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Abstract. Stochastic partial di�erential equations are introduced f or the continuum concen-
tration �elds of reaction-di�usion systems. The stochasti c partial di�erential equations account for

uctuations arising from the �nite number of molecules whic h di�usively migrate and react. Spa-
tially adaptive stochastic numerical methods are develope d for approximation of the stochastic partial
di�erential equations. The methods allow for adaptive mesh es with multiple levels of resolution, Neu-
mann and Dirichlet boundary conditions, and domains having geometries with curved boundaries. A
key issue addressed by the methods is the formulation of cons istent discretizations for the stochastic
driving �elds at coarse-re�ned interfaces of the mesh and at boundaries. Methods are also introduced
for the e�cient generation of the required stochastic drivi ng �elds on such meshes. As a demon-
stration of the methods, investigations are made of the role of 
uctuations in a biological model for
microorganism direction sensing based on concentration gr adients. Also investigated, a mechanism
for spatial pattern formation induced by 
uctuations. The d iscretization approaches introduced for
SPDEs have the potential to be widely applicable in the devel opment of numerical methods for the
study of spatially extended stochastic systems.
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1. Introduction. In many systems a fundamental role is played by the spatial
distribution of molecular species which undergo di�usive migrations while participat-
ing in chemical reactions. Examples include the synthesis and processing of materials,
intracellular signaling in biology, and morphogenic processes in the development of
tissues [59; 73{77; 97; 100]. In many reaction-di�usion systems, the most interest-
ing features are exhibited only in a sub-region of the spatial domain, such as in a
chemically active front or in a layer near boundaries. Also,in many systems, an im-
portant role is played by the conditions at the boundaries orby the geometry of the
boundaries [52; 75; 76]. A commonly used approach to model such reaction-di�usion
systems is to use continuum �eld descriptions at the mean-�eld level for the local
concentration of a molecular species. Such models are oftenexpressed in terms of de-
terministic partial di�erential equations (PDEs). While t his approach works well for
many problems, at su�ciently small length-scales 
uctuati ons are expected to arise in
continuum �eld descriptions as a consequence of the �nite number of molecules and
neglected microscopic positional and momenta degrees of freedom.

To account for such 
uctuations, we formulate stochastic partial di�erential equa-
tions (SPDEs) which introduce Gaussian stochastic �elds into the PDE description of
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reaction-di�usion systems. We consider contributions from the intrinsic density 
uc-
tuations arising primarily from the �nite number of molecul es undergoing di�usive
migrations, as opposed to 
uctuations arising from the chemical reactions. The 
uc-
tuations are modeled by the stochastic �elds using the 
uctuation-dissipation principle
of statistical mechanics.

When numerically approximating SPDEs, a number of issues arise which are
not present in the corresponding deterministic setting. Numerical approximation of
SPDEs requires both discretization of the partial di�erent ial equations and discretiza-
tion of the stochastic driving �elds. As a consequence of thestochastic driving �elds,
solutions of SPDEs are often not as smooth as solutions of thecorresponding un-
driven deterministic PDE. Solutions of SPDEs often exist only in a generalized sense
in a space of non-di�erentiable functions or in a space of linear functionals (distribu-
tions) [68; 71; 72; 78]. Caution must be taken when formulating discretizations for
such solutions. For example, traditional approaches such as �nite di�erence meth-
ods often rely on the Taylor Theorem which requires smoothness to ensure accuracy.
As an alternative, spectral methods can be formulated for SPDEs which rely on less-
stringent results from approximation theory to ensure accuracy [43; 44]. Fourier series
provide one widely used approach for spectral approximation. While such spectral
methods are useful for many SPDEs, they are typically restricted to domains having
periodic boundaries or rather simple geometries and are often not readily amenable to
adaptivity. To cope with this issue, �nite element methods have also been introduced
for the approximation of SPDEs [45]. As a consequence of the non-smoothness of solu-
tions the rate of convergence is much slower than in the deterministic setting [45; 46].

We shall introduce an approach for the derivation of discretizations based on �nite
di�erence methods for the approximation of SPDEs. To obtain accurate methods, the
approach approximates solutions of the SPDEs by stochastic�eld values which corre-
spond to solutions which are spatially averaged on length-scales comparable to the lat-
tice spacing of the discretization mesh. Stochastic numerical methods are formulated
allowing for adaptive multilevel meshes, Neumann and Dirichlet boundary conditions,
and domains having geometries with curved boundaries. A keyissue addressed by
the methods is the development of consistent discretizations of the stochastic driving
�elds at coarse-re�ned interfaces of the mesh and at boundaries. As a demonstration
of the issues encountered at coarse-re�ned interfaces, an empirical study is performed
to show results for di�erent discretization choices at suchinterfaces. For the derived
discretizations, analysis is carried out which shows convergence of the methods as the
underlying mesh is re�ned.

As a demonstration of the developed stochastic numerical methods, simulation
studies are carried out for two applications. The �rst appli cation studies the e�ect
of 
uctuations in microorganism direction sensing based onconcentration gradients.
The case investigated concerns a single cell which senses concentration gradients in an
environment exhibiting a shallow gradient obscured by 
uctuations. The biological
cell is represented by a region having a disk-like geometry with Neumann bound-
ary conditions. A gradient is induced in the concentration of an external signaling
molecule by specifying at two walls the concentrations through Dirichlet boundary
conditions. The stochastic numerical methods are utilizedon a domain having a ge-
ometry de�ned by the two walls and region exterior to the disk. Results are reported
for the role of 
uctuations in a biological model recently proposed for cell gradient
sensing [52].

The second application studies 
uctuation-induced pattern formation in spatially
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extended systems. A variant of the Gray-Scott chemical reactions is considered in a
regime where the deterministic reaction-di�usion system only exhibits a localized sta-
tionary pattern. When introducing 
uctuations, a rich coll ection of patterns emerge
over time, in which spotted patterns migrate, combine, and replicate. The adaptive
features of the stochastic numerical methods are used to track at high resolution the
dynamically evolving regions where the reactions are chemically active.

The proposed SPDEs give a model for intrinsic concentration
uctuations in
reaction-di�usion systems. At the level of the continuum concentration �elds, the
model captures 
uctuations arising from the �nite number of molecules undergoing
di�usive migrations. The stochastic numerical methods allow for adaptive approxi-
mation of solutions on domains having rather general geometries and boundary condi-
tions. The approaches introduced for the derivation of discretizations for the SPDEs
and for the development of the numerical methods are expected to be widely appli-
cable in the study of spatially extended stochastic systems.

2. SPDEs Accounting for Fluctuations in Reaction-Di�usion Systems.
Reaction-di�usion systems are often modeled by partial di�erential equations which
account for the evolution of the continuum concentration �e lds as the molecular
species di�usively migrate and undergo chemical reactions. At su�ciently small
length-scales, 
uctuations arise in continuum �eld descriptions as a consequence of
the �nite number of molecules and as a consequence of neglected microscopic posi-
tional and momenta degrees of freedom. To account for such 
uctuations in reaction-
di�usion systems we consider stochastic partial di�erential equations (SPDEs) of the
form

@c(x; t)
@t

= r x � D r x c(x; t) + F [c] + n(x; t)(2.1)

hn(x; t)nT (x0; t)i = � (x; x0)� (t � t0):(2.2)

In the notation, c denotes the composite vector of concentration �elds for thechemical
species. The termr x � D r x c accounts for di�usion of the chemical species and is
based on a generalization of Fick's Law allowing for non-isotropic di�usion. The tensor
D characterizes the rate at which chemical species undergo di�usive migrations and
is assumed to be symmetric and positive de�nite. Throughout, we assume that the
chemical species di�use independently, which correspondsto D being a matrix which
is block diagonal. The block matricesD ( i ) correspond to the di�usion of the i th

chemical species and are of sized � d, where d is the number of spatial dimensions.
The term F accounts for the chemical reactions. In general,F denotes a non-linear
functional of the concentration �elds which can be either stochastic or deterministic.
In the present work we consider only the case whereF depends deterministically onc.
Throughout, F will be treated generically with only speci�c forms for the functional
de�ned in Sections 9.1, 9.2, and 9.3. The termn accounts for 
uctuations and is
a Gaussian stochastic �eld which is� -correlated in time with mean zero and spatial
covariance� . In the notation, h�i denotes expectation with respect to the probability
distribution of a random variable.

To derive a speci�c form for the Gaussian stochastic �eld n we make a number of
simplifying assumptions. We consider the physical regime where 
uctuations are small
relative to the mean concentration. We also consider the case where 
uctuations are
dominated by contributions from the di�usive migrations of the molecular species as
opposed to the chemical reactions. These assumptions correspond to the 
uctuations
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of the concentration �eld at thermodynamic equilibrium hav ing covariance [7; 8; 10{
12]

h(c(x) � �c)(c(x0) � �c)i = �c� (x � x0)(2.3)

where �c denotes the mean concentration. To determine the spatial covariance struc-
ture of n we use a variant of the 
uctuation-dissipation principle of statistical me-
chanics.

At thermodynamic equilibrium and within the regime of linea r responses of the
system, the 
uctuation-dissipation principle maintains t hat relaxation from a per-
turbed state caused by an external �eld occurs in the same manner as relaxation from
a perturbed state caused by 
uctuations [4; 10]. As a consequence, the dissipative
operators of the dynamics and equilibrium covariance can berelated to the covariance
structure of the 
uctuations driving the system. This can be expressed as, see [4; 10],

� = � AC � C � A �(2.4)

whereA � ; C � denote the adjoint of the operators. From equation 2.1 and equation 2.3
we have

A = r x � D r x(2.5)

C = �c� (x � x0):(2.6)

Since the product of the operators in this case is self-adjoint the covariance structure
of the driving 
uctuations can be expressed as

� ij (x; x0) = � 2�ci � ij r x � D ( i ) r x � (x � x0)(2.7)

where for the i th molecular species �ci = hci i denotes the mean concentration. We
have used that AC = ( AC ) � = C � A � , � = � 2AC . This determines the stochastic
driving �eld n in equation 2.1 sincen is Gaussian. The stochastic partial di�erential
equations provide a model at the continuum level for the nearequilibrium 
uctuations
in the concentration �elds of reaction-di�usion systems.

3. Discrete Approximation of the SPDEs. For SPDEs, numerical approxi-
mation requires both discretization of the partial di�eren tial equations and discretiza-
tion of the stochastic driving �elds. When numerically appr oximating SPDEs of the
form of equation 2.1, issues arise which are not present in the corresponding deter-
ministic PDE setting. As a consequence of the stochastic driving �elds, solutions are
not de�ned pointwise but only in a generalized sense in a space of linear function-
als (distributions) [68; 71; 72; 78]. We formulate discretizations which approximate
numerically the action of these linear functionals.

For discretization in space of equation 2.1 and the stochastic driving �eld n,
we divide the spatial domain 
 into a partition of cells f 
 m gM

m =1 . The partition
is required to have the property 
 = [ M

m =1 
 m . The partition is also required to
have intersections which are of measure zero� (
 ` \ 
 m ) = 0, for ` 6= m, under the
Lebesgue measure� [63]. To approximate solutions numerically, we use stochastic
�eld values obtained by averaging solutions over the volumeof each partition cell

cm (t) =
1

j
 m j

Z


 m

c(x; t)dx:(3.1)
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To approximate the dynamics of cm (t), we use a stochastic process satisfying

dct = Lct dt + f dt + dgt :(3.2)

In the notation, ct denotes the composite vector of concentrations over all chemical
species and all the sets 
m at time t. The term L is a discrete operator which accounts
for di�usion of the molecular species and approximatesr � D r in equation 2.1. The
term f accounts for the chemical reactions and approximatesF. The term gt is
an Ito stochastic process accounting for 
uctuations and approximates n [11; 16].
The equation 3.2 is to be interpreted in the sense of an Ito Stochastic Di�erential
Equation [11; 16].

The stochastic driving �eld n of the continuum system given in equation 2.2 is a
Gaussian process with mean zero and with� -correlation in time. Since the averaging
procedure of equation 3.1 is linear, we also takegt to be a Gaussian stochastic process
with mean zero and with � -correlation in time. With this assumption the process gt

can be expressed in terms of increments of Brownian motion as

dgt = QdB t :(3.3)

In the notation, dB t are increments of a vector valued Brownian motion with n
independent components andQ is anm� n matrix [16]. A particularly useful property
of expression 3.3 is thatQ can be directly related to the spatial covariance � of the
stochastic processgt by



dgt dgT

t 0

�
= hQdB t dB T

t 0QT i = QI� (t � t0)dtdt0QT = � � (t � t0)dtdt0:(3.4)

This implies that

� = QQT :(3.5)

We have used the identity of Ito Calculus that hdB t dB T
t 0i = I� (t � t0)dtdt0, which in

our notation corresponds to Ito's Isometry [16].
In this approach to approximating SPDEs, the discretization of the partial dif-

ferential equation and the stochastic driving �eld play an i nter-connected role in the
equilibrium 
uctuations exhibited by the discretized syst em. A consistent choice for
these two components of the discretization is required to ensure that the discretized
system accurately approximates the equilibrium 
uctuatio ns of the continuum sys-
tem. We let the covariance of the equilibrium 
uctuations of the discrete system be
denoted by

C = h(c � �c ) (c � �c )T i :(3.6)

Since the stochastic �elds are Gaussian, this requires the covariance matrix C approx-
imate the covariance operatorC of equation 2.6. We study speci�c forms taken byC
in later sections.

We now derive a variant of the 
uctuation-dissipation princ iple of statistical me-
chanics for the discretized system which establishes a relationship between L , C, and
�. This is carried out in the case when F = 0. For this purpose we consider at time
t the covariance of concentration 
uctuations

Ct = h(ct � �c ) (ct � �c )T i :(3.7)
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From Ito's Lemma [16] and equation 3.2 we have

(3.8)

d[(ct � �c ) (ct � �c )T ] = ( dct ) (ct � �c )T + ( ct � �c ) (dct )
T + ( dct ) (dct )

T

= L (ct � �c ) (ct � �c )T dt + ( ct � �c ) (ct � �c )T L T dt + QQT dt

+ QdB t (ct � �c )T + ( ct � �c ) dB T
t QT :

In our notation, Ito's Lemma [16] corresponds to dB t dB T
t = Idt , dtdt = 0, and

dB t dt = dtdB T
t = 0. Taking the expectation in probability of both sides of equa-

tion 3.8 we obtain

dCt =
�
LC t + Ct L T + �

�
dt:(3.9)

This was obtained by using � = QQT , hdB t i = 0, and equation 3.7.
As the system approaches the statistical steady-state, corresponding to thermo-

dynamic equilibrium, we have Ct ! C and dCt ! 0. From equation 3.9 this yields

� = �
�
LC + CL T �

:(3.10)

In the case that LC is symmetric, this expression simpli�es to

� = � 2LC:(3.11)

This establishes a 
uctuation-dissipation principle for t he discretized system relating
L , C, and �.

To obtain consistent discretizations of both the partial di �erential equation and
stochastic driving �eld, we use equation 3.10 to determine a� so that the error is
controlled in the discrete system when approximating the equilibrium 
uctuations
of the continuum system. For this purpose, we require the discrete system have
equilibrium 
uctuations with covariance

C` ;m =
D

(c` � �c ` ) (cm � �c m )T
E

=
�C

j
 m j
� ` ;m :(3.12)

The �Cij = �ci � ij and �ci = hci i . This determines � from equation 3.10. This choice
for C corresponds to the equilibrium 
uctuations of the continuu m system spatially
averaged over each partition cell 
m . For any choice of partition 
 m and consistent
discretization L , equation 3.10 gives a covariance structure � for the stochastic driving
�eld which realizes a given choice ofC for the equilibrium 
uctuations. Formally, as
the mesh is re�ned, if we have C ! C and L ! A = r x � D r x , then we have
� = � LC � CL T ! � AC � C � A � = � . This suggests that such an approach
provides a means to obtain consistent discretizations of the stochastic driving �eld n of
equation 2.1, while controlling the errors in the equilibrium 
uctuations of the discrete
system. After deriving speci�c discretizations using this approach and developing
stochastic numerical methods to generate e�ciently the required stochastic �elds, we
revisit the issue of convergence in Section 8.

4. Transformation of the Operator r � D r to the Laplacian � . A change
of variable can be made which transformationsr � D r into a standard Laplacian
�. This will be used to put the di�erential operator into a mor e convenient form for
numerical approximation. The change of variable is based onthe special properties
of D .
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Since the chemical species are assumed to di�use independently, the di�usion
tensor D has diagonal blocks of sized � d, where d is the spatial dimension of the
system. This allows for the full di�erential operator to be d ecomposed into a sum of
components of the form

r x � D r x =
X

k

r x � D (k ) r x :(4.1)

The block matrix D (k ) corresponds to di�usion of the kth chemical species. Each
matrix D (k ) is symmetric and can be diagonalized by a unitary matrix

~D (k ) = ( P (k ) )T D (k ) P (k )(4.2)

where ~D (k ) denotes a diagonal matrix andP (k ) denotes a unitary matrix. Under the
linear change of variable~x = Rx, the gradient and divergence operators become

r x = Rr ~x(4.3)

r x � = r ~x � RT :(4.4)

This gives

r x � D (k ) r x = r ~x � RT D (k ) Rr ~x :(4.5)

Since D (k ) is assumed positive de�nite, we can letR = P ( ~D (k ) )� 1=2. Under this
change of variable the di�erential operator becomes a standard Laplacian from equa-
tion 4.5,

r x � D (k ) r x = � ~x :(4.6)

Since the operatorsr x � D (k ) r x are decoupled, we introduce for the concentration
�eld of each chemical species a separate coordinate system~x (k ) = R(k ) x and let
ck = ck (~x (k ) ; t). With the choice R(k ) = P (k ) ( ~D (k ) )� 1=2 the full di�erential operator
becomes a standard Laplacian

r x � D r x = � ~x :(4.7)

To simplify the discussion, we assume throughout that this coordinate transformation
is made to equation 2.1 before numerical approximation.

5. Meshes with Multiple Levels of Resolution. In many reaction-di�usion
systems, interesting features are exhibited only in a sub-region of the spatial domain,
such as in a chemically active front or in a layer near boundaries [52; 75; 76]. For
such systems we introduce discretizations based on meshes which allow for multiple
levels of resolution. Two important issues arise in the context of SPDEs which are
not present in the deterministic PDE setting. The �rst issue is the need for consistent
discretizations of the stochastic driving �eld at coarse-re�ned interfaces of the mesh,
where there are changes in the spatial resolution of the mesh. The second issue is the
need for e�cient methods to generate e�ciently the required stochastic driving �elds
on such meshes. We discuss discretizations for the Laplacian on multilevel meshes
and then introduce stochastic numerical methods addressing these two issues.



8 P.J. ATZBERGER

5.1. Discretization of the Laplacian on Multilevel Meshes. To obtain
discretizations on multilevel meshes, we express the Laplacian in terms of the gradient
and divergence operators

� = DG Laplacian(5.1)

D = r � Divergence(5.2)

G = r Gradient:(5.3)

To approximate the operators, we de�ne for any discretization mesh a partition of
the spacial domain f 
 m gm , see Figure 5.1. For a given partition cell 
 m we allow
for numerical values to be de�ned both at the center of the partition cell and at the
center of the faces of the partition cell. We approximate theDivergence OperatorD
at the center of a partition cell using

(Db)m =
1

� xm

4X

k=1

bm ;k � nm ;k :(5.4)

The term bm ;k denotes the vector value at the center of thekth face of the partition
cell 
 m . The b denotes the composite vector of all such values on the partition.
The nm ;k denotes the outward normal to the kth face of the partition cell. The term
� xm is the width of the partition cell. The notation ( �)m denotes the component
corresponding to the value at the center of the partition cell with index m. A useful
property of this approximation to the divergence operator is that its evaluation only
requires at the face centers the components in the normal direction, see the dot
product in equation 5.4.

We approximate the Gradient Operator G at the center of the faces of each par-
tition cell. Given the di�erent levels of resolution in the m esh, many cases can arise
in principle. By convention, we restrict our methods to deal with meshes which have
the nested property that neighboring cells di�er in resolut ion by at most one level.
This requires only two cases be considered at each face of a partition cell. The �rst is
when the neighboring cell is at the same level of spatial resolution. This corresponds
to � xm = � x` k , where ` k denotes the index of the neighbor in the direction of the
kth face of the partition cell. The second is when the neighboring cells di�er by one
level of resolution, � xm = 2� x` k or � xm = 1

2 � x` k .
To approximate the gradient operator on a face shared with a neighbor at the

same level of resolution, we use

(Gc)(k )
m ;k = sign( n (k )

m ;k )
c` k

� cm

� xm
:(5.5)

In the notation ( �)m ;k denotes the components corresponding to the vector value at
the center of the kth face of the partition cell with index m. The notation ( �)(k )

denotes thekth vector component. The discrete gradient operator only de�nes the
kth vector component at each face since this is all that is required by the discrete
divergence operatorD of equation 5.4.

To approximate the gradient operator on faces shared between neighbors di�ering
by one level of spatial resolution, we must consider a cluster of partition cells. To
simplify the discussion, we consider the case where the partition cell with index m has
neighbors at thekth face which are of a more re�ned level of resolution, �xm = 2� x` k .
We de�ne the cluster to be the collection of partition cells consisting of the partition
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cell with index m (labeled A) and the four neighboring partition cells in the direction
of the outward normal of the kth face (labeled B; C; D; E ), see Figure 5.1. The
components of the gradient operator are approximated by

(Gc)(k )
B = sign( n (k )

m ;k )
1
2 (cB + cC ) � cA

3
4 � xm

(5.6)

(Gc)(k )
C = sign( n (k )

m ;k )
1
2 (cB + cC ) � cA

3
4 � xm

(5.7)

(Gc)(k )
A =

1
2

h
(Gc)(k )

B + ( Gc)(k )
C

i
:(5.8)

To obtain a discretization of the Laplacian � on meshes with m ultiple levels of
resolution, we use the approximation

L = DG:(5.9)

The discrete gradient operatorG and discrete divergence operatorD are de�ned by
equations 5.4{5.8. Similar discretizations have been usedin [20; 21; 24].

Using this approach to discretize the Laplacian allows for both Neumann and
Dirichlet boundary conditions to be imposed readily on rectangular domains. For
Neumann conditions the domain is discretized so that faces of the partition cells align
with the domain boundary. To impose the Neumann conditions the values of compo-
nents of the gradient are speci�ed at the center of faces of the partition coinciding with
the boundary. For Dirichlet boundary conditions the domain is discretized so that the
centers of the partition cells align with the domain boundary. To impose the Dirichlet
boundary conditions the values are speci�ed at the center ofpartition cells coinciding
with the boundary. The Laplacian is then computed using equation 5.9, where the
range of the gradient and divergence operators are restricted to the non-boundary
values of the partition cells.

5.2. Discretization of the Stochastic Driving Field on Mult ilevel Meshes.
For the development of stochastic numerical methods approximating equation 2.1 the
stochastic driving �eld n must be discretized both in space and in time. On multi-
level meshes, obtaining useful discretizations for the stochastic driving �eld encounter
a number of issues. One issue is to obtain spatial discretizations of the stochastic driv-
ing �eld which handle coarse-re�ned interfaces of the mesh,where there are changes
in the spatial resolution of the mesh. Another issue is to develop methods which can
generate e�ciently the discretized stochastic �elds on the multilevel mesh with the
required covariance structure.

To handle coarse-re�ned interfaces, we derive spatial discretizations using the

uctuation-dissipation principle established for the discrete system in equation 2.4 of
Section 2. We obtain a discretization by considering how equilibrium 
uctuations of
the discrete system approximate the equilibrium 
uctuatio ns of the continuum system.
We require the discrete system have equilibrium 
uctuations with covarianceC given
by

C` ;m =
�C

� x2
m

� ` ;m(5.10)

where �Cij = �ci � ij and �ci = hci i . This choice of covarianceC corresponds to the equi-
librium 
uctuations of the continuum system obtained when solutions are spatially
averaged over each of the partition cells, see equation 3.1.
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Fig. 5.1 . Meshes with Multiple Levels of Resolution. The mesh de�nes a discretization of
space into a collection of square partition cells 
 m index by m , (upper left). For discretizations
approximating the divergence and gradient di�erential ope rators, values are stored at both the center
of each partition cell and at the centers of the faces of each p artition cell. The cell center data is
denoted by + and the face centered data is denoted by � . Discretizations must handle the coarse-
re�ned interfaces of the mesh where there is a change in spati al resolution. For this purpose, a
partition cell cluster is de�ned which consists of the coars e partition cell A and its four neighbors in
the direction of the interface BCDE , (lower panel). For the face of A shared with BC , we assume
the face centered value of A is the average of the face centered values of BC . The partition with
di�erent levels of spatial resolution is represented using a data structure based on quad-trees (upper
right).

To obtain a spatial discretization of the stochastic driving �eld, we use this C
and the 
uctuation-dissipation principle established by equation 3.10. This requires
the covariance � of the stochastic driving �eld satisfy

� = � 2LC:(5.11)

To obtain this expression, we have used that the productLC is symmetric for the spe-
ci�c choice of covarianceC given in equation 5.10 and discretization of the Laplacian
L given in equation 5.9. This provides one approach for obtaining a spatial discretiza-
tions for the stochastic driving �eld on multilevel meshes handling the coarse-re�ned
interfaces. We compare this spatial discretization with other choices in Section 6.

The stochastic driving �eld must also be discretized in time. The SPDE given in
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equation 2.1 is approximated by the following stochastic process, see Section 3,

dct = Lct dt + f dt + QdB t(5.12)

QQT = � :(5.13)

To obtain a numerical approximation of equation 2.1, the stochastic process of equa-
tion 5.12 must be discretized in time. We use the Euler-Maruyama Method [14] which
gives the discretization

cn +1 = cn + Lcn � t + f n � t + � n :(5.14)

The cn denotes the composite vector of concentrations of the molecular species over
the mesh at time tn = n� t. The time-step is denoted by � t. The term � n denotes a
vector-valued Gaussian random variate with mean zero and covariance

h(� m )( � n )T i = �� t� m;n :(5.15)

For the precise de�nition of the covariance � of � , reference the equations 5.11, 5.10,
and 5.9. The random variates� provide the discretization both in space and in time
for the stochastic driving �eld n of equation 2.1. For numerical methods based on this
approach, an important issue is whether the variates� can be generated e�ciently
on the multilevel mesh with the required covariance given inequation 5.15.

5.3. Generation of the Discretized Stochastic Driving Fiel ds on Mul-
tilevel Meshes. E�cient generation methods are needed for the random variates of
the discretized stochastic driving �eld � on the multilevel mesh. The variates � are
Gaussian with mean zero and have covariance given by equation 5.15. To simplify
the discussion we focus on methods to generate random variates g with covariance
� given in equation 5.11. The random variates � can be generated readily fromg,
since the covariances of� and g di�er only by a scalar factor. We also consider only
the case of a single chemical species, since the stochastic driving �eld of each species
is statistically independent. The methods naturally extend to the multiple chemical
species case by generating the stochastic driving �eld for each species separately.

Our approach is based on splittingg into the sum of two other random variates
g1, g2, with g = g1 + g2. For such a splitting, the covarianceg can be expressed as

� = � (1 ;1) + � (2 ;2) + � (1 ;2) + � (2 ;1)(5.16)

� ( j;k ) = hgj gT
k i :(5.17)

The � ( j;k ) denotes the covariance ofgj with gk , for j; k 2 f 1; 2g. If the two random
variates g1 and g2 are independent then � (1 ;2) = � (2 ;1) = 0. This gives

� = � 1 + � 2:(5.18)

For notational convenience, we denoted �1 = � (1 ;1) and � 2 = � (2 ;2) . This provides a
useful link between matrix factorization of � and the splitt ing of a random variate g
into the sum of two independent random variates. For such a matrix factorization to
be of practical interest, the generation ofg1 and g2 must be easier than the generation
of g. For the factorization to correspond to the splitting of a random variate g, the
factors � 1 and � 2 must be symmetric positive semide�nite in equation 5.18.

To obtain a factorization, we consider modi�cation of the di screte divergence
and gradient operators de�ned in Section 5.1. In the matrix representation of the
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discrete divergence operator, the matrix entries in each row correspond to weights
for values at the face centers of the partition cells, see equation 5.4 and Figure 5.1.
We de�ne the modi�ed divergence operator D 0, by setting matrix entries to zero
for weights corresponding to values at the center of faces shared along the coarse-
re�ned interfaces. In the matrix representation of the discrete gradient operator G0,
the matrix entries correspond to weights for values at the centers of the partition
cells, see equation 5.5, equation 5.6, and Figure 5.1. We de�ne the modi�ed gradient
operator G0, by setting matrix entries to zero for weights corresponding to values at
the center of partition cells bordering immediately the coarse-re�ned interfaces.

With these modi�cations the discrete operators satisfy

G0 = � D 0T :(5.19)

A modi�ed Laplacian can be de�ned by

L 0 = D 0G0 = � D 0D 0T :(5.20)

For the factorization of �, we use

� 1 = � 2L 0C(5.21)

� 2 = � � � 1:(5.22)

For this to be useful, we must have that the factors � 1, � 2 are symmetric positive
semide�nite and we must have e�cient methods to generate g1 with covariance � 1

and g2 with covariance � 2.
To obtain methods to generateg1 with covariance � 1, we use properties of the

modi�ed discrete operators. An important property is that t he matricesL 0, � 1, and C
are all block diagonal for the same entries. This follows since the modi�ed Laplacian
corresponds to imposing Neumann boundary conditions at thecoarse-re�ned inter-
faces. The Neumann boundary conditions serve to decouple domains with di�erent
levels of spatial resolution. As a result of decoupling, we obtain a collection of dis-
tinct domains each having a uniform level of spatial resolution. In Figure 5.1 the
mesh shown in the upper left has three such domains. We denotethe block matrices
by L 0(k) , � (k )

1 , and C(k ) , which each correspond to the domain with uniform spatial
resolution indexed by k.

The block matrices of the covarianceC have entries

C(k )
` ;m =

�c
� x2

m
� ` ;m ; ` ; m 2 J k :(5.23)

The �c = hci denotes the average concentration and in the case of a singlespecies
is a scalar, see equation 3.12. TheJ k denotes the set of permitted indices for the
entries of the kth block. Since the mesh resolution is uniform on the spatial domain
corresponding to this block we have

C(k ) =
�c

� x2
k

I (k ) :(5.24)

The I (k ) is an identity matrix for the entries of the kth block, with zero entries
elsewhere. We have used that on thekth spatial domain, � xm = � xk for all indices
m 2 J k , where � xk is the uniform partition size. Results for the single species case
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extend naturally by generating independently the stochastic driving �eld for each
chemical species.

The block matrices for � 1 can be expressed as

� (k )
1 = � 2L 0(k)C0(k) = ( Q(k )

1 )(Q(k )
1 )T(5.25)

Q(k )
1 =

 p
2�c

� xk
D 0(k)

!

:(5.26)

This factorization allows for the variates g1 to be generated for each block by

g(k )
1 = Q(k )

1 � (k ) :(5.27)

The � (k ) are standard Gaussian random variates with independent components having
mean zero and variance one. The notation [�](k ) denotes restriction to the vector
components corresponding to the spatial domain with indexk. In assignment of
vector values using this notation, all of the non-indexed components are set to zero.
We generateg1 by sweeping over all of the uniform spatial domains indexed by k to
obtain

g1 =
X

k

g(k )
1 :(5.28)

This method provides an e�cient means by which to generate the random variates
g1.

To evaluate the cost of this procedure, we denote byN the number of compo-
nents of partition cells. The procedure requires generating a total of N independent
standard Gaussian random variates, performing a matrix-vector multiplication, and
sweeping over the uniform spatial domains indexed byk. The generation of the
Gaussian variates can be accomplished withO(N ) operations [89]. The matrix rep-
resentation of the discrete divergence operator is sparse with a constant number of
non-zero entries per row. SinceQ(k )

1 has the same sparse structure, the matrix-vector
multiplications can be performed with a total of O(N ) operations. Using sparse data
structures, the summation performed when sweeping over theuniform spatial domains
can be performed with a total of O(N ) operations. This shows the method generates
the random variate g(k )

1 with an optimal asymptotic cost of only O(N ) operations.
To obtain methods to generateg2 with covariance � 2, we consider the remaining

entries of �. By the de�nition of the modi�ed discrete operat ors L 0, it can be shown
that � 2 is block diagonal. In this case, the blocks correspond to each partition cell face
involved in a coarse-re�ned interface. Associated with each such face is a cluster of
partition cells consisting of one coarse cell and two re�nedcells which are immediate
neighbors in the direction of the interface, see Figure 5.1.The blocks are given by

� ( j )
2 =

8�c
3� x2

j
M(5.29)

M =

2

4
1 � 2 � 2

� 2 4 4
� 2 4 4

3

5 :(5.30)

The faces of the coarse cells shared along the coarse-re�nedinterface are indexed byj ,
see Figure 5.1. The �x j denotes the width of the coarse partition cell of the cluster.
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An important technical point concerns partition cells which are involved in more than
one cluster, such as at a corner, see Figure 5.1. In this case,we use the convention
that the repeated entries of the overlapping blocks for suchpartition cells are added
together. This can be shown to give correctly the full matrix.

