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Abstract. We develop computational methods that incorporate shear into fluctuating hydrody-
namics methods. We are motivated by the rheological responses of complex fluids and soft materials.
Our approach is based on continuum stochastic hydrodynamic equations that are subject to shear
boundary conditions on the unit periodic cell in a manner similar to the Lees-Edwards conditions
of molecular dynamics. Our methods take into account consistently the microstructure elastic me-
chanics, fluid-structure hydrodynamic coupling, and thermal fluctuations. For practical simulations,
we develop numerical methods for efficient stochastic field generation that handle the sheared gen-
eralized periodic boundary conditions. We show that our numerical methods are consistent with
fluctuation dissipation balance and near-equilibrium statistical mechanics. As a demonstration in
practice, we present several prototype rheological response studies. These include (i) shear thinning
of a polymeric fluid, (ii) complex moduli for the oscillatory responses of a polymerized lipid vesicle,
and (iii) aging under shear of a gel-like material.
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1. Introduction. In the study of complex fluids and soft materials an important aim
is to understand how macroscopic properties emerge from microstructure order and kinetics.
Examples include liquid crystals, colloidal suspensions, gels, lipids, and emulsions [40, 31,
47, 28, 20, 17, 48]. The microstructures of these materials often have interactions on energy
scales comparable to thermal energy resulting in phases dependent on the balance between
enthalpic and entropic effects [36, 20, 12]. For biological materials, such as the cell membrane
or cytoskeleton, microstructures may in addition exert their own active forces [2]. The
individual and collective dynamics of the microstructures often span a wide range of length
scales and time scales [28, 36]. To obtain insights, simplified models are often developed
which are tailored to specific mechanistic questions about material responses. To perform
simulations of dynamic responses requires tractable numerical methods that can account for
microstructure mechanics, hydrodynamics, and the roles played by thermal fluctuations [18,
38, 43].

We present an approach based on the Stochastic Eulerian Lagrangian Method (SELM) [5].
In SELM the microstructure mechanics and solvent dynamics is formulated at the level of
continuum mechanics. The fluid-structure interactions are treated on an approximate level
avoiding the need for computations of the surface traction stresses or coupling tensors. The
SELM approach is closely related to the Stochastic Immersed Boundary Method [7, 46],
Force Coupling Method [41], Stokesian-Brownian Dynamics [13, 9], Arbitrary Eulerian-
Lagrangian Method [14], Fluctuating Hydrodynamics Methods of [19, 55, 8, 21], and oth-
ers [16, 56, 26, 30, 45, 22]. The SELM formulation can be used to study results in different
limiting physical regimes either incorporating or neglecting various types of coupling and
inertial effects [5, 53]. In this work, we extend SELM for rheological studies in the fol-
lowing ways: (i) we formulate generalized periodic boundary conditions for the fluctuating
hydrodynamic equations that account for shear deformations, (ii) we develop numerical dis-
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cretizations for the fluid equations based on a moving reference frame to handle the shear
deformation and boundary conditions, and (iii) we develop efficient computational methods
for stochastic field generation methods to account for thermal fluctuations. We also perform
analysis of the time-dependent numerical discretizations to study the statistical mechanics
of the numerical methods.

The SELM framework is presented in Section 2. To extend SELM to incorporate shear,
we introduce generalized periodic boundary conditions in Section 3. We develop stochastic
numerical methods for the fluctuating hydrodynamic equations in Section 4. To demonstrate
how the methods work in practice, we present results for a few example applications in Sec-
tion 6. We present results for the shear thinning of a polymeric fluid in Section 6.1. We
investigate the complex moduli for the oscillatory responses of a polymerized lipid vesicle in
Section 6.2. We study the aging of the shear viscosity of a gel-like material in Section 6.3.
Overall, we expect the presented approaches to be useful in adopting fluctuating hydro-
dynamics descriptions to investigate diverse models and phenomena arising in studies of
complex fluids and soft materials.

2. Stochastic Eulerian Lagrangian Method. We describe the microstructure
and solvent dynamics using the Stochastic Eulerian Lagrangian Method (SELM) [5]. This
has the fluid-structure equations

ρ
du

dt
= µ∆u−∇p+ Λ[−∇XΦ(X)] + (∇X · Λ) kBT + gthm(2.1)

∇ · u = 0(2.2)

dX

dt
= Γu(2.3)

〈gthm(s)gT
thm(t)〉 = − (2kBT )µ∆ δ(t− s).(2.4)

The u denotes the fluid velocity and X the microstructure configurations. The potential
energy of the microstructures is given by Φ[X]. It is assumed throughout that to a good
approximation the solvent fluid can be treated as incompressible with Newtonian stresses [1,
11]. The u denotes the fluid velocity, ρ denotes the uniform fluid density, µ the dynamic
fluid viscosity, and p the fluid pressure. To account for thermal fluctuations, we introduce a
stochastic driving field gthm which is assumed to be a Gaussian process with mean zero and
δ-correlation in time. The notation a(s)bT (t) should be interpreted as the tensor product of
a and b. The transpose notation is used to be consistent with the discrete setting and the
outer-product between column vectors.

The fluid and microstructure degrees of freedom are coupled through the linear operators
Γ, Λ, see Figure 2.1. The operators themselves are assumed to have dependence only on the
configuration degrees of freedom and time Γ = Γ[X, t], Λ = Λ[X, t]. To ensure the coupling
is non-dissipative and conserves energy, the following adjoint condition is imposed [5, 46]∫

S
(Γu)(s) · v(s)ds =

∫
Ω

u(x) · (Λv)(x)dx.(2.5)

This is required to hold for any u and v. The adjoint condition ensures the fluid-structure
coupling is not a source of energy dissipation and provides a model having properties similar
to imposing a no-slip boundary condition on the microstructures. This condition is also
important to the fluctuation-dissipation balance in the system and simplifies the formula-
tion by ensuring there is no need for additional stochastic driving fields to compensate for
losses in the fluid-structure coupling. The S and Ω denote the spaces used to parameterize
respectively the microstructure configurations and the fluid. We denote adjoints in the sense
of equation 2.5 by Λ = Γ† and Γ = Λ†. A specific form for the coupling operators will be
given in Section 4.3.

We remark that SELM can also accomodate active forces exerted on the microstructures
which would appear in the fluid equations in the same place as −∇Φ term. An important
constraint given the periodic unit cell used in simulations is that the total momentum must
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Fig. 2.1. The description of the fluid-structure system utilizes both Eulerian and Lagrangian
reference frames. The structure mechanics are often most naturally described using a Lagrangian
reference frame. The fluid mechanics are often most naturally described using an Eulerian reference
frame. The mapping X(s) relates the Lagrangian reference frame to the Eulerian reference frame.
The operator Γ prescribes how structures are to be coupled to the fluid. The operator Λ prescribes
how the fluid is to be coupled to the structures. A variety of fluid-structure interactions can be
represented in this way. This includes rigid and deformable bodies, membrane structures, polymeric
structures, or point particles.

be conserved. This is assumed when solving the fluid equations to determine the degenerate
constant mode of the fluid (usually one assumes the total momentum is zero). If this is not
the case, then artefacts in which there is a global back-flow of the fluid can arise in simulations
to compensate for the unbalanced forces acting on the system. Provided the active forces
are introduced in a balanced manner the fluid-structure formulation and numerical methods
we present can be used.

It should be mentioned that when interpreting the fluctuating hydrodynamic equations
the thermal fluctuations cause significant irregularity in the fluid velocity field u. In fact,
the u is not defined in a point-wise sense as a classical function but only in the sense of a
generalized function (distribution) [39]. As a consequence, some care must be taken in the
treatment of the material derivative du/dt = ∂u/∂t+u ·∇u, see [5, 21]. The convective term
involves a product of distribtions and is not mathematically well-defined. The convective
term arises from deriving a local statement of the conservation of momentum as a differential
equation in the Eulerian frame of reference. The issue has to do with the tacit assumption
in continuum mechanics that deformations of the material body are smooth which does not
hold in this stochastic setting. A number of ways to handle this issue can be considered.
One is to introduce a regularisation length-scale to smooth the velocity field motivated on
physical grounds by the fact that the hydrodynamic description is not expected to hold
below sufficiently small length-scales since the continuum hypothesis breaks down as we
approach the mean-free path of the fluid molecules. Provided this regularisation preserves
the skew-symmetry of the convective term, it would not contribute to dissipatation of energy
and would not change signiciantly the stochastic driving fields and numerical methods we
present. From our dimension analysis of the fluctuating hydrodynamics equations, it would
seem that the time derivative term plays the more dominate role given the rapid oscillations
introduced by the thermal fluctuations, see discussion in [5, 53]. However, such comparisons
can be subtle since the time-derivative by itself is also not a well-defined term and requires
an interpretation be given to the SPDEs, such as Ito stochastic calculus [44]. To avoid these
technical issues, we consider here only models that use the time-dependent Stokes equations
with the linearized material derivative du/dt = ∂u/∂t.
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3. Extension of SELM for Investigations of Shear Responses. To intro-
duce shear we generalize the usual periodic boundary conditions. We are motivated by the
approach introduced by Lees-Edwards for molecular dynamics methods [37, 23, 24]. In this
work, the material is modeled by periodically repeating the unit cell of a molecular model.
To simulate the material undergoing a shear deformation at a given rate, the periodic images
are treated as shifting in time relative to the unit cell. This has the effect of modifying both
the location of periodic images of molecules and their assigned velocities. This approach
has some advantages over methods which enforce a strict affine-like deformation everywhere
within the material body [25, 57, 32]. For the Lees-Edwards approach, the shear is im-
posed only at the boundaries allowing within the unit cell for the molecular interactions to
determine the shear response, see Figure 3.1.

Motivated by this approach, we develop a corresponding methodology for the SELM
approach. By considering the effect of shifting periodic images of the unit cell, we introduce
the generalized periodic boundary conditions for the fluid velocity

u(x, y, L, t) = u(x− vt, y, 0, t) + vex.(3.1)

To simplify the presentation, we only consider the case where a shear is imposed in the z-
direction giving shear induced velocities in the x-direction. The other cases follow similarly.
In our notation, the L is the side length of the periodic cell in the z-direction, v = Lγ̇ is
the velocity of the top face of the unit cell relative to the bottom face, γ̇ denotes the rate of
shear deformation, and ej is the standard unit vector in the jth direction. The interactions
between microstructures of the system can be readily handled in the same manner as in the
molecular dynamics simulation. This is done by shifting the location of any microstructure
of a periodic image involved in an interaction, see Figure 3.1.

In practice, these boundary conditions present significant challenges for the numerical
discretization of the fluid equations. The conditions introduce both a jump discontinuity
at periodic boundaries and a shift. For uniform discretizations typically used for the unit
cell, this results in significant misalignments of the nodes at the domain boundaries and
a degradation in accuracy, see Figure 3.1. When incorporating stochastic driving fields to
account for thermal fluctuations these issues are further compounded.

To address these issues, we reformulate the momentum equations in terms of a reference
frame that is more naturally suited to the deformation of the material. This is achieved by
letting w(q, t) = u(φ(q, t), t), where q = (q1, q2, q3) parameterizes the deformed unit cell.
The map from the moving coordinate frame to the fixed Eulerian coordinate frame is denoted
by x = φ(q) and given by φ(q, t) = (q1 + q3γ̇t, q2, q3). The SELM equations 2.1– 2.4 in this
reference frame are given by

ρ
dw(d)

dt
= µ∇̃2w −∇p+ Λ[−∇XΦ] + (∇X · Λ) kBT + J + Gthm(3.2)

∇ ·w = eT
z ∇w exγ̇t+ K(3.3)

dX

dt
= Γw(3.4)

〈Gthm(s)GT
thm(t)〉 = − (2kBT )µ∇̃2 δ(t− s).(3.5)

The Laplacian of the velocity field under the change of variable is given by[
∇̃2w

](d)

= [ed − δd,3γ̇tex]T ∇2w(d) [ed − δd,3γ̇tex] .(3.6)

In this reference frame the misalignment arising from the shear boundary conditions is re-
moved. The boundary conditions for the reformulation become formally periodic boundary
conditions

w(q1, q2, L, t) = w(q1, q2, 0, t).(3.7)
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(a)

(b)

Deformed Periodic Cells

Shifted Periodic Cells

Fig. 3.1. Lees-Edwards Boundary Conditions and Discretization Mesh. The boundary condi-
tions can be thought of in two equivalent ways. The first is to consider shear induced by shifting
the periodic images of the unit cell by a shift relative to the unit cell, see panel (a). If the unit cell
is discretized directly using a standard uniform mesh this presents challenges since the mesh sites
become misaligned at boundaries between the unit cell and the periodic images. The second is to use
the periodic symmetry which allows for the shifted images to be equivalently expressed in terms of
a periodic tiling of a deformed unit cell, see panel (b). By discretizing the momentum equations in
a moving coordinate frame, a discretization mesh is obtained which aligns with the periodic images.
In this case, the unit cell and mesh change over time from a cube to a sheared parallelepiped. The
periodicity further introduces a symmetry by which a unit cell distorted by the shift 1

2
L is equivalent

to the distortion by shift − 1
2
L. Using this symmetry we always keep in the numerical calculations

the unit cell deformation within the range [− 1
2
L, 1

2
L].

The jump discontinuities arising from the boundary condition 3.1 still remain but in the
reformulation are now taken into account by introducing the terms J,K. The term Gthm

denotes the stochastic driving field accounting for thermal fluctuations in the moving frame
of reference.

The q = (q1, q2, q3) parameterizes the deformed unit cell, δk,` denotes the Kronecker
δ-function, γ̇ denotes the rate of the shear deformation, and ei the standard basis vector in
the ith direction with i ∈ {x, y, z}. In the notation the parenthesized superscript denotes a
vector component. We also use the notational conventions

[∇w](d)
j =

∂w(d)

∂qj
,

[
∇2w

](d)

i,j
=
∂2w(d)

∂qi∂qj
.(3.8)

4. Computational Methodology. To use this approach in practice requires the
development of numerical methods to approximate the stochastic differential equations. A
variety of methods could be used, such as Finite Difference Methods, Spectral Methods, or
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Finite Element Methods [29, 52, 51]. We present here discretizations based on Finite Differ-
ence Methods. A challenge for discretizations is that the solutions to stochastic equations
are irregular and approximation errors may disrupt the statistical mechanics structure of
the system. To obtain physically relevant results, we shall design our numerical methods
by developing a finite dimensional dynamical system that approximates the continuum me-
chanics while adhering to principles from statistical mechanics. To introduce the stochastic
driving fields in our numerical methods, we develop discretizations that take into account the
difference between the dissipative properties of the continuum operators and the discrete op-
erators so that our methods satisfy fluctuation-dissipation balance [7, 53, 19, 30, 56]. These
conditions in the abscence of shear are closely related to the requirement that the Gibbs-
Boltzmann ensemble be invariant with detailed-balance [7, 53]. To perform simulations in
practice we also develop efficient methods for generating the stochastic driving fields with
the required covariance structure.

The stochastic differential equations of SELM can also exhibit dynamics over a signif-
icant range of time-scales resulting in numerical stiffness [7, 53]. To facilitate the devel-
opment of efficient numerical methods, we consider two distinct physical regimes. In the
first we explicitly resolve the fluctuations and relaxation of the hydrodynamics. We refer to
this as the Fluctuating Hydrodynamics Regime. In the second we treat the solvent fluid as
having relaxed to a quasi-steady-state with respect the instantaneous configuration of the
microstructures. We refer to this as the Overdamped Regime.

4.1. Numerical Methods for the Fluctuating Hydrodynamics Regime.

4.1.1. Semi-discretization. To approximate the stochastic differential equations
and to discretize the stochastic driving fields, we first consider a semi-discretization of the
equations 3.2– 3.5. This is given by

ρ
dw

dt
= L(t)w + λ+ Λ[−∇XΦ] + (∇X · Λ) kBT + J + hthm(4.1)

S(t) ·w = K(4.2)

dX

dt
= Γw.(4.3)

We use for the discretized operators

S(t) ·w = D ·w + eT
z Gw exγ̇t(4.4)

L(t)w = µ [ed − δd,3γ̇tex]T Aw [ed − δd,3γ̇tex](4.5)

where

D ·w =

3∑
d=1

w(d)(q + ed)−w(d)(q− ed)

2∆x
(4.6)

[Gw]ij =
w(i)(q + ej)−w(i)(q− ej)

2∆x
(4.7)

and

[Aw]ii =
w(i)(q + ei)− 2w(i)(q) + w(i)(q− ei)

∆x2
(4.8)

[Aw]ij =
w(d)(q + ei + ej)−w(d)(q− ei + ej)

4∆x2
(4.9)

− w(d)(q + ei − ej)−w(d)(q− ei − ej)

4∆x2
, i 6= j.

For the semi-discretized system we consider the energy

E[w,X] =
ρ

2

∑
q

|w(q)|2∆x3
q + Φ[X].(4.10)
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The first term is the total kinetic energy of the system. The second term is the potential
energy of the microstructures.

For the discretized equations and energy, the w denotes the velocity field of the fluid on
a uniform periodic lattice in the coordinates q with w ∈ R3N . The N denotes the number
of lattice sites. The X denotes a finite number of microstructure degrees of freedom with
X ∈ RM . As a consequence of the coordinate frame moving with the deformation of the
unit cell, the discretized operators now have a direct dependence on time. The λ denotes a
Lagrange multiplier used to impose the incompressibility condition 4.2 and will be discussed
in more detail below.

To obtain the source terms J, K for the discretized equations, we use the discretization
stencils of the operators given in equations 4.1– 4.2. When the stencils weights are applied
at the boundaries of the unit cell, the values at lattice sites crossing the boundary would
use the modified image value wm ± γ̇L under the boundary conditions 3.1. The use in the
stencils of this modified lattice site value can be avoided by separating the contributions
coming from the jump part of the boundary condition from the usual lattice site value of a
periodic image. These contributions are given by the stencil weights multiplied by ±γ̇L for
any term crossing the boundary. When these are collected over all boundary mesh sites and
terms on the right-hand side involving w, we obtain the source terms J, K.

The incompressibility constraint for the solvent fluid is approximated in practice using
the projection of a vector v∗ to the sub-space {v ∈ R3N | S(t) · v = 0}. We denote this
projection operation by

v = ℘(t)v∗.(4.11)

The discretized incompressibility constraint is imposed by using the Lagrange multiplier

λ = −(I − ℘(t)) [L(t)w + Λ[−∇XΦ] + (∇X · Λ) kBT + J + hthm] .(4.12)

We remark that the incompressibility constraint is imposed exactly provided that K is in-
dependent of time. In practice, K is expected to have some dependence on time so that this
approach results in an approximation in imposing the incompressibility constraint 4.2.

An important feature of the discretization for the SELM equations and incompressibility
constraint is that the resulting operators are cyclic. This allows for Fast Fourier Transforms
(FFTs) to be used in evaluating the action of the operators and in computing inverses. As
a consequence, the projection operator can be computed efficiently with only O(N log(N))
computational steps.

To obtain appropriate behaviors for the thermal fluctuations, it is important to develop
stochastic driving fields which are tailored to the specific semi-discretization used. Another
important issue is to develop methods for efficient generation of the stochastic fields. Once
these issues are resolved, which is the subject of the next few sections, the semi-discretized
equations can be integrated in time using traditional methods for stochastic differential
equations, such as the Euler-Maruyama Method or a Stochastic Runge-Kutta Method [34].
More sophisticated integrators in time can also be developed to cope with possible sources
of stiffness [7].

4.1.2. Thermal Fluctuations. To account for thermal fluctuations, we introduce
into the discretized equations a stochastic driving field. Given the highly irregular nature of
the stochastic driving fields in the undiscretized equations 2.1– 2.4, formulating appropriate
terms for the discretized equations must be done carefully. To obtain results consistent with
statistical mechanics, we consider the relationship between the choice of stochastic driving
field and the equilibrium fluctuations expected for the system. To simplify the discussion,
we initially consider only the case when Φ = 0 and neglect the X degrees of freedom. We
then discuss how the results obtained apply to the more general case.

The statistical mechanics of the system requires equilibrium fluctuations which follow
the Gibbs-Boltzmann distribution

Ψ(w,X) =
1

Z
exp [−E[w,X]/kBT ] .(4.13)
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The Z is the normalization constant ensuring the probability integrates to one. The kB is
Boltzmann’s constant and T is the temperature [49]. By considering the energy associated
with the discretized system given in equation 4.10, we see that fluctuations of w are Gaus-
sian under the Gibbs-Boltzmann distribution. This specific form of the energy along with
the incompressibility constraint requires equilibrium fluctuations that have mean zero and
covariance given by

C = 〈wwT 〉 =
2

3

kBT

ρ∆x3
I.(4.14)

The factor of 2/3 arises from the incompressibility constraint. The stochastic driving field
hthm introduced into the discretized equations is assumed to be a Gaussian process with
mean zero and δ-correlation in time [27, 44]. Such processes can be expressed formally as

hthm = Q(t)
dB(t)

dt
.(4.15)

The Q(t) denotes a linear operator and B(t) denotes a standard Brownian motion on R3N ,
see [44]. The covariance of this process is given by

G(s, t) = 〈hthm(s)hthm(t)T 〉 = Q(s)Q(t)T δ(t− s).(4.16)

The discretized equations are linear in w. As a consequence, the covariance of the equilibrium
fluctuations and the covariance of the stochastic driving field are related by

G(s, t) = −2℘(t)L(t)Cδ(t− s).(4.17)

This relation can be interpreted as a variant of the fluctuation-dissipation principle. We
establish this relationship for systems having time dependent dissipative operators in Ap-
pendix A.

This gives the the stochastic driving field hthm tailored to the moving coordinate frame
and the semi-discretized equations 4.1– 4.3. By considering the Fokker-Planck equations
of the discretized system (w,X), this choice can be shown to yield stochastic dynamics
which have the Gibbs-Boltzmann distribution invariant, see [5]. This shows the stochastic
dynamics exhibit fluctuations consistent with equilibrium statistical mechanics. It should be
mentioned, evaluating the appropriateness of this choice for the stochastic driving field also
can be investigated by considering other properties, such as the dynamic structure factor
of the stochastic dynamics that could be used to make comparisons with the undiscretized
equations or with physical systems [21, 42]. Another important issue arising in practice is
to develop computational methods for the efficient generation of the stochastic driving field.
This is the subject of the next section.

4.1.3. Generation of Stochastic Driving Fields. To account for thermal fluc-
tuations, we must generate each time step the Gaussian stochastic field with the covariance
structure given by equation 4.17. In general, generating a Gaussian variate h with a pre-
scribed covariance G is computationally expensive. A common approach is to generate
standard normal variates ξ having covariance 〈ξξT 〉 = I. To obtain a correlated Gaussian
a Cholesky factorization is often used to obtain QQT = G and the Gaussian is generated
using h = Qξ. For h ∈ RN , the Cholesky factorization has a cost of O(N3) computational
steps and the generation of each variate through the matrix-vector multiplication has a cost
of O(N2) computational steps. For the discretized equations N will typically be rather large
making this approach prohibitive.

To generate the stochastic driving field more efficiently, we make use of specific properties
of the discretization and FFTs. These properties include that w is periodic in the moving
coordinate frame and that the discretized operators L(t), C, and ℘(t) are block diagonalizable
in the Fourier basis (with blocks of small size). By working with the diagonalized form of
each of the operators L(t), C, and ℘(t), a square-root Q(t) of the operator G(t) can be found
in Fourier space. Given the sparse structure of Q(t) in the Fourier space, the stochastic fields
are generated using FFTs in O(N log(N)) computational steps.
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4.2. Numerical Methods for the Overdamped Regime. For many physical
systems of interest, there are significant differences in the time scales associated with the
hydrodynamic relaxation of the solvent fluid and the time scales associated with the diffusion
of the microstructures an appreciable distance. For the fluctuating hydrodynamics regime
this can result in significant stiffness in the stochastic differential equations.

For investigations of complex fluids and soft materials in which the relaxation of the
hydrodynamics is not of primary interest, it is useful to introduce a reduced description
removing this source of stiffness. In the limit of fluid dynamics which rapidly equilibrate
given the instantaneous configuration of the microstructures we have the reduced equations,

dX

dt
= HSELM[−∇XΦ(X)] + (∇X ·HSELM)kBT + hthm(4.18)

HSELM = Γ(−℘L)−1Λ(4.19)

〈hthm(s)hT
thm(t)〉 = (2kBT )HSELM δ(t− s).(4.20)

The ℘ denotes a projection operator imposing constraints, such as incompressibility. The
adjoint property Λ = Γ† and symmetry of ℘L yields an operator HSELM which is symmetric.
The semi-discretization of these equations is obtained by using the discretized operators
given in equations 4.4– 4.5. The thermal fluctuations are determined by the principle of
detailed-balance and the requirement that the Gibbs-Boltzmann distribution be invariant
under the stochastic dynamics, see [5, 53]. The semi-discretized equations can be integrated
in time using standard methods for stochastic differential equations [34].

We remark that when using the Immersed Boundary Method to coupled the fluid and
structures the hydrodynamic coupling tensor closely resembles the Rotne-Prager-Yamakowa
tensor [5]. We remark that while HSELM accounts well for the far-field hydrodynamics,
additional near-field corrections could also be added readily to the hydrodynamic coupling,
such as terms to account for lubrication effects as is done in such methods as Stokesian-
Brownian dynamics [13]. However, for polymers and other soft microstructures the near-
field interactions are less clear than at larger length-scales and ideally should be determined
from more detailed molecular models and considerations. We also remark that the far-
field hydrodynamic interactions pose the most computational challenge since they couple
long-range the microstructures in a nearly all-to-all manner while the near-field interactions
are local and can be handled for a small cluster around each microstructure at much less
computational expense. Since these terms can be treated additively throughout, the methods
we shall present for the long-range hydrodynamics can be extended readily to incorporate
near-field interactions. The central challenge for such methods in practice is the long-range
hydrodynamics and the efficient generation of the stochastic driving field hthm with the
required covariance structure given by equation 4.20.

4.2.1. Generation of Stochastic Driving Fields. To use this description in
practice requires efficient methods for generating the stochastic driving field with the covari-
ance given in equation 4.20. For this purpose we express the covariance of the stochastic
driving field as

G = (2kBT )HSELM = (2kBT )
(

Γ℘(−L)−1℘T ΓT
)
.(4.21)

This makes use of Λ = ΓT and properties of the specific discretized operators L and ℘. In
particular, commutativity ℘L = L℘ and the projection operator properties ℘2 = ℘, ℘ = ℘T .
Let U be a factor so that UUT = −L−1. Using this factor we can express the covariance as

G =
(√

2kBTΓ℘U
)(√

2kBTΓ℘U
)T

.(4.22)

From this expression a matrix square-root of G is readily obtained, Q =
√

2kBTΓ℘U .
We remark this is different than the Cholesky factor obtained for G which is required

to be lower triangular [54, 50]. Obtaining such a factor by Cholesky factorization would
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cost O(M3), where M is the number of structure degrees of freedom. For the current
discretization considered, the operators L and ℘ are block diagonalizable in Fourier space
(with small blocks). This has the consequence that the action of the operators U and ℘
can be computed using FFTs with a cost of O(N log(N)). The N is the number of lattice
sites used to discretize L. The stochastic driving field is computed from h = Qξ. This
allows for the stochastic driving field to be generated in O(N log(N) + M) computational
steps, assuming the action Γ can be compute in O(M) steps. This is in contrast to using the
often non-sparse matrix arising from Cholesky factorization which generates the stochastic
field with a cost of O(M2). Other methods based on splittings or multigrid can also be
utilized to efficiently generate stochastic fields with this required covariance structure or for
discretizations on multilevel adaptive meshes, see [5, 3].

4.3. Operators for Coupling the Microstructures and Solvent Fluid.
Many different operators could be used to couple the microstructure and solvent dynamics [5].
We will take an approach similar to the Stochastic Immersed Boundary Method [7, 46] and
use the following specific form for the operators that couple the microstructures and solvent
fluid

[Γu] (s) =

∫
Ω

η(y −X(s))u(y)dy(4.23)

[ΛF] (y) =

∫
S

F(s)η(y −X(s))ds.(4.24)

The F denotes the force acting on the microstructures, which is typically given by F =
−∇XΦ. The kernel function η is used to smooth the irregular velocity field and determines
an effective hydrodynamic radius for the microstructures, see [5, 7] and Appendix B. It can
be shown these operators satisfy the adjoint condition given by equation 2.5. This pair of
operators has been successfully used in the past and extensive validation studies have been
conducted to characterize how these operators represent hydrodynamic coupling [7, 4, 6, 5,
35, 15].

To couple the semi-discretized description of the solvent fluid and microstructures we
use the discretized operators

[Γu][j] =
∑
m

η(ym −X[j])um∆ydm(4.25)

[ΛF]m =

M∑
j=1

F[j](X)η(ym −X[j]).(4.26)

It can be shown these operators satisfy an adjoint condition analogous to equation 2.5 for
the semi-discretized equations 4.1– 4.3. More general discretized operators can also be used,
see [5].

5. Estimating Macroscopic Stresses. An important issue in the study of com-
plex fluids and soft materials is to relate microscopic features of the material to macroscopic
properties. For this purpose, we develop estimators for an effective macroscopic stress tensor
for the material. The stress tensor is estimated from the forces acting on the microstructures
in a manner similar to that used in the Irving-Kirkwood-Kramer formulas [33, 20, 11, 12].
The contributions from the solvent fluid are assumed to be Newtonian throughout.

The stress tensor is estimated by considering cut-planes which divide the unit cell. A
component of the stress tensor is estimated by considering the forces exerted by the material
which lies above the cut-plane on the material which lies below the cut-plane. The totality of
these forces is then divided by the area of the cut-plane. We average these estimates over all
possible cut-planes having a given normal to avoid sensitive dependence on the microstructure
configuration, the n-body interactions, and the cut-plane location, see Figure 5.1.

To estimate the stress tensor, it is convenient to consider separately each of the different
types of n-body interactions which occur between the microstructures, such as two-body
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Fig. 5.1. Estimating Macroscopic Stresses. The components of the stress tensor are estimated
from microscopic interactions by considering cut-planes through the sample. The cut-plane divides
the sample into two bodies labeled A and B, shown in the middle. The effective stress is given by the
forces exerted by the material of body A on material of body B divided by the cut-plane area. For
n-body interactions, contributions to the stress can arise in different ways. On the far right is shown
for a given cut-plane the cases when two-body and three-body interactions make a contribution to
the stress.

bonding interactions or three-body bond-angle interactions. To estimate the contributions
to the components of the stress tensor arising from a particular n-body interaction, we use

σ
(n)
`,z =

1

L

〈∫ b

a

Θ
(n)
`,z (ζ)dζ

〉
.(5.1)

The L = b−a is the length of the unit-cell domain in the z-direction and 〈·〉 denotes averaging

over the ensemble. The Θ
(n)
`,z denotes the effective stress arising from the n-body interactions

associated with a given stress plane and is defined by

Θ
(n)
`,z (ζ) =

1

A

∑
q∈Qn

n−1∑
k=1

k∑
j=1

f
(`)
q,j

k∏
j=1

H(ζ − x(z)
qj )

n∏
j=k+1

H(x(z)
qj − ζ).(5.2)

The Qn is the set of n-tuple indices q = (q1, . . . , qn) describing the n-body interactions of the
system, fq,j denotes the force acting on the jth particle of the interaction, and xqj denotes

the jth particle involved in the interaction. As a matter of convention in the indexing q, we
require that i ≤ j implies x

(z)
qi ≤ x

(z)
qj . This expression corresponds to a sum over all the

forces exerted by particles of the material above the cross-section at ζ = z on the particles
of the material below. Each term of the summation over k = 1, . . . , n − 1 corresponds to a
specific number of particles of the n-body interaction lying below the cross-section at ζ = z,
see Figure 5.1.

This expression for estimating the stress tensor can be simplified by using the following
identity ∫ b

a

Πk
j=1H(ζ − x(z)

qj ) ·Πn
j=k+1H(x(z)

qj − ζ)dζ = x∗,(z)
qk+1

− x∗,(z)
qk(5.3)

where

x∗,(z)
qj =


b, if x

(z)
qj ≥ b

x
(z)
qj , if a ≤ x

(z)
qj ≤ b

a, if x
(z)
qj ≤ a.

(5.4)

By integrating equation 5.2 and using the identity given in equation 5.3, we obtain∫ b

a

Θ
(n)

(`),z(ζ)dζ =
1

A

∑
q∈Qn

n−1∑
k=1

k∑
j=1

f
(`)
q,j ·

(
x∗,(z)
qk+1

− x∗,(z)
qk

)
.(5.5)
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This can be further simplified by switching the order of summation of j and k and using
the telescoping property of the summation over k. This gives the following estimate for the
n-body contributions to the stress tensor

σ
(n)
`,z =

1

AL

∑
q∈Qn

n−1∑
j=1

〈
f

(`)
q,j ·

(
x∗,(z)
qn − x∗,(z)

qj

)〉
.(5.6)

This is obtained by using equation 5.1 and equation 5.5.
To obtain the effective macroscopic stress tensor we sum over all n-body contributions

to obtain

σ`,z =
∑
n

σ
(n)
`,z .(5.7)

This effective macroscopic stress tensor will be used to link the microscopic simulations to
macroscopic material properties.

6. Applications. To demonstrate how the computational methods can be used to
study the rheological behaviors of complex fluids and soft materials, we present a few specific
applications. We investigate the shear thinning of a polymeric fluid in Section 6.1. We study
the complex moduli for the oscillatory responses of a polymerized lipid vesicle in Section 6.2.
We study the aging of the shear viscosity of a gel-like material in Section 6.3.

6.1. Application I: Shearing Thinning of a Polymeric Fluid. As a demon-
stration of the proposed computational methodology we consider a fluid with microstructures
consisting of elastic polymers. The polymers are modeled as elastic dimers which have the
FENE potential energy [12]

φ(r) =
1

2
Kr2

0 log

(
1−

(
r

r0

)2
)
.(6.1)

The K denotes the polymer stiffness, r denotes the length of extension of the dimer, and
r0 denotes the maximum permitted extension length. The configuration of a dimer will
be represented using two degrees of freedom X

(1)
k , X

(2)
k with the potential energy Φ(X) =∑

k φ(|X(2)
k −X

(1)
k |). The X denotes the composite vector over all dimers.

To study the rheology of the polymeric fluid, we consider the shear viscosity ηp and the
first normal stress coefficient Ψ1. These are defined as [11, 12]

ηp = σ(s,v)
p /γ̇(6.2)

Ψ1 = (σ(s,s)
p − σ(v,v))/γ̇2.(6.3)

The γ̇ is the rate of shear. In the notation, the superscript (s, v) indicates the tensor com-
ponent with the index s corresponding to the direction of the shear gradient and the index
v corresponding to the direction of the velocity induced by the shear. The contributions of
the solvent fluid to the shear viscosity and normal stresses can be considered separately [12].
The solvent fluid is assumed to be Newtonian throughout so we only report the contributions
arising from the elastic dimers.

From the simulations, we find there is a strong dependence on the rate of shear in the
manifested shear viscosity and normal stress of the polymeric fluid, see Figure 6.1. This
can be understood by considering the interplay between the thermal fluctuations and the
shear stresses acting on the dimers. Since the dimers only resist stretching, they exert forces
only in the direction of the dimer orientation. As a consequence, contributions are made to
the shear viscosity only when the dimer orientation has a non-negligible component in the
z-direction, see equation 6.2.

The thermal fluctuations and shear stresses play opposing roles with respect to the z-
component. The thermal fluctuations act to randomize the dimer orientation generating on
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Fig. 6.1. Polymeric Fluid Shear Response : Simulation Results. (a–b) The shear viscosity and
first normal stresses of the polymeric fluid in response to shear at the rate γ̇. To quantitate the
alignment and extension of the polymers, the orientation matrix is considered given by M = 〈zzT 〉,
with z = X(2) −X(1). (c) The component M1,3 gives a measure of the alignment of the polymers
with the direction of shear. (d) The trace of M gives a measure of the extension of the polymers.

average a non-negligible z-component while the shear stresses act to align the dimers with
the direction of shear and suppress the z-component. As the shear rate increases, this results
in an increase in the shear stresses and an increase in the degree of alignment of the dimers.
This results in a decrease in the shear viscosity. This can be quantitated in the simulations
by considering for the dimers the orientation tensor M = 〈zzT 〉, where z = X(2) −X(1), see
Figure 6.1. This highlights the important roles that thermal fluctuations can play in material
properties. For this polymeric fluid, if thermal fluctuations were neglected, there would be
no contributions to the shear viscosity by the dimers since they would all eventually align
with the direction of shear.

The observed decrease of the shear viscosity with an increase in the shear rate is a
common phenomena observed for many complex fluids [12]. This behavior is referred to as
“shear-thinning“, see [12]. These simulations give a proof-of-principle for how such phenom-
ena can be studied for complex fluids using the presented computational methodology. For
the simulation parameters used in our simulations see Tables 6.1 and Table 6.2.
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Parameter Description
N Number of mesh points in each direction.
∆x Mesh spacing.
L Domain size in each direction.
T Temperature.
kB Boltzmann’s constant.
µ Dynamic viscosity of the solvent fluid.
ρ Mass density of the solvent fluid.
K Bond stiffness.
r0 Maximum permissible bond extension.
γs Stokesian drag of a particle.
γ̇0 Shear rate amplitude.
γ0 Strain rate amplitude.
a Effective radius of particle estimated via Stokes drag.

Table 6.1
Description of the parameters used in simulations of the polymeric fluid.

Parameter Value
N 36
∆x 11.25 nm
L 405 nm
T 300 K
kB 8.3145 × 103 nm2 · amu · ns−2 · K−1

µ 6.0221 × 105 amu · cm−1 · ns−1

ρ 6.0221 × 102 amu · nm−3

K 8.9796 × 103 amu · ns−2

r0 200 nm
γs 1.7027 × 108 amu · ns−1

a 15 nm
Table 6.2

Values of the parameters used in simulations of the polymeric fluid.

6.2. Application II: Complex Moduli for Oscillatory Responses of Poly-
merized Lipid Vesicles. As a further demonstration of the computational methods, we
investigate the material properties of a fluid containing polymerized lipid vesicles. We dis-
cuss how the methods can be used to study responses to an oscillatory shear applied over a
wide range of frequencies.

To account for the mechanics of a polymerized lipid vesicle, we discretize the spherical
surface using a triangular mesh. The mechanics is modeled by the following interactions
between the control points of the mesh

φ1(r, `) =
1

2
K1 (r − `)2(6.4)

φ2(τ 1, τ 2) =
1

2
K1 |τ 1 − τ 2|2 .(6.5)

The r denotes the displacement between two control points, ` denotes a preferred distance
between control points, and τ denotes a normalized displacement vector (tangent vector)
between two control points. The φ1 energy accounts for the stretching of a bond between
two control points beyond its preferred extension. The φ2 energy accounts for bending of
the surface locally by penalizing the misalignment of tangent vectors. The total energy for
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Fig. 6.2. Vesicle Mesh Construction using a Recursive Refinement Method. The triangulated
mesh for a spherical vesicle is constructed by starting with the vertices and faces of a regular icosa-
hedron, shown on the left. The edges of the icosahedron are bisected and connected to divide each
triangular face into four smaller triangular faces. The vertices located at the bisection points are
projected radially outward to the surface of the sphere, shown in the middle. This refinement pro-
cedure is repeated recursively until a mesh of sufficient resolution is obtained. The mesh obtained
after two levels of recursive refinement is shown on the far right.

a given configuration of the vesicle is given by

Φ[X] = E1[X] + E2[X](6.6)

E1[X] =
∑

(i,j)∈Q1

φ1(rij , `ij)(6.7)

E2[X] =
∑

(i,j,k)∈Q2

φ2(τ ij , τ jk).(6.8)

The X denotes the composite vector of control points. The jth control point is denoted by
X[j]. The Q1 and Q2 are index sets defined by the topology of the triangulated mesh.

The first energy term E1 accounts for stretching of the vesicle surface and is computed by
summing over all local two body interactions Q1 defined by the topology of the triangulated
mesh. For the distance rij = |X[i] −X[j]| between the two points having index i and j, the
energy E1 penalizes deviations from the preferred distance `ij . The preferred distances `ij
are defined by the geometry of a spherical reference configuration for the vesicle. To ensure
the two body interactions are represented by a unique index in Q1 we adopt the convention
that i < j.

The second energy term E2 accounts for curvature of the vesicle surface and is com-
puted by summing over all local three body interactions Q2 defined by the topology of
the triangulated mesh. The energy penalizes the the misalignment of the tangent vectors
τ ij = (X[i] −X[j])/rij and τ jk = (X[j] −X[k])/rjk. In the set of indices in Q2 it is assumed
that the point with index j is always adjacent to both i and k. To ensure the three body
interactions are represented by a unique index in Q2 we adopt the convention that i < k.

To obtain a triangulated mesh which captures the shape of a vesicle having a spherical
geometry we start with an icosahedral which is circumscribed by a sphere of a given radius.
We use the faces of the icosahedron as an initial triangulated mesh. To obtain a mesh which
better approximates the sphere we bisect the three edges of each triangular face to obtain
four sub-triangles. The newly introduced vertices are projected radially outward to the
surface of the sphere. The process is then repeated recursively to obtain further refinements
of the mesh. This yields a high quality mesh for spherical geometries. We use a vesicle
represented by a mesh obtained using two levels of recursive refinement. The recursive
generation procedure and the mesh used to represent a vesicle is shown in Figure 6.2.

We investigate the response of the vesicle to oscillatory shear stresses applied with time-
varying rate γ̇ = γ̇0 cos(ωt). We consider a dilute regime in which it is sufficient to study
a single polymerized vesicle subject to the oscillatory shear. The effective stress tensor
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Fig. 6.3. Polymerized Vesicle subject to Oscillatory Shear. (left) At low frequencies the distor-
tion of the vesicle shape is rather small and masked by the thermal fluctuations. When averaging
over many cycles, the vesicle stress follows closely in phase with the applied shear stress plotted in
green. (right) At high frequencies the distortion of the vesicle shape is significant and the vesicle
stress follows closely the strain plotted in red. The particular low frequency responses shown are
for ω = 3.9294 × 10−3ns−1, γ̇ = 1.9647 × 10−3ns−1, σ0 = 3.7114 × 108amu · nm−1 · ns−2. The
particular high frequency responses shown are for ω = 1.2426 × 102ns−1, γ̇ = 6.2129 × 101ns−1,
σ0 = 4.6314 × 1010amu · nm−1 · ns−2. The vesicle configurations for each frequency is shown for
θ = 1.6π, 0.0π and 0.4π respectively left to right.

associated with the vesicle suspension at a given time σ(t) is estimated using the approach
discussed in Section 5.

As a measure of the material response, we consider the dynamic complex modulus
G(ω) = G′(ω) + iG′′(ω), whose components are defined from measurements of the stress
as the least-squares fit of the periodic stress component σxz(t) by the function g(t) =
G′(ω)γ0 cos(ωt) + G′′(ω)γ0 sin(ωt). This offers one characterization of the response of the
material to oscillating applied shear stresses and strains as the frequency ω is varied. The
G′ is referred to as the Elastic Storage Modulus and G′′ is referred to as the Viscous Loss
Modulus. These dynamic moduli are motivated by considering the linear response of the
stress components σxz(t) to applied stresses and strains. For many materials linearity holds
to a good approximation over a wide range of frequencies provided the amplitudes of the
applied stresses and strains are not too large [47].

To estimate the dynamic complex modulus in practice, the least-squares fit is performed
for σxz(t) over the entire stochastic trajectory of a simulation (after some transient period).
Throughout our discussion we refer to θ = ωt as the phase of the periodic response. In our
simulations, the maximum strain over each period was chosen to always be half the periodic
unit cell in the x-direction, corresponding to a strain amplitude of γ0 = 1

2
. This was achieved

by adjusting the shear rate amplitude for each frequency using the expression γ̇0 = γ0ω.

We performed simulations subjecting the vesicle to shear over a wide range of frequencies.
At low frequency the distortion of the vesicle shape was found to be small and masked by
thermal fluctuations when averaged over hundreds of periods. At low frequency the vesicle
stresses appear to have sufficient time to equilibrate to the applied shear stresses. This is
manifested in σxz(t), which is seen to track very closely the applied stress, see Figure 6.3.
At high frequencies, the vesicle shape was found to become visibly distorted and the vesicle
stresses did not appear to have sufficient time to equilibrate to the applied shear stresses.
These distortions can be seen in the configurations for phase θ = 1.6, 0.4. The σxz is seen to
be out of phase with the applied stresses but in phase with respect to the applied strain, see
Figure 6.3.

These responses can be quantitated by considering the dynamic moduli. From the
simulations, it is seen for the low frequency responses that the vesicle stress follows closely
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Fig. 6.4. Vesicle Frequency Response : Dynamic Moduli. The Elastic Storage Modulus G′(ω)
is shown in panel (a) and the Viscous Loss Modulus G′′(ω) is shown in panel (b).

the applied stress. It is also found that the Viscous Loss Modulus is significantly larger than
the Elastic Storage Modulus. For the high frequency response, it was found that the Elastic
Storage Modulus increases and is eventually much larger than the Viscous Loss Modulus.
It was also found that the Viscous Loss Modulus exhibited a non-monotonic behavior at
intermediate frequencies, see Figure 6.4. A description of the parameters and specific values
used in the simulations can be found in Table 6.3 and Table 6.4.

Parameter Description
N Number of mesh points in each direction.
∆x Mesh spacing.
L Domain size in each direction.
T Temperature.
kB Boltzmann’s constant.
µ Dynamic viscosity of the solvent fluid.
ρ Mass density of the solvent fluid.
K1 Vesicle bond stiffness.
K2 Vesicle bending stiffness.
D Vesicle diameter.
ω Frequency of oscillating shearing motion.
θ Phase of the oscillatory motion, θ = ωt.
γ̇ Shear rate.
γ̇0 Shear rate amplitude.
γ Strain rate.
γ0 Strain rate amplitude.

Table 6.3
Description of the parameters used in simulations of the polymerized vesicle.
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Parameter Value
N 27
∆x 7.5 nm
L 2.025 × 102 nm
T 300 K
kB 8.3145 × 103 nm2 · amu · ns−2 · K−1

µ 6.0221 × 105 amu · cm−1 · ns−1

ρ 6.0221 × 102 amu · nm−3

K1 2.2449 × 107 amu · ns−2

K2 8.9796 × 107

D 50 nm
Table 6.4

Fixed values of the parameters used in simulations of the polymerized vesicle.
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(b) (c)(a)

Fig. 6.5. Microstructure of the Gel-like Material. (a) The microstructure of the gel is comprised
of polymeric chains which bind together. (b) The polymeric chains are each comprised of five control
points and each have specialized binding sites at the second and fourth control point. (c) The inter-
polymer bonds have a preferred extension and angle. When an inter-polymer bond is strained beyond
50% of its preferred rest length, the bond breaks irreversibly.

6.3. Application III: Aging of the Shear Viscosity of a Gel-like Ma-
terial. As a further demonstration of how the computational methods can be used, we
investigate the aging of a gel-like material subject to shear. The methods are used to study
how the shear viscosity changes over time as the gel is subjected to shear at a constant rate.

The gel-like material is modeled as a collection of polymer chains which are able to bond
together at two specialized sites along the chain, see Figure 6.5. The energy associated with
the mechanics of the individual polymer chains and the bonds which they form are given by

φ1(r) =
1

2
K1(r − r0,1)2(6.9)

φ2(τ 1, τ 2) =
1

2
K2 |τ 1 − τ 2|2(6.10)

φ3(r) = σ2K3 exp

[
− (r − r0,3)2

2σ2

]
(6.11)

φ4(θ) = −K4 cos(θ − θ0,4).(6.12)

The r is the separation distance between two control points, θ is the bond angle between
three control points, and τ is a tangent vector along the polymer chain, see Figure 6.5.

The φ1 energy accounts for stretching of a bond within a polymer chain from its preferred
extension r0,1. The φ2 energy accounts for bending of the polymer chain locally. To account
for interactions at the specialized binding sites of the polymers the potentials φ3 and φ4

are introduced. The potential φ3 gives the energy of the bond between the two polymer
chains and penalizes deviation from the preferred bond extension r0,3. The exponential of
φ3 is introduced so that the resistance in the bond behaves initially like a harmonic bond
but decays rapidly to zero when the bond is stretched beyond the length σ. The potential
φ4 gives the energy for the preferred bond angle when two of the polymer chains are bound
together.

The total energy of the system is given by

Φ[X] = E1[X] + E2[X] + E3[X] + E4[X](6.13)

E1[X] =
∑

(i,j)∈Q1

φ1(rij), E2[X] =
∑

(i,j,k)∈Q2

φ2(τ ij , τ jk)(6.14)

E3[X] =
∑

(i,j)∈Q3

φ3(rij), E4[X] =
∑

(i,j,k)∈Q4

φ4(θijk).(6.15)

The sets Qk define the interactions according to the structure of the individual polymer
chains and the topology of the gel network. When bonds are stretched beyond the critical
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Fig. 6.6. Aging of the Shear Viscosity Over Time. The aging of the shear viscosity exhibits
roughly three stages, labeled by I, II, III. In the first stage, the gel-network maintains its integrity.
Contributions to the shear viscosity arise from stretching of the inter-polymer and intra-polymer
bonds. In the second stage, the inter-polymer bonds of the gel-network break. The polymers are
then free to align with the direction of shear which results in relaxation of the intra-polymer bonds
to their preferred rest-length. In the third stage, the contributions to the shear viscosity arise from
thermal fluctuations that drive transient misalignments of the polymers with the direction of shear.
These stages are each discussed in more detail in Section 6.3.

length 3σ they are broken irreversibly, which results in the sets Q3 and Q4 being time
dependent.

To study the rheological response of the gel-like material the system is subjected to
shear at a constant rate. To obtain an effective macroscopic stress σp for the system, we use
the approach from Section 5. To characterize the rheology of the gel, we consider the shear
viscosity defined by

ηp = σ(s,v)
p /γ̇.(6.16)

The γ̇ is the rate of the applied shear. In the notation, the superscript (s, v) indicates the
tensor component with the index s corresponding to the direction of shear and the index v
corresponding to the direction of shear induced velocity. The contributions of the solvent fluid
to the shear viscosity are assumed to be Newtonian and can be considered separately [12].

To investigate how the shear viscosity of the gel behaves over time, multiple simulations
were performed starting from an undisturbed configuration of the gel network. A shear
was then applied to the unit cell boundary to induce a shear deformation of the network.
The shear deformation over time resulted in the breakage of bonds of the gel network. To
investigate how the macroscopic material properties depend on the reorganization of the
polymer chains, we considered the shear viscosity over time.

From the simulations, an interesting behavior was found. The material initially exhibited
an increased shear viscosity before eventually settling down to a steady-state value. It was
found that the responses of the gel-like material to shear can be roughly divided into three
stages. In the first, there is an initial increase of the shear viscosity which can be attributed to
the stretching of the inter-chain bonds between the polymer chains and the intra-chain bonds
within each polymer chain. This occurs as the gel as a whole is strained for a relatively short
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Fig. 6.7. Microstructure Configurations for the Gel-like Material. Configurations of the mi-
crostructure are shown as the gel ages for each of the three stages discussed in Section 6.3. The
times shown in these figures from left to right are t = 0 ns, t = 2844 ns, t = 7111 ns.

period. The bonds between the polymer chains are observed to break with the remaining
contributions to the stress arising from the shear stresses of the fluid which stretch the
polymer chains. The shear viscosity in this stage and the microstructure of the gel are
shown in the regions labeled by I in Figure 6.6 and Figure 6.7.

In the second stage, the individual polymer chains are seen to rotate and to start aligning
with the direction of the shear. As a result of the intra-chain restoring forces the strain of
the individual polymer chains is also seen to relax. The increased alignment and reduction
of strain of the polymer chains yields an overall decrease in the forces transmitted in the
direction of the shear gradient. Consequently, the shear viscosity begins to decrease, see the
regions labeled by II in Figure 6.6 and Figure 6.7.

In the third, and last stage, the chains eventually settle into a statistical steady-state in
which the thermal fluctuations drive the chains to misalign transiently with the direction of
shear. These misaligned excursions by the polymer chains result on average in non-negligible
forces transmitted in the direction of the shear gradient. As a consequence, the shear viscosity
has a non-zero steady-state value. This is shown in the regions labeled by III in Figure 6.6
and Figure 6.7. Similar aging phenomenon is seen for many different types of soft materials
and complex fluids and is often referred to as “thixotropy”, see [10, 12, 20]. For the specific
physical parameters used in these simulations see Table 6.5 and 6.6.

The modeling approach presented here, along with the computational methods, allow
for other types of phenomena to be studied. This includes looking at the case in which the
bonds between the polymer chains are able to reform. An interesting investigation in this
case would be to study the kinetics and organization of the gel network when subject to
both bond breaking and bond formation when the shear is greatly decreased or arrested for
periods of time.

The computational methods also provide a straight-forward means to incorporate active
forces operating on the filaments of the gel network. This could be useful in the study of
biological materials, such as actin where motor proteins act like active cross-linkers to slide
filaments past one another [18, 38, 43]. These effects could readily be taken into account in
such simulations.
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Parameter Description
N Number of mesh points in each direction.
∆x Mesh spacing.
∆t Time step.
L Domain size in each direction.
T Temperature.
kB Boltzmann’s constant.
µ Dynamic viscosity of the solvent fluid.
ρ Mass density of the solvent fluid.
γ̇ Shear rate.
Np Number of polymer chains.
Ns Number of control points per polymer chain.
rp Polymer effective cylindrical radius.
K1 Stiffness of the bonds of the polymer chain.
r0,1 Rest length of the bonds of the polymer chain.
K2 Bending stiffness of the polymer chain.
K3 Stiffness of the bonds at a polymer binding site.
r0,3 Rest length of the bond at a polymer binding site.
K4 Bending stiffness of the bond at a polymer binding site.
θ0,4 Preferred angle of a bond at a polymer binding site.

Table 6.5
Description of the parameters used in simulations of the gel-like material.

Parameter Value
N 72
∆x 11.25 nm
∆t 1.4222 ns
L 810 nm
T 300 K
kB 8.3145 × 103 nm2 · amu · ns−2 · K−1

µ 6.0221 × 105 amu · cm−1 · ns−1

ρ 6.0221 × 102 amu · nm−3

γ̇ 1.2 × 10−3 ns−1

Np 110
Ns 5
rp 15 nm
K1 2.9932 × 105 amu · ns−2

r0,1 30 nm
K2 2.9932 × 108

K3 2.9932 × 105 amu · ns−2

r0,3 30 nm
K4 2.9932 × 108

θ0,4 70 ◦

Table 6.6
Fixed values of the parameters used in simulations of the gel-like material.
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7. Conclusions. We have presented an approach for incorporating shear into fluctu-
ating hydrodynamics methods for studies of the rheological responses of complex fluids and
soft materials. We have shown how generalized periodic boundary conditions and stochastic
numerical methods can be formulated to handle shear. We have shown that formulating the
momentum conservation equations in a moving frame of reference that tracks the distortion
of the unit cell provides a number of advantages. We have furthermore presented some anal-
ysis of the time-dependent discretization methods to show how stochastic driving fields can
be introduced to satisfy a fluctuation-dissipation balance despite truncation errors. As can
be seen from the example applications presented, the introduced methods provide a number
of ways to simulate phenomena relevant to rheological responses. We expect the presented
approaches to be useful in adopting fluctuating hydrodynamics descriptions to investigate
models and phenomena relevant in studies of complex fluids and soft materials.

8. Software. A related simulation package for the discussed methods can be found
at https://github.com/atzberg/mango-selm. This includes an interface to readily setup
models and perform simulation studies. Additional tutorials, videos, and other information
can be found at http://atzberger.org/.
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Appendix A. A Fluctuation-Dissipation Principle for Time-Dependent
Operators. Consider the stochastic process given by

dzt = L(t)ztdt+Q(t)dBt(A.1)

G(t) = QQT .(A.2)

We now establish the following fluctuation-dissipation relation

G(t) = −L(t)C̄ − C̄TL(t)T .(A.3)

This relates the covariance G(t) of the stochastic driving field to a time-dependent dissipative
operator L(t) and a time-independent equilibrium covariance C̄. We show that this relation
allows for G(t) to be chosen to ensure that the stochastic dynamics exhibits at statistical
steady-state equilibrium fluctuations with the specified covariance C̄.

Let the covariance at time t be denoted by

C(t) = 〈u(t)u(t)T 〉.(A.4)

By Ito’s Lemma the second moment satisfies

dC(t) =
(
L(t)C(t) + C(t)TL(t)T +G(t)

)
dt.(A.5)

It will be convenient to express this equation by considering all of the individual entries of
the matrix C(t) collected into a single column vector denoted by ct. Similarly, for covariance
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matrix G(t) we denote the column vector of entries by gt and for C̄ by c̄. Since the products
L(t)C(t) and C(t)TL(t)T are both linear operations in the entries of the matrix C(t) we can
express this in terms of multiplication by of a matrix A(t) acting on ct.

This notation allows for equation A.5 to be expressed equivalently as

dct = (A(t)ct + gt) dt.(A.6)

The equation A.5 can be solved formally by the method of integrating factors to obtain

ct = eΞ(0,t)c0 +

∫ t

0

eΞ(s,t)gsds(A.7)

where Ξ(s, t) =
∫ t

s
A(r)dr.

The fluctuation-dissipation relation given by equation A.3 is equivalent to choosing

gs = −A(s)c̄.(A.8)

For this choice, a useful identity is

eΞ(s,t)gs =
∂

∂s
eΞ(s,t)c̄.(A.9)

Substitution into equation A.7 gives

ct = eΞ(0,t)c0 +
(
eΞ(t,t) − eΞ(0,t)

)
c̄.(A.10)

Now, if L(t) is negative definite uniformly in time, vTL(t)v < α0 < 0, then A(t) is also
uniformly negative definite. This implies that

lim
t→∞

eΞ(0,t) = 0.(A.11)

Taking the limit of both sides of equation A.10 and using equation A.11 yields

lim
t→∞

ct = c̄.(A.12)

This shows that the stochastic driving field with covariance given by equation A.3 yields
equilibrium fluctuations with covariance C̄. This extends the fluctuation-dissipation relation
to the case of time-dependent operators.

Appendix B. Coupling Kernel : Peskin δa-Function . We utilize a similar
kernel function to the one which was used in the Immersed Boundary Method to represent
structures [7, 46]. This is given by

φ(r) =



0 , if r ≤ −2
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(
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√
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)
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1
8

(
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√
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8
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√
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1
8

(
5− 2r −

√
−7 + 12r − 4r2

)
, if 1 ≤ r ≤ 2

0 , if 2 ≤ r.

(B.1)

For three dimensional systems the function δa is given by

δa(r) =
1

a3
φ

(
r(1)

a

)
φ

(
r(2)

a

)
φ

(
r(3)

a

)
,(B.2)
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where the superscript indicates the index of the vector component. To maintain good numer-
ical properties, the particles are restricted to sizes a = n∆x, where n is a positive integer. For
a derivation and a detailed discussion of the properties of this kernel function, see [46, 7, 15].

Appendix C. Table.

Parameter Description

NA Avogadro’s number.
amu Atomic mass unit.
nm Nanometer.
ns Nanosecond.
kB Boltzmann’s Constant.
T Temperature.
η Dynamic viscosity of water.
γs = 6πηR Stokes’ drag of a spherical particle.

Parameter Value

NA 6.02214199× 1023.
amu 1/103NA kg.
nm 10−9 m.
ns 10−9 s.
kB 8.31447× 103 amu nm2/ns2 K.
T 300K.
η 6.02214199 amu/cm ns.


