finite differencing on a uniform periodic mesh, withL denoting the approximation of the Laplacian∆.
Let C = 〈uuT 〉, G = 〈fT fT

T 〉 denote covariance matrices, respectively, for the equilibrium fluctuations ofu and the Gaussian
random fieldfT . Thefluctuation-dissipation principlethen requires covariance structure:G = LCT + CLT . At equilibrium
the system has Gibbs-Boltzmann statistics with probability densityΨ(u) = exp(−E[u]/kBT ). Since the energy of the fluid
is given by the kinetic energyE[u] =

∑

m
ρ|um|2∆x3 summed over the mesh, the covariance matrix for the equilibrium

fluctuations is given byC = (kBT/ρ∆x3)I. This determines the spatial covariance structureG of the Gaussian random field
fT . See [3] for a more in depth discussion.
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1.3 Numerical Method

For spatial discretization on a uniform periodic mesh the following numerical scheme is used to update the Fourier modesûk

of the fluid and to update the immersed structure control pointsX[j] from time stepn to n + 1:

ûn+1
k

= e−αk∆tûn
k

+
1

ραk

(

1 − e−αk∆t
)

℘⊥

k
f̂n
S,k + ℘⊥

k
Ξ̂

n

k
(5)

Xn+1,[j] = Xn,[j] +
∑

m

δa(xm − Xn,[j])Γn
m

∆x3 (6)

Γn
m

=
∑

k

Γ̂n
k
· exp (i2πk · m/N) (7)

Γ̂n
k

= Ĥk + c1,k℘⊥

k
Ξ̂

n

k
+ c2,k℘⊥

k
Ĝk (8)

Ĥk =
1 − exp (−αk∆t)

αk

ûn
k

+

(

∆t

αk

+

(

1

αk

)2

(exp (−αk∆t) − 1)

)

ρ−1℘⊥

k
f̂n
S,k (9)

c1,k =
1

αk

tanh

(

αk∆t

2

)

, andc2,k =

√

(

2Dk

α3
k

)(

αk∆t − 2 tanh

(

αk∆t

2

))

. (10)

Each time step the structure force densityfS and its discrete Fourier transform̂fS,k are computed. Next the Gaussian random
variablesΞ̂

n

k
andΓn

m
are generated. The random variableΞ̂

n

k
has mean0 and varianceσ2

k
= (Dk/αk) (1 − exp (−2αk∆t)).

The Fourier representation of the central difference discretization of the Laplacian is given byαk = (2µ/ρ∆x2)
∑3

j=1(1 −

cos(2πk(j)/N))). From the constraint that the velocity field must be real-valued and thefluctuation-dissipation principlewe
obtainDk = αkkBT/ρL3 for k ∈ K andDk = αkkBT/2ρL3 for k 6∈ K with the set of self-conjugate modes denoted byK
= { k | k(j) = 0 or k(j) = N/2, j = 1, 2, 3 }. To enforce incompressibility each Fourier mode is projected by℘⊥

k
= I −

(ĝkĝ
T
k
/|ĝk|

2) with ĝ
(j)
k = sin(2πk(j)/N)/∆x. TheΞ̂

n

k
then accounts for the contributions toûk of the thermal fluctuations

of the fluid over the time step. Next the structure control pointsX[j] are updated by generating the Gaussian random variable
Γn

m
which accounts for the contributions of the thermal fluctuations of the fluid to the structure dynamics over the time

step. This can be shown to enter as the time integral of the fluid velocity, Γn
m

=
∫ tn+1

tn

∑

k
ûk(s) exp (i2πk · m/N) ds.

An important consideration in generating the random variables is to take into account the correlations betweenΓn
m

andΞ̂
n

k
,

which both account for the same underlying thermal fluctuations of the fluid. The correct correlations can be obtained by using
equation 8, in which an independent standard GaussianĜk is generated and linearly combined with the previously generated
random variables used to update the fluid modes. For a discussion of the derivation of the numerical method see [1].

2 Conclusion

In formulating the stochastic immersed boundary method a number of approximations were introduced, both at the level ofthe
physical model for fluid-structure interactions and through the spatial and temporal numerical discretizations. A number of
checks can be performed to verify whether the method is consistent with statistical mechanics and adequate to capture physical
phenomena for microscopic systems. In [1] it was found that while only the fluid is stochastically forced, both independent
and interacting particles diffusing in a conservative force field have Gibbs-Boltzmann equilibrium statistics. While particles
are represented by the functionδa in the immersed boundary method the diffusivities were computed both analytically and
from numerical simulations and found to have the correct scaling in the physical parameters. In [2] it was also found thatthe
immersed boundary framework can be used to capture osmotic phenomena occurring in microscopic systems. These results
indicate that the method holds promise as a numerical approach in simulating microscopic mechanical systems in which
thermal fluctuations play a fundamental role. For a more in depth discussion of this work see [1, 2, 3].
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