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Abstract. The Kinesin family of motor proteins are involved in a variety of cellular processes
that transport materials and generate force. With recent advances in experimental techniques, such
as optical tweezers which can probe individual molecules, there has been an increasing interest in
understanding the mechanisms by which motor proteins convert chemical energy into mechanical
work. Here we present a mathematical model for the chemistry and three dimensional mechanics
of the Kinesin motor protein which captures many of the force dependent features of the motor.
For the elasticity of the tether that attaches cargo to the motor we develop a method for deriving
the non-linear force-extension relationship from optical trap data. For the Kinesin heads, cargo,
and microscope stage we formulate a three dimensional Brownian Dynamics model that takes into
account excluded volume interactions. To efficiently compute statistics from the model an algorithm
is proposed that uses a two step protocol that separates the simulation of the mechanical features
of the model from the chemical kinetics of the model. Using this approach for a bead transported
by the motor, the force dependent average velocity and randomness parameter are computed and
compared with the experimental data.
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The Kinesin family of motor proteins is involved in a variety of cellular processes
including the transport of materials to the end of axons (32), the controlled localiza-
tion of organelles during cell development (55), and the separation of chromosomes
during mitosis (49), (25). The vesicle and organelle transporting members of the
Kinesin family interact with long microtubule filaments of the cytoskeleton. The fil-
aments serve the dual purpose of giving a cell structural support and as a highway
on which motor proteins transport materials between distant locations within the cell
(1).

The Kinesin motor protein consists of two homologous globular domains, referred
to as “heads” (56). The heads are joined together by a long coiled-coil alpha-helix
structure which extends to attach like a tether to cargo transported by the motor
(20), (24). The globular domains each have specialized regions that interact with
tubulin dimers of the microtubules and a binding pocket for the nucleotide adenosine-
tri-phosphate (ATP) (58).

The motor moves along the microtubule track by binding and unbinding its heads
from interaction sites on the microtubule surface (19). The binding sites are spaced
at approximately 8-nm increments (54), (21), (2). Microtubules have a polarity
deriving from an asymmetry in their constituent monomer units (37), (14). By
convention the end toward which almost all of the Kinesin motors move is referred to
as the plus end of the microtubule.

The motor is powered from energy released by breaking covalent bonds between
the second and third phosphate group of (ATP) in a process known as hydrolysis.
The detailed mechanism by which the energy released during hydrolysis is converted
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into mechanical work is presently unknown.

Individual Kinesin motor proteins have globular domains on the order of 10-nm
in diameter. On this small length scale thermal fluctuations arising from collisions of
the protein with the constituent molecules of the surrounding solvent are significant
and may play an important role in how the motor functions. The fluctuations affect
both the internal structure of each of the heads as well as their diffusion, when un-
bound, relative to the microtubule. There have been many theoretical mechanisms
proposed whereby the energy from hydrolysis and thermal fluctuations drive confor-
mational changes, or more subtly, rectify fluctuations of protein structures to perform
mechanical work (22), (18), (23), (6) (28), (40).

Crystollographic structures for the Kinesin molecule have been solved in a few
different conformations when bound to the products of the ATP hydrolysis cycle
or analogue substrates (29), (30), (34), (44), (51), (26), (50), (59), (47)
(7). The crystallographic structures and related mutagenesis studies yield many clues
about which protein structures are important and how they might contribute to the
operation of the motor protein.

From these structures a partial picture of how the motor operates is emerging.
Connecting each head of Kinesin to the long coil-coiled structure is a sequence of
approximately 15 amino acid residues referred to as the “neck-linker”. When the head
is bound to different ATP hydrolysis products this structure undergoes conformational
changes which are thought to perform the working “power stroke” of the motor which
moves the lagging head closer toward the plus end of the microtubule (44), (43).
A collection of loops and alpha helices have also been identified which interact with
bound substrates. These structures are thought to be important in communicating the
identity of the substrate to distant parts of the molecule. These “switch” structures
affect such features of the motor as the binding affinity of a head for a microtubule
and the conformation of the neck-linker (26), (48), (46).

While crystallographic structures offer primarily a statistic geometric picture,
optical trap experiments have been used to study the dynamics of individual motor
proteins as they operate. To probe the motor, a latex bead hundreds of nanometers
in diameter is attached to the protein through the long coiled-coil tether structure. A
load force is applied to the cargo bead and the response of its transport by the motor
is observed as the load force is varied. See figure 0.1. Since only the bead is observed,
to obtain information about the motor, a separate experiment must be performed to
obtain the elasticity of the tether which attaches the bead to the motor (52).

Measurements from the optical trap experiments yield interesting information
about how the motor functions. By performing repeated experiments it is possible
to estimate force dependent statistics of individual Kinesin molecules such as the
response of the motor velocity to a load force. The experimental data also place
important constraints on candidate mechanisms for how the motor functions, such
as the number of rate limiting “mechanochemical” events per 8-nm step along the
microtubule. It has even been possible to deduce some information about the con-
formational changes that occur. Using high precision optical traps small systematic
displacements of the bead have been estimated at high spatial and temporal resolution
within the 8-nm steps of the motor (36), (9).

In modeling the optical trap experimental data a difficulty arises in modeling
the motor protein. Attempting to model at a detailed level using methods such as
molecular dynamics allows for simulation over only a short time relative to the time
scale on which the motor operates and on which experimental measurements are made.
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The overall aim of this work is to derive a mechanical model of the motor at a coarse
scale that allows for efficient computation of long time-scale observables.

Many models have been proposed for Kinesin (35), (39), (17), (3), (33). In
these papers Kinesin is often described by a single mechanical degree of freedom or
reaction coordinate in which many details concerning the geometry and elasticity of
the motor are neglected. In this work we propose a three dimensional mathematical
model for the Kinesin motor protein taking into account basic structural features of
the motor. Data from the optical trap experiments of (52), in which the elasticity of
the cargo tether of the motor is probed, are incorporated into the mechanics of the
model. We show how a force-extension relationship for the tether can be derived from
the published data. An algorithm is then proposed that exploits a separation of time
scales in the model to efficiently compute statistics that can be compared with the
optical trap experimental data.
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Fig. 0.1. A Schematic Representation of the Optical Trap Experiment of Svoboda and Block
1994. A laser trap for the cargo bead is generated with a center of focus above the microtubule. The
interaction of the laser light with the bead results in a restoring force that tends to pull the bead
toward the focus of the laser. As the motor progresses along the microtubule toward the plus end,
the bead is pulled successively further from the center of focus and an increasingly strong load force
is exerted on the motor.
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1. Model Description. Kinesin consists of two nearly homologous globular
domains that form what are referred to as the “heads” of the motor protein. Each
of the heads has a special binding site in which ATP hydrolysis occurs and each has
a separate structure that interacts with microtubules. Extending from each of the
heads is a long alpha helix that dimerizes the two heads by forming an intertwined
coiled-coil structure. The coiled-coil structure also acts as a tether to attach cargo to
the motor.

The detailed internal geometry of the two heads of Kinesin are neglected in the
model and represented by two spherical excluded volumes. The microtubule binding
sites of each head are modeled by control points extending from the surface of each
excluded volume. The heads are connected to one another at a common point which
we shall refer to as the “hinge point”. The coiled-coil tether is modeled as a non-
linear spring with a force-extension relationship derived from experimental data. See
section 2 for the details of this procedure. Figure 1.2 gives a schematic illustration of
the model.

A bead is connected to the motor in optical trap experiments and is modeled by a
large spherical excluded volume. The excluded volume interactions of the bead with
the microscope stage, microtubule, and the motor are accounted for in the model. The
interaction with the stage is enforced by a condition that the bead not move below
a given planar surface. The detailed geometry of the stage mounted microtubule is
neglected in the model since on the length scale of the bead it is expected that the
microtubule appears as little more than a small “bump” on the stage surface only
making a minor contribution to the bead diffusion dynamics. See figure 1.1 for a
schematic of the model where the motor, microtubule, and cargo bead are drawn
approximately to scale.

Microtubules serve as the track on which Kinesin moves. Typically 13 protofila-
ments join laterally to form a sheet that when rolled up forms the hollow cylindrical
structure of the microtubule (37). For dimeric Kinesins it has been found that the
motor moves along the axis of a single protofilament of the microtubule. When the
protofilaments are twisted so that they form a helical spiral that wraps around the
microtubule it is found that dimeric Kinesin move in a similar helical spiral (41).
This suggests that dimeric Kinesin binds to sites located in a regular pattern in the
neighborhood of a protofilament. When considering single headed Kinesin molecules
a more complex movement along microtubules has been observed (4).

In the model we arrange the microtubule binding sites of the motor along a single
protofilament spaced with 8-nm increments. We model these sites by hemispherical
regions of radius 2-nm that interact with the binding control points of the Kinesin
heads, see figure 1.2.

To model the state of the motor as it progresses through the coupled hydrolysis
and mechanical stepping cycle, we make stochastic transitions determined by the
chemical kinetics and mechanics of the motor protein. We postulate that each of the
heads of Kinesin is in any of three broadly defined states. A head can be bound to a
microtubule denoted (B), be freely diffusing with weak affinity for the binding sites
(W), or be freely diffusing with strong affinity for the binding sides (S). The states
of the motor as a whole consist of all pair combinations of theses affinities. We shall
discuss the details of the admissible states and the specific mechanochemical cycle for
our model below.

In summary, the mechanical model of the motor protein consists of two spherical
excluded volumes connected at a common hinge point. The hinge point serves as the
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anchor for the tether that attaches cargo to the motor. The tether is modeled by a
non-linear spring. The motor moves by successively binding and unbinding its heads
from the track. When a head is unbound from the microtubule there is a joint diffusion
of the cargo bead and the heads. When a head is bound to adjacent microtubule sites
the the binding control points and the hinge point form an equilateral triangle with
sides of length 8-nm.
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Fig. 1.1. Illustration of the Model Plotted Approximately to Scale
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Fig. 1.2. Illustration of the Model with a Magnified View of the Motor
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2. Reconstruction of the Tether Force-Extension Profile from Exper-

imental Data. Extending from the motor domains of Kinesin is a long coiled-coil
alpha helix structure which acts like a tether that attaches cargo transported by the
motor protein. Since the forces acting on the cargo are transmitted to the motor by
the coiled-coil structure the elasticity of the tether may play an important role how
the motor operates when transporting cargo subject to a load force. In (15), (16),
(8) a linear force-extension relation for the tether was considered. It was shown that
depending on the model of the motor protein different tether stiffnesses were optimal
in the velocity attained by the motor. In this section we discuss a method by which
a nonlinear force-extension relation for the coiled-coil structure can be derived from
the data of the optical trap experiments of (52).

In the optical trap experiments of (52) a bead is attached to an inactive Kinesin
motor protein which is bound to a microtubule. The microtubule is mounted to a
microscope stage which is moved at a fixed speed Vm. In the experimental data only
two quantities are published. The first quantity is the velocity ratio r = Vb

Vm

where
Vb is the bead velocity and Vm is the stage velocity. The second quantity is the

component of the bead position in the direction of the microtubule xb = X
(1)
b , where

in our notation Xb is the three dimensional position of the bead. The experimental
data is published as the velocity ratio r plotted as a function of the bead position xb.
figure 2.2.

To obtain the force-extension profile of the tether from the one dimensional ob-
servations of the experiment we must determine the extension of the tether for each
observed bead position and the applied force that yields this extension. To obtain the
correct relationship we must take into account the three dimensional geometry of the
experiment.

In the experiment as the stage moves the tether pulls the bead from the center of
the trap which then exerts an opposing optical restoring force. The bead also experi-
ences random forces as a consequence of the thermal fluctuations of the surrounding
solvent that cause it to diffuse in three dimensions subject to the deterministic forces
of the system. As a consequence of the thermal fluctuations of the bead and the res-
olution of the experimental measurements, the data reflect averages of the quantities
r and xb. It can be shown that the problem of precisely determining the restoring
force of the tether and the extension of the tether from these observations is a math-
ematically ill-posed problem. However, if some operational assumptions are made an
approximate force-extension profile can be reconstructed from the data.

2.1. Model of the Experiment and the Reconstruction Method. In the
experiments of (52) a 250-nm latex bead was attached to the motor protein and
the center of the optical trap was located 250-nm above the microscope stage. This
arrangement has the convenient feature of keeping the bead in a configuration which is
in contact with the surface of the microscope stage. As a consequence some important
simplifications can made in the derivation.

To avoid the difficulties of modeling the thermal fluctuations of the system we
shall assume in our model that the stage velocity is slow relative to the time scale
for the bead diffusion to reach its equilibrium distribution. Thus at each instant we
shall make the operational assumption that on average all forces are balanced in the
system and neglect further effects of the thermal fluctuations.

In the experiment the motor is bound in an inactive state at position Xm to a
microtubule. The microtubule is mounted on the microscope stage. A cargo bead is
attached through the coiled-coil tether structure to the motor. The bead is subject
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to the restoring force toward the center of the optical trap located at position Xtr.
As a consequence of the geometric setup of the experiment with the bead in contact
with the stage, when the forces are balanced, the state of the system is described by
the one dimensional components of the positions in the direction of the microtubule

axis. These positions are denoted respectively by xb = X
(1)
b for the bead, xtr = X

(1)
tr

for the trap, and xm = X
(1)
m for the motor. An illustration of the geometry of the

experiment is given in figure 2.1.
In the experiment, calibration measurements were made to obtain the restoring

force of the optical trap. This was found to be approximated well by a linear spring.
In our model we shall treat the force acting on the bead in the direction of the micro-
tubule arising from the optical trap by the linear spring Ktr(xb − xtr), in which the
spring stiffness Ktr has been estimated for each laser power by calibration measure-
ments. The assumption of balance of forces for each configuration xb of the bead and
motor xm requires that the tether force Ftether balance the force of the optical trap
in the direction of the microtubule axis. This requires that the tether force satisfy

Ftether · cos(θ) = Ktr(xb − xtr)(2.1)

where θ is the angle the tether makes when binding the cargo bead as illustrated in
figure 2.1.

From this model we find that in order to obtain the tether force Ftether and the
extension of the tether L we must determine the angle θ from the experimental data.
This is equivalent to knowing the value of xm for each observation xb. We can obtain
the motor position xm from the observations of xb and r(xb) using the following
approximations.

r =
Vb

Vm

≈
∆xb

∆t
∆xm

∆t

≈ ∆xb

∆xm

≈ dxb

dxm

(2.2)

Thus we can relate xm to the observed quantities xb and r(xb) by using the
experimental data to numerically evaluate the following integral.

xm(xb) − x0
m =

∫ xb

x0

b

∂xm

∂x′
b

dx′
b(2.3)

=

∫ xb

x0

b

1/r(x′
b)dx′

b

We remark that this yields a well-defined function for xm(xb) provided that r(xb) > 0
which is indeed the case for the experimental observations.

The integration constant x0
m can be solved in terms of the rest-length L0 of the

tether and x0
b by

x0
m = x0

b +
√

(Rbead + L0)2 − R2
bead(2.4)

We should point out that the additional term Rbead in the term with L0 appears
because the tether is attached to the surface of the bead and not the center of mass
of the bead.

From structural considerations of the Kinesin motor protein the tether is esti-
mated to have a rest length of about L0 = 65-nm and the elasticity of the tether is
reported to begin to rise significantly from zero for x0

b ≈ 50-nm in (52).
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From the quantities xm and xb and from a trigonometric identity we obtain that

cos(θ) =
xm − xb

L + Rbead

(2.5)

We obtain from the experimentally observed quantities xb and the derived quan-
tities xm the following equation for the force-extension profile.

Ftether =
L + Rbead

xm − xb

Ktr(xb − xtr)(2.6)

L =
√

(xb − xm)2 + R2
bead − Rbead

2.2. Tether Force-Extension Reconstruction from the Experimental

Data. In the paper of (52) the optical trap experiments were repeated at three
laser powers 15mW, 30mW, and 62.5mW. For each of the experiments the restoring
forces of the optical trap are different. This yields information about the elasticity on
different but potentially overlapping extensions of the tether. In order to combine this
information we derive consistency conditions that can be used to map observations
made in one experiment to equivalent observations that would be made in another.
From a modeling point of view this allows for all of the data to be regarded as having
been obtained in a single experiment. Here we shall map all of the data to an optical
trap experiment formed with a 15mW laser.

There are two conditions that must be satisfied in the experimental measurements
of r and xb for a given extension of the tether. These requirements follow from the
assumption that the elastic behavior of the tether, as it is extended, is independent
of the stiffness of the optical trap used to probe this behavior. The conditions are
also a consequence of the geometry of the experiment in which the bead is in contact
with the stage and the fact that we have assumed that the bead equilibrates each
instant to a position where forces are balanced in the system. These assumptions
along with the fact that the experiments probe identical features of the tether allows
for data obtained from one experiment to be used to predict observations that would
be obtained in another.

By the geometry of the experiment the extension of the tether and the difference
xb − xm are in a one-to-one correspondence, in other words, knowledge of one de-
termines the other. In fact the component of the tether force in the direction of the
microtubule is given by a function Fx−tether(xb − xm).

Since the optical trap has a linear restoring force the component of the optical
force in the direction of the microtubule is given by

Ftr(xb − xtr) = −Ktr(xb − xtr)(2.7)

The condition that forces acting on the bead balance each instant yields the
requirement that Ftr + Fx−tether = 0 which can be expressed as

Ktr(xb − xtr) = Fx−tether(xb − xm)(2.8)

To obtain the first consistency condition consider two experiments in which the
tether has the same extension. In each experiment the optical trap restoring force
then must be the same. This is required so that the component of the tether force
in the microtubule direction is balanced by the optical trap force. Consequently, the
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following condition must be satisfied for the value xA
b , measured in experiment A, in

relation to the value of xB
b , measured in experiment B.

KA
tr(x

A
b − xtr) = Fx−tether(xb − xm) = KB

tr(x
B
b − xtr)(2.9)

The second consistency condition is obtained by differentiating, with respect to
time, the balance of force condition which relates the optical trap restoring force to
the tether force Fx−tether(xb − xm). We obtain after the chain-rule and some algebra
the following relationship between the tether force in the direction of the microtubule
and the velocity ratio r = Vm

Vb

.

r

1 − r
Ktr = F ′

x−tether(xb − xm)(2.10)

We again emphasize that the force component of the tether force does not depend
in any way on the laser power used for the optical trap. Therefore, if the tether has
the same extension in two experiments the value rA measured in experiment A must
satisfy the following condition with respect to the value rB measured in experiment
B.

rA

1 − rA
KA

tr = F ′
x−tether(xb − xm) =

rB

1 − rB
KB

tr(2.11)

These two conditions allow for all of the data obtained under the three experi-
ments in the (52) paper to be mapped to equivalent observations under the experiment
with an optical trap formed from a 15mW laser. The reconstruction method discussed
in the previous section can then be applied to obtain the force-extension profile from
the composite experimental data. The composite data of (52) is plotted in figure
2.2. The reconstructed motor position, force-extension profile, and energy-extension
profile are plotted in the figures 2.3, 2.4, 2.5, respectively.
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Fig. 2.1. Diagram of the Optical Trap Experimental Setup for the Bead-Motor Tether. The
center of the optical trap xtr is positioned so that the bead is in contact with the microscope stage.
The center of the bead xb in the direction of the microtubule is observed as the stage is moved. The
tether connecting the center of the bead to the motor at position xm is extended under the restoring
force of the optical trap which is proportional to xb −xtr. The angle at which the tether is connected
to the bead with respect to the direction parallel to the microscope stage is denoted by θ. Note that the
tether itself only consists of the segment from the motor to the surface of the bead and has the same
binding angle as that illustrated. We also remark that by the geometry of the setup the extension of
the tether only depends on xm − xb.
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Fig. 2.2. Composite Experimental Data. In the plot (+) points were obtained with 15mW laser
power, (o) with 30mW, and (x) 62mW laser power. The data is from (52) and are replotted here
on a single graph by making use of the transformation explained in the text.
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Fig. 2.3. Reconstructed Motor Position. The black points show the reconstructed motor position
xm as a function of the experimentally observed bead position xb obtained by the integration procedure
described in the text.
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Fig. 2.4. Tether Force-Extension Profile. The plotted points are the reconstructed force-
extension profile obtained from the procedure described in the text. The solid curve is a cubic
polynomial with coefficients fit by the method of least-squares to the reconstructed force-extension
profile of the tether. For small tether extensions in the model the force-extension profile is linearly
interpolated to zero as the extension approaches zero.
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Fig. 2.5. Tether Energy-Extension Profile. The plotted points are the reconstructed tether
energy-extension profile obtained by numerical integration of the reconstructed tether force-extension
profile. The solid curve is the analytic anti-derivative of the cubic polynomial obtained using a least-
squares fit to the tether force-extension profile.
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3. The Kinetic Cycle of the Model. In the model we postulate that the
heads of the motor protein can be in any of three states which are represented by
their binding affinity for the microtubule. The states are: bound to a microtubule
(B), detached and diffusing with weak affinity for the microtubule (W), detached and
diffusing with strong affinity for the microtubule (S). The overall state of the motor
protein is then given by the binding states of each of the heads and the location of the
bound head closest to the negative end of the microtubule. For clarity in the notation
we shall suppress explicit mention of the bound head location.

Since we are primarily interested in the force dependent statistics of the optical
trap experiments we shall restrict attention only to the states of the motor where
one head is bound to the microtubule at all times. In the description of the model
we shall not distinguish between the individual identity of the two heads but rather
only represent their relative configuration. From these considerations the states of
the motor are always in the set {BB,WB,BW,SB,BS}.

The kinetics of the model are specified by transitions between these states. For
many of the states a transition will occur only after an exponentially distributed
waiting time parameterized by a rate constant. The rate constant characterizes the
probability per unit time that a transition event occurs. If we denote the rate constant
by λ the waiting time is a random variable τ with the probability density (45)

ρ(t) = λe−λt(3.1)

In the model we do not commit to a specific correspondence between the proposed
states and the ATP hydrolysis cycle. However, to motivate the model we will relate
our state transitions to a kinetic scheme similar to that proposed in (12), (13).

In the following description, when both heads of kinesin are bound to the mi-
crotubule, we shall refer to the one closer to the plus end of the microtubule as the
leading head and the one closer to the minus end of the microtubule as the trailing
head. When only one head is bound to the microtubule, we shall not use the ter-
minology ”leading” or ”trailing” and simply refer to one as the bound head and the
other as the unbound head.

Each head of kinesin has a catalytic site which is specialized for ATP hydrolysis.
This site may be empty, occupied by ATP, occupied by ADP and Pi, or occupied by
ADP only.

We begin the description of the hydrolysis cycle with one head bound and its hy-
drolysis site empty, and with the other head unbound and its hydrolysis site occupied
by ADP . In fact, we assume that the ADP molecule is trapped in the hydrolysis site
of the unbound head and that it cannot be shed until other events occur that allow it
to be released. This will be discussed shortly. We refer to this state as WB, meaning
that one head is bound to the microtubule and the other head is not bound and has
only weak affinity for the microtubule, see figure 3.1. In particular, the unbound head
will remain unbound, with ADP trapped in its hydrolysis site, as long as kinesin
remains in this state.

The next step in the cycle is the binding of ATP to the bound head of kinesin.
Recall that the hydrolysis site of the bound head was empty and available to bind
ATP . This is followed by ATP hydrolysis in the bound head. We assume that one or
the other of these reactions, either the binding of ATP or the subsequent hydrolysis,
is rate limiting and assign it the rate constant α. The obvious result of this step is
that the bound head now has ADP and Pi in its hydrolysis site, but we assume that
a further result is a change in conformation of the kinesin molecule as a whole that
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makes the unbound head bind ADP less strongly, and allows the unbound head to
interact strongly with the microtubule.

As a result of the above, kinesin is now in the state SB, in which the unbound head
will bind to the first empty kinesin-binding site on the microtubule that it encounters.
The fast process of finding this binding site is diffusion-limited, and therefore is not
described by a rate constant. We obtain the statistics of this transition by direct
simulation of the stochastic dynamics of our mechanical kinesin model.

When the unbound but strongly interacting head encounters a kinesin binding site
on the microtubule it binds there. The resulting conformational change in the kinesin
molecule as a whole causes the shedding of Pi from the other head, the one that was
already bound, which is the one on which hydrolysis has most recently occurred.

At this point we have both heads bound, so the state of kinesin is BB, and both
heads have ADP in their hydrolysis sites. This situation is somewhat unstable, since
the presence of ADP in the hydrolysis site weakens the interaction with the micro-
tubule. What happens next is that one of the two heads sheds its ADP. The head that
does so binds more strongly to the microtubule, while the other head simultaneously
lets go of the microtubule and binds more strongly to its ADP , trapping the ADP
in its hydrolysis site. The kinesin molecule is now in the state WB with which we
began the description of the hydrolysis cycle.

It is important to note, however, that there are two ways the above coordinated
reaction, release of ADP from one head, and disassociation of the other head from
the microtubule, can occur, since the head that detaches from the microtubule can
be the leading head or the trailing head. An important assumption of our model is
that the rate constants for these two reactions are not the same. We call βb the rate
constant for detachment of the trailing ”back” head from the microtubule, and βf

the, much smaller, rate constant for detachment of the leading ”front” head from the
microtubule. Whichever head detaches, though, carries ADP trapped in its hydrolysis
site, while the head that remains bound is left with its hydrolysis site empty.

Kinesin hydrolyzes on average one ATP molecule per step along the microtubule
(11) and can move against load forces as great as 5−7pN (52). The hydrolysis of only
one ATP per step suggests there must be a mechanism that drives the motor forward
other than the asymmetric unbinding rates βb and βf of the front and back heads.
If there were no other mechanism involved we would have by mechanical symmetry
that a head detaching from the back microtubule site would have at least a 50%
probability of rebinding again to the back microtubule site. As a consequence each
observed mechanical step would on average require consumption of more than one
molecule of ATP .

To avoid this problem we introduce into the model a mechanical asymmetry. It
has been reported in (44), (43) that when ATP binds the motor domain a loop
of about 15 amino acid residues undergoes a disordered to ordered transition. This
structure attaches the motor domains to the coiled-coiled stalk and is referred to as
the “neck-linker”. In the ordered state the residues of the loop form a partial beta
sheet structure close to the motor domain. In the model the effect of the neck-linker
is accounted for by a harmonic spring acting on the hinge point which introduces a
preferred configuration in the direction of the plus end of the microtubule when ATP
is in the hydrolysis site of the bound head. This biases the diffusion of the back head
toward the front binding site.

Further refinements of the model may be possible incorporating mechanical in-
formation about the interactions of the neck-linker with the motor domains in (44),
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(43). It may also be possible to include the mechanism proposed by (35), which
involves a competition between a docked and undocked state of the neck-linker, by
introducing a bistable potential energy for the hinge point. However, inclusion in the
model of a potential energy with multiple minima complicates the statistical sampling
of the mechanical configurations. We leave these possible refinements to future work.
The kinetic cycle and mechanics of the model are summarized in figure 3.1.
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Fig. 3.1. State Transition Diagram for the Model. Each level denotes a state combination
for the pair of Kinesin heads. The arrows represent admissible transitions that can be made in the
model. Transitions that occur after an exponentially distributed waiting time are labeled with a rate
constant. Transitions that occur only after a diffusive search of the free head has successfully found
an available binding site are labeled by “diffusion”.
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4. Simulation of the Model and Computation of Experimentally Mea-

sured Statistics. From the measurements of optical trap experiments, two statistics
are typically published in the literature. These are (i) the average velocity at which
the cargo bead is transported by the motor protein and (ii) the randomness parameter
q of the stochastic stepping process.

If we let zt be the component of the bead position along the axis of the microtubule
at time t then the average velocity of the bead is given by

v = lim
t→∞

E[zt]

t
(4.1)

where E[·] denotes the ensemble expectation obtained by averaging the measurements
over repeated experiments.

The randomness parameter q is defined as

q = lim
t→∞

var[zt]

E[zt] · δ
(4.2)

where var[·] is the ensemble variance obtained by averaging over repeated experimental
measurements, and δ = 8-nm is the spacing between microtubule binding sites.

The motivation for the randomness parameter comes from a process with elemen-
tary chemical events having exponentially distributed waiting times with identical
rate constants λ. If each mechanical 8-nm step requires n elementary chemical events
then a relatively straight-forward calculation using the Poisson distribution for the
number of elementary events which have occurred for the motor before the time t
gives q = 1

n
. When the rates are not exactly the same the randomness parameter

estimates the number of slow “rate limiting” events (53).
In a rough sense the quantity q measures the “randomness” of the process. If

the number of chemical events per mechanical step is large n → ∞ with the average
time t0 = n

λ
for a mechanical step held constant for each n, then the waiting time

distribution of the mechanical step approaches the Dirac δ-distribution with unit mass
centered at the time t0. Thus as q → 0 the mechanical stepping becomes increasingly
like that of a deterministic stepping process with delay t0 between steps.

In the experiments the bead is attached through the cargo tether to an active Ki-
nesin motor protein. The position of the transported bead is measured with nanometer
spatial accuracy and microsecond temporal accuracy. At the laser powers used in the
experiments which we shall consider, the optical restoring force toward the center of
focus can be approximated to a good degree by a Hookean spring where the restoring
force is a linear function of the displacement. In many of the experiments the laser
powers are sufficiently weak that many steps of the motor are required before the
restoring force acting on the bead changes significantly. The load force varies only
over relatively large length scales in comparison to the 8-nm step of Kinesin protein.

To estimate the load force dependence of the motor in the experiments, the time
series of the bead position is divided into small segments which are determined by
when the bead is within a small range of displacements from the optical trap center.
On each segment the statistics are computed by treating the load force as approxi-
mately constant. Some of the experiments employ a more sophisticated approach and
use a feedback loop to move the optical trap as the motor progresses. This ensures
that a fixed distance is maintained between the optical trap center and the bead and
makes the load force to a high precision constant (57).

A challenge in modeling the force dependent statistics is that we must be able to
efficiently sample the behavior of the model over many steps of the motor protein and
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over a range of load forces. A further challenge arises from the range of time scales
associated with the chemical kinetics and mechanics of the motor protein. In general
the computation of these force dependent statistics by directly simulating a detailed
model of the experimental system is computationally expensive.

The approach we shall take is to simulate a coarse-grained model of Kinesin using
a two step protocol that simulates the mechanical aspects of the model separately from
the chemical kinetics of the model. The geometry of the model was discussed in detail
in section 1. In this section we shall discuss primarily the dynamics of the model and
the simulation method.

In the experiment the bead and motor protein are immersed in a solvent. Given
the small length scale of the motor protein and the cargo bead the Reynolds number
associated with the system is small. We shall model the dynamics of the model by

an over-damped diffusion process where the kth mechanical degree of freedom X
{k}
t

evolves according to a stochastic differential equation

dX
{k}
t = − 1

γk

∇X{k}V (Xt)dt +
√

2DkdB
{k}
t(4.3)

The potential energy of the system is denoted by V and depends on the config-
uration of the entire system, which is denoted by Xt. The details are given in the
appendix. Associated with each degree of freedom is an effective friction coefficient
γk which captures the dissipation of energy that occurs from the interaction of the
solvent with the bead and the heads of Kinesin. The associated diffusion coefficient
is given by Einstein’s relation, Dk = KBT

γk

, which captures the thermal energy that

is imparted by the solvent to the bead and the heads of Kinesin (42). The thermal
force in the system is modeled by white noise which we express for the kth mechanical
degree of freedom in terms of increments of the standard three dimensional Brownian

motion B
{k}
t , which are taken as independent for each k. (38).

The model is simulated numerically by using an Euler discretization of the stochas-
tic differential equation (27)

Xn+1
k = Xn

k − 1

γk

∇Xk
V (Xn)∆t + Zn

k(4.4)

The kth mechanical degree of freedom at time tn is denoted by Xn
k . The thermal

force acting over the time increment ∆t is captured by a Gaussian random variable
Zk with mean 0 and variance

√
2Dk∆t.

In the scheme the excluded volume interactions between the bodies are taken
into account by a rejection method. If a probabilistic step of the scheme results in a
configuration of the system that violates the excluded volume constraint this step is
rejected. A new set of random numbers are generated for the step until an acceptable
configuration is produced.

From an abstract perspective, in which we view the dynamic trajectories as ran-
dom variables drawn from the space of continuous functions, the rejection method is
equivalent to drawing trajectories in the subspace of admissible configurations. The
random variables are then distributed according to the conditional probability ob-
tained from the Ito measure associated with the stochastic process restricted to the
admissible subspace. Alternatively, from the point of view of the Ito diffusion process
in the configuration space of the model, the rejection method is equivalent to im-
posing reflecting (no-flux) conditions on the boundary of the subspace of admissible
configurations.
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Direct simulation of the proposed model in order to generate the measurements
used to estimate the force dependent statistics presents a difficulty. The estimated
rate constants of the hydrolysis cycle yield waiting times between chemical events on
the order of milliseconds. These waiting times are long in comparison to the time
scale of the diffusive dynamics of the bead and the motor heads. If the positions of
the bead and motor heads are resolved to 0.1 nanometer precision the time step must
be taken on the order of 102-ns. This requires on the order of 104 time steps per
chemical event. This makes the generation of even a single trajectory of the model
spanning a 100 chemical events computationally expensive requiring on the order of
106 time steps. While it is computationally expensive to perform a direct simulation
of the model this disparity in the time scales of the chemical kinetics and mechanics
can in fact be exploited.

An important feature of the model is that the only diffusion limited event that
depends directly on the mechanics of the protein is the rebinding of the freely diffusing
head when it is in the strong affinity state. While for the other chemically limited
events the free head and the bead do diffuse, they do not influence the waiting for
these events to occur. In addition, since the waiting time for the chemically limited
events in the model is long, to a good approximation the bead and motor have a
random configuration distributed according to the equilibrium distribution.

These insights allow for a simplification of the kinetic cycle of the model where
the mechanical and chemical events of the motor protein can be essentially decoupled.
Since the diffusive binding of the free head occurs on a time scale much faster than
that of the chemical events, the transition WB → SB → BB can be replaced by
the single transition WB → BB. The transition can be modeled by an effective rate
constant pα for the event of the free head binding to the front site in the direction of
the plus end of the microtubule and (1 − p)α for binding to the back site. See figure
4.1 for a diagram of the kinetic cycle.

To simulate the model we use the following two step protocol:
(i) For a given load force generate a random configuration of the bead-motor sys-

tem in the WB state distributed according to the Boltzmann equilibrium distribution.
For each sample simulate the diffusion process of the bead and motor until the free
head binds to either the front or back site. From the simulations estimate the forward
binding probability.

p(F) =
# of times the free head binds the front site

# of times the free head binds either the front or back site
(4.5)

(ii) Simulate the simplified kinetic cycle using p(F) from (i) for the WB → BB
transition.

This approach yields substantial computational savings. The mechanics of the
model need only be simulated over the relatively short time required for the free head
to rebind the microtubule. Once p has been determined the experimentally estimated
statistics can be computed by simulating the simplified chemical kinetics of the model,
which has now been reduced to a markov chain. To obtain a master equation we treat
the identity of each of the heads as indistinguishable but do make a distinction at any
moment between when a head is leading and when it is trailing. With this convention
the master equation is

d[BB]j
dt

= pα([WB]j + [BW ]j) + (1 − p)α[WB]j+1 + (1 − p)α[BW ]j+1(4.6)
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− (βb + βf )[BB]j

d[BW ]j
dt

= βf [BB]j − α[BW ]j

d[WB]j+1

dt
= βb[BB]j − α[WB]j+1

The first symbol of the pair is the state of the back head and the second symbol of
the pair is the state of the front head. The subscript j indicates the site index of the
bound head closest to the minus end of the microtubule.

In the implementation of the method the Metropolis algorithm is used to generate
the random initial configuration of the bead and motor in the BW state. (31).
The Forward-Euler rejection scheme proposed above is used to simulate the over-
damped diffusive dynamics with excluded volume interactions until the free head
rebinds the microtubule. The markov chain representing the kinetic cycle is simulated
both directly by generating variates with exponentially distributed waiting times for
each of the respective state transitions and by numerically solving the corresponding
master’s equations 4.7 - 4.7.

In figures 4.2, 4.3 the front site binding probability p(F) is computed by varying
a subset of the model parameters. See tables 4.1, 4.2, 4.3, 4.4 for more details.



26 P. ATZBERGER, C. PESKIN

Fig. 4.1. State Transition Diagram of the Model with the Free Head Fast Diffusion Approxima-
tion. Each level depicts a state combination for the pair of Kinesin heads. The arrows denote the
admissible transitions of the model. Each transition occurs after an exponentially distributed waiting
time with the corresponding rate constant denoted by the label. The state BS has been eliminated
from the model by the fast diffusion approximation and the transitions from WB → BS → BB have
been approximated by the transitions of the form WB → BB with rate constants αp and α(1 − p).
The factor p = p(F) denotes for a given load force F the probability that the free head binds to the
site on the microtubule toward the plus end.
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Table 4.1

The Parameters of the Three Dimensional Kinesin Model

Parameter Description
KB Boltzmann’s constant
T Temperature
L Spacing between the binding sites.
RbindingSite Radius of the binding sites.
Rbead Radius of the bead.
Km Stiffness of the springs connecting the heads

to the hinge point.
Rm Rest length of the spring connecting

the heads to the hinge.
Rglb Radius of the spherical excluded volume of

each head.
{ak}3

k=0 Coefficients of the cubic fit to the tether
force-extension data.

Kbias Stiffness for the restoring force of the hinge bias.
x0 Displacement of the power stroke with the hinge point

having the preferred position Xbound + x0.
βb Back head unbinding rate BB → WB.
βf Forward head unbinding rate BB → BW .
α Weak affinity to strong affinity transition

rate WB → SB.
Xbead Bead position.
Xhinge Hinge position.

Xh1 Microtubule binding site interaction point
of head 1 position.

Xh2 Microtubule binding site interaction point
of head 2 position.

F Load force acting on the bead.
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Table 4.2

Parameter Values for the Three Dimensional Model: The values given here are the default
values for the model when we consider variations of any subset of the parameters.

Parameter Value
KB 4.142pN·nm
T 300K
L 8 nm
RbindingSite 2 nm
Rbead 250nm
Km

KBT

( L

3
)2

= 0.5825pN/nm

Rm 8nm
Rglb 2nm

{ak}3
k=0

a0 = 3.4287, a1 = −0.0372
a2 = −0.0010, a3 = 1.5050 × 10−5

K
(1)
bias 1pN/nm

K
(2)
bias 1pN/nm

K
(3)
bias 0pN/nm

x
(1)
0 4nm

x
(2)
0 0nm

x
(3)
0 0nm

βb 102.5s−1

βf 2.5s−1

α 400s−1
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Table 4.3

Description of the Simulations of the Three Dimensional Model

Model Index Description

1 Forward bias of x
(1)
0 = 4.

2 Parameters chosen to match one dimensional

model when possible with x
(1)
0 = 3.

3 Forward bias of x
(1)
0 = 2.

4 Forward bias of x
(1)
0 = 1.

5 No forward bias x
(1)
0 = 0.

6 Linear spring used instead of cubic model

of the tether with x
(1)
0 = 4.

7 Linear spring used instead of cubic model

of the tether with x
(1)
0 = 3.

8 Lacks excluded volume and has forward bias of x
(1)
0 = 3.

9 Sideways force applied to model with x
(1)
0 = 4.

10 Sideways force applied to model with x
(1)
0 = 3.

Table 4.4

Parameter Values used for each Simulation of the Three Dimensional Model

Model Index x
(1)
0 Excluded Volumes Tether Type Force Direction

1 4 yes cubic opposed
2 3 yes cubic opposed
3 2 yes cubic opposed
4 1 yes cubic opposed
5 0 yes cubic opposed
6 4 yes linear opposed
7 3 yes linear opposed
8 3 no cubic opposed
9 4 yes cubic sideways
10 3 yes cubic sideways
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Fig. 4.2. Probability of Binding the Forward Site. The function p = p(F) denotes for a given
load force F the probability that the free head binds to the site of the microtubule toward the plus
end. The sigmoidal curves plot the probability function verses the load force in the direction of the
minus end of the microtubule with signed magnitude. Thus positive load forces oppose the motor
and negative load forces push in the preferred direction of the motor. The curves left to right plot

p(F) when the forward leaning biasing parameter of the model is set to x
(1)
0 = 0, 1, 2, 3, 4 respectively.

The two nearly horizontal curves near the top of the figure plot the forward binding probability when
the load force is taken in the direction orthogonal to the microtubule and parallel to the microscope
stage.
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Fig. 4.3. Probability of Binding the Forward Site. The solid sigmoidal curves left to right in the

model are with forward biasing parameter set to x
(1)
0 = 3, 4 respectively. The curves with the symbols

+ and × denote the probability of binding the forward site when the nonlinear spring that models
the tether is changed to an approximating linear spring. The curves with the symbols ¤ denote the
probability of binding the forward site when the excluded volume interactions are neglected in the
model. In all of the plots the load force is taken in the direction of the minus end of the microtubule
with signed magnitude as described in the previous figure.
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5. Comparison with Optical Trap Data. In this section we compare the
simulation results with the experimental data of (52), (5), (10), and (57). We
also compare the three dimensional model proposed here with its one-dimensional
linear-spring counterpart proposed in (39).

Before making these comparisons we should remark that the experimental data
available for the motor protein Kinesin is of a somewhat limited nature. For example
significant differences appear in the literature for published data of experiments under
similar conditions. In (10) and (57) the force-velocity statistics are computed for
Kinesin at a 5µM ATP concentration. As illustrated in the figure 5.3 the experimental
data in the two experiments differ significantly especially in the range of negative load
forces that push the motor in the direction of the plus end of the microtubule.

Some aspects of the experiment that may account for the discrepancies include
the use of different optical trap techniques which may probe the features of the motor
through the cargo bead differently and the use of different biological sources to obtain
the Kinesin motor proteins. In (57) the optical trap center is moved as the motor
progresses to maintain an approximately fixed distance from the bead to obtain a
constant load force to high precision. In (10) the optical trap is formed at a fixed
position.

As a result of these limitations the comparison we make with the experimental
data is largely qualitative and primarily shows some of the changes in the motor
statistics that can arise from the three dimensional mechanics of the motor. Our aim
in comparing with the data is to show that the general features of the model are
reasonable.
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Fig. 5.1. Comparison of the Experimental Force-Velocity Data of (52) at 1 mM with the
Model. The data points with error bars are replotted from the paper of (52). The dashed curve plots
the force-velocity profile of the one dimensional Kinesin model proposed in (39). The solid curve
plots the force-velocity profile of the best fit of the three dimensional model proposed in this paper.
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Fig. 5.2. Comparison of the Experimental Force-Velocity Data of (5) at 1.6 mM with the
Model. The data points with error bars are replotted from the paper of (5). The dashed curve plots
the force-velocity profile of the one dimensional Kinesin model proposed in (39). The solid curve
plots the force-velocity profile of the best fit of the three dimensional model proposed in this paper.
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Fig. 5.3. Comparison of the Experimental Force-Velocity Data of (10) and (57) at 5µM with
the Model. The data points with the ∗ symbol and error bars are replotted from the paper of (57).
The data points with the • symbol are replotted from the paper of (10). The dashed curve plots the
force-velocity profile of the one dimensional Kinesin model proposed in (39). The solid curve plots
the force-velocity profile of the best fit of the three dimensional model proposed in this paper.
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All of the experimental data was fit using the p(F) computed in the previous
section for the three dimensional model with index 1. Overall we find the model fit
the data only moderately well. The data set with the most discrepancy was the force
velocity statistics of (10) in which the negative load force pushes the motor toward
the plus end of the microtubule. As mentioned in the beginning of this section these
data differ from (57). Also in the experiment of (5) the trend of an increasing velocity
for the motor as the forward load force increases was not found. This suggests that
there may be some features of the experimental techniques that can account for the
difference, although it can not be ruled out that this may in fact be an intrinsic feature
of the Kinesin motor proteins used in the experiment. For the data set of (10) we
fit the model to the experimental data sets in the range where they tended to agree
with (57).

We find that much of the experimental data for the force velocity statistic appears
to fall in a range between the three dimensional model and one dimensional model.
As discussed in the beginning of this section, the force velocity statistic of the model is
proportional up to a translation to the function p(F). The probability p(F) of binding
the forward site in the three dimensional model makes a more gradual transition from
1 to 0 as the load force increases than in the one dimensional model. This indicates
that the probability of the free head binding a forward site is much more sensitive to
the load force in the one dimensional model. One approach to reduce the discrepancy
with the experimental data would be to construct a mechanical model of the motor
protein for which the sensitivity of p(F) to the load force falls between that of the
proposed one dimensional and three dimensional models.

An alternative hypothesis to account for the discrepancy with the experimental
data is that the parameters associated with the chemically regulated steps of the motor
depend on the load force. Both of these aspects of the model can be adjusted to fit
the force velocity statistic but additional experimental data, such as the measurement
of the randomness parameter, places important constraints on how this may be done.
One approach to distinguishing between these two alternatives is to require that the
model fit the force variance or randomness parameter of the experiments.

In (57) and (5) the randomness parameter was computed experimentally. Be-
low we show for the three dimensional model a fit performed simultaneously for the
randomness parameter and the force velocity statistic of (5). The fit to the force
velocity statistic was shown in the previous figures.
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Fig. 5.4. Comparison of the Experimental Data for the Randomness Parameter of (5) at 1.6
mM and (57) at 2 mM with the Model. The data points with the + symbol and error bars are
replotted from (5). The data points with the • symbol and error bars are replotted from (57). The
solid curve plots the randomness profile of the three dimensional model proposed in this paper fit to
the force-velocity data of (5).
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We find that the three dimensional model tends to have a higher randomness
parameter but follows the same general trend. In the model there is a limit to how
small the randomness parameter can become when the parameters of the model are
nontrivial. The randomness parameter can be shown to have a minimum of 1

2 when
the probability of taking a forward step is one p = 1. For most of the load forces the
randomness parameter of the model is about 0.5 and that of the experimental data is
0.4. This suggests that there may be additional states of Kinesin not accounted for in
the model that have collectively a non-negligible but moderately fast transition rate on
the time scale of the chemically regulated steps of the model. For example if we include
in the model the shedding of the hydrolysis product Pi after ATP binds one of the
bound Kinesin heads it would be expected that this does not change many of the trends
observed in the statistics of the model but this additional exponentially distributed
waiting time would result in an overall lowering of the randomness parameter.

For the sideways load forces the predictions of the model do not agree with the
trends observed experimentally. In the experimental observations of (5) the velocity
of the motor decreases as the sideways load increases. Interestingly, while contrary
to the experimental observations of Kinesin the three dimensional mechanical model
has a velocity that is found to increase slightly with sideways load forces.

6. Conclusion. In this paper we have derived from optical trap experimental
data the force-extension profile of the coiled-coil tether than attaches cargo to the
Kinesin motor protein. This was accomplished by formulating a theoretical model of
the experiment that allows the extension and the restoring force of the tether to be
deduced from the observations of the cargo bead position and the velocity ratio of the
bead relative to the moving stage. We then proposed a three dimensional mechani-
cal model of Kinesin incorporating the reconstructed force-extension profile into the
model. Force dependent statistics were computed for the model by a procedure that
exploits a separation of times scales between the diffusion time scales of the cargo
bead and Kinesin heads and the time scales of the chemical kinetics of the motor.
The statistics obtained were then compared with experimental data.
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Appendix.

Potential Energy for the Mechanical Model. The potential energy for the
entire system consists of

X = [Xbead,Xhinge,Xh1,Xh2](7.1)

V (X) = Vtether + Vhinge + Vmotor + Vtrap

In this notation the three dimensional positions of the two heads of the Kinesin motor
are denoted by Xh1,Xh2. The bead transported by the motor has position Xbead.
The position of the hinge point where the two heads join the tether of the motor is
given by Xhinge. In the model the energy is taken to be a function of only these four
degrees of freedom and consists of contributions from the stretching of the tether,
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preferred hinge orientation, elasticity of the heads, and the optical trap.
The tether potential energy was derived from the experimental data as explained

in section 2.2. The force-extension profile was found to be approximated well by a
cubic polynomial with coefficients {ak}. The tether energy is modeled consistently
with the cubic fit by the following potential.

Vtether = Etether(|Xb − Xhinge|)(7.2)

Etether(s) =
a3

4
s4 +

a2

3
s3 +

a1

2
s2 + a0s

In the model the free head is biased toward the plus end of the microtubule.
This occurs through a force that has the tendency to keep the bound head at a fixed
angle with the microtubule. We model this by linear springs in each spatial direction
that tend to maintain the hinge position in a subset of preferred configurations. The
biasing force is specified by a separate stiffness for each spatial component. We remark

that in the model K
(3)
bias has been set to zero in all of the simulations but is included

here for generality.

Vhinge =
K

(1)
bias

2
|X(1)

hinge − (X
(1)
bound + x

(1)
0 )|2(7.3)

+
K

(2)
bias

2
|X(2)

hinge − (X
(2)
bound + x

(2)
0 )|2

+
K

(3)
bias

2
|X(3)

hinge − (X
(3)
bound + x

(3)
0 )|2

The elasticity of the globular domains of the motor protein that mediate the force
between the microtubule interaction sites of the head and the hinge point is modeled
by two linear springs that contribute the following energy to the potential of the
system.

Vmotor =
Km

2
(|Xhinge − Xh1| − L)2 +

Km

2
(|Xhinge − Xh2| − L)2(7.4)

In the simulations the force exerted by the optical trap is modeled by a constant
load force F reflecting the small spatial range over which we are interested in the
experimental setup. This potential is given by

Vtrap = −F · Xbead(7.5)