For the factorization given by equation 5.18 to be valid, the factor � 2 is required
to be positive semide�nite. This property can be investigated by considering the
eigenvalues of the matrixM . These are given by

� 1 = 0 ; � 2 = 0 ; � 3 = 9 :(5.31)

This shows that � 2 is indeed positive semide�nite and the factorization is valid.
To generate the random variatesg2, we use the eigenvectors ofM . The orthonor-

mal eigenvectors are given by

v ( j )
1 =

1
p

5

2

4
2
1
0

3

5 ; v ( j )
2 =

1

3
p

5

2

4
2

� 4
5

3

5 ; v ( j )
3 =

1
3

2

4
1

� 2
� 2

3

5 :(5.32)

The random variate is obtained for the cluster indexed byj by

g( j )
2 =

s
8�c

3� x2
j

�
� ( j )

1

p
� 1v ( j )

1 + � ( j )
2

p
� 2v ( j )

2 + � ( j )
3

p
� 3v ( j )

3

�
:(5.33)

The � ( j )
` denote independent standard Gaussian random variates withmean zero and

variance one. This expression can be simpli�ed since� 1 = � 2 = 0. This gives

g( j )
2 =

2
p

6�c
� x j

� ( j )
3 v ( j )

3 :(5.34)

We generateg2 by sweeping over all of the clusters indexed byj to obtain

g2 =
X

j

g( j )
2 :(5.35)

This method provides an e�cient means by which to generate g2.
To evaluate the cost of this procedure, we denote byN the number of partition

cells. The generation procedure requires generating one Gaussian random variates for
each cluster, a scalar-vector multiplication, and a sweep over the clusters index by j .
By counting the number of clusters and using sparse data structures the procedure
can be carried out with at most O(N ) computational operations. In practice, the
actual cost is expected to be smaller since clusters only occur for partition cells at
coarse-re�ned interfaces, which will typically make up only a small subset of the mesh.
This method for generatingg2 has an optimal asymptotic computational cost ofO(N )
operations.

To generate the variateg we add the results from the procedure generatingg1 and
g2. Since this addition costs onlyO(N ) operations, we have shown that this method
generatesg with an optimal asymptotic computational cost of O(N ) operations. This
method is signi�cantly more e�cient than commonly used appr oaches for correlated
variates, such as Cholesky factorization [89]. The Cholesky algorithm applied to
� costs O(N 3) operations and generally produces a non-sparse factor [89]. Another
drawback is that this factorization needs to be performed each time the structure of the
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adaptive mesh changes. For the generation of each random variate, a matrix-vector
multiplication must be performed. Since the matrix factor i s generally not sparse,
each generation of a random variate costsO(N 2) operations. The method using
equation 5.21 performs signi�cantly better than this, havi ng instead a computational
cost of only O(N ) operations.

In summary, the presented procedure for computing the random variate g by
splitting it into two random variates g1 and g2 provides a potentially versatile tool
for generating random variates with a speci�ed covariance structure. The method
relies on being able to factor the covariance � into � 1 and � 2 with random variates g1

and g2 which are easier to compute thang. In the case of adaptive multilevel meshes
such a factorization is found for the covariance � required by equation 5.11. In this
case, the procedure is shown to have an optimal asymptotic computational cost of
O(N ) operations.

5.4. Neumann and Dirichlet Boundary Conditions. In the case of Neu-
mann and Dirichlet boundary conditions, the discretized stochastic driving �elds have
an adjusted covariance structure �. The covariance is adjusted by modifying the
Laplacian operator L and covarianceC appearing in equation 5.11. In the matrix
representation of L and C the entries correspond to weights at the center of the
partition cells.

For Dirichlet boundary conditions the domain is discretized so that the centers
of the partition cells align with the domain boundary. To account for the Dirichlet
boundary conditions, the covariance matrix C is modi�ed to obtain Ĉ by setting all
entries to zero which correspond to the partition cells comprising the boundary. The
covariance of the stochastic driving �eld is given by

�̂ = � 2L Ĉ:(5.36)

The stochastic driving �eld with covariance �̂ is generated using the methods of
Section 5.3.

For Neumann conditions the domain is discretized so that faces of the partition
cells align with the domain boundary. To handle the Neumann boundary conditions,
the discrete divergence operatorD is modi�ed to obtain �D by setting all entries to
zero which correspond to faces of the partition cells which comprise the boundary.
A modi�ed Laplacian can be de�ned by �L = �DG. The covariance of the stochastic
driving �eld is given by

�� = � 2�LC:(5.37)

The stochastic driving �eld with covariance �� is generated using the methods of
Section 5.3.

We remark that the only cases considered were deterministicNeumann and Dirich-
let boundary conditions. However, there may be applications in which stochastic
boundary conditions are of interest. In this case, entries corresponding to the random

uxes or concentrations could be prescribed on the boundaries. The terms would
contribute in the model through the use of boundary values inthe evaluation of the
discrete Laplacian appearing in equation 3.2. Depending onthe system modeled, for
such stochastic boundary conditions the stochastic driving �eld may require additional
modi�cation to yield consistency with statistical mechani cs.

6. Equilibrium Fluctuations at Coarse-Re�ned Interfaces. Studies of the
statistical features of a system often use stochastic numerical methods to generate a
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dynamical trajectory over a long period of time. The statistics are then estimated
from the dynamical trajectory by performing an averaging over time, subject to er-
godicity assumptions [4; 5]. Statistics estimated in this manner include probability
expectations corresponding to thermodynamic equilibriumand correlation functions
in space and time [5]. For long trajectories, discretization errors are expected to ac-
cumulate signi�cantly. The rate and nature of this accumulation is expected to play
an important role in the accuracy of estimated statistics.

We investigate the contributing role of errors introduced by the spatial discretiza-
tion of the stochastic driving �eld. We focus particularly o n errors at the coarse-re�ned
interfaces of a multilevel mesh. To highlight features of our approach to spatial dis-
cretization, and to highlight issues which can arise at suchinterfaces, we compare
our approach with an alternative based on the use of random 
uxes. For the di�erent
methods, we investigate the role of the accumulation of spatial discretization errors on
the quality of the covariance of the equilibrium 
uctuation s of the discretized system
at coarse-re�ned interfaces.

Each spatial discretization of the stochastic driving �eld which we consider, corre-
sponds to a speci�c choice for the covariance �. For a given choice of �, the equilibrium

uctuations of the spatially discretized system have covariance

C = �
1
2

L � 1� :(6.1)

We have used equation 3.2 and equation 5.11.
As an alternative to the discretized stochastic driving �eld which we introduced

in Section 5.2, we consider an approach based on random 
uxesat the coarse-re�ned
interface. For uniform meshes the stochastic driving �eld can be generated by taking
the discrete divergence of independent random 
uxes at the center of faces of the
partition cells [8; 10]. A natural extension to multilevel m eshes is to introduce at the
coarse-re�ned interface random 
uxes at the face centers ofthe re�ned partition cells
BC of each cluster, see Figure 5.1. For the coarse partition cell A of each cluster,
the total 
ux across the shared face into A is the sum of the 
uxes at BC . This is
represented in the area weighted 
uxes by setting the face centered 
ux of the coarse
cell to be the average of the random 
uxes atBC .

To investigate the approach based on random 
uxes for the discretization of the
stochastic driving �eld, we construct � and use equation 6.1. It is found that while
the discretization errors in the driving �eld are localized at the coarse-re�ned inter-
face they contribute to the equilibrium 
uctuations in a non -local manner. For the
equilibrium 
uctuations, this has the e�ect of introducing spatial correlations which
extend several partition cells into the mesh away from the coarse-re�ned interface, see
Figures 6.1 and 6.2.

We investigate the propagation of localized errors at the coarse-re�ned interface.
As a model for the spatial discretization error in the stochastic driving �eld we use a
\white-noise" stochastic �eld. Since the equations are linear, the contributions of the
errors in the stochastic driving �eld to the equilibrium 
uc tuations can be obtained
from equation 6.1 with the special choice for �

� `; m = � `; m :(6.2)

In this case, the resulting C gives the contributions of the errors to the equilibrium

uctuations. It is found that while the errors are localized and uncorrelated in space,
they propagate over time and introduce long-range correlations in the covariance
structure of the equilibrium 
uctuations of the discrete sy stem, see Figures 6.1 and 6.2.
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Fig. 6.1 . Spatial Covariance of Equilibrium Fluctuations at a Coarse -Re�ned Interface. The
top row shows the covariance of the equilibrium 
uctuations of the system for each choice of the
stochastic driving �eld at a cell at the coarse-re�ned inter face on the re�ned side (see + symbol).
In the second row, the covariance with this cell is plotted as a function of y at cross sections of the
mesh near the interface.

In contrast, our discretization of the stochastic driving � eld has by design equi-
librium 
uctuations with a prescribed covariance structur e which is uncorrelated in
space, see equation 5.10, equation 5.11, and Figures 6.1 and6.2. The discretiza-
tion errors in this approach are constrained by requiring that the discrete system
exhibit exactly the spatially averaged equilibrium 
uctua tions of the continuum sys-
tem. While there are discretization errors with respect to the continuum stochastic
driving �eld, the constraints introduce errors which propa gate on the mesh in such a
manner that they do not introduce long-range correlations in the equilibrium 
uctua-
tions of the system. When compared with the discretization based on random 
uxes,
this feature is expected to give more accurate results for the estimation of spatial
correlation functions of the system.

The approach we introduce for controlling the errors contributed by spatial dis-
cretization of the stochastic driving �eld is potentially u seful in developing stochastic
numerical methods for many types of SPDEs. The approach provides a method by
which to spatially discretize the stochastic driving �elds by controlling the errors in
the 
uctuations of the discretized system at statistical steady-state. We further high-
light features of this approach to spatial discretization in the convergence analysis
developed in Section 8.

7. Meshes with Curved Boundaries. For many applications it is natural
to consider reaction-di�usion systems on spatial domains having a geometry with
curved boundaries. In pattern forming systems the geometryalong with boundary
conditions are expected to play an important role. The geometry is expected to
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Fig. 6.2 . The top row shows the covariance of the equilibrium 
uctuati ons of the system for
each choice of the stochastic driving �eld at a cell at the coa rse-re�ned interface on the coarse side
(see + symbol). In the second row, the covariance with this ce ll is plotted as a function of y at cross
sections of the mesh near the interface.

e�ect the possible eigenmodes of the system and constrain perturbations which e�ect
stability [73; 75; 76]. In biological applications, it is expected that the location within
a cell or tissue may dramatically e�ect the rates of di�usivi ty and reactivity of the
chemical species. One natural modeling approach is to decompose space into disjoint
but coupled domains on which separate reaction-di�usion equations are parameterized
and solved to account for local e�ects [76]. For biological systems, the individual
regions are expected to have complicated geometries [1; 100]. The discretizations
introduced previously for the Laplacian on structured mult ilevel meshes only allow
for rectangular boundaries, see Section 5. We extend the applicability of the presented
methods by developing discretizations for domains with curved boundaries.

7.1. Discrete Approximation of the Laplacian on Meshes with Curved
Boundaries. To obtain accurate results for the Laplacian on domains with non-
rectangular geometries requires the development of appropriate discretizations in the
vicinity of the curved boundaries. To simplify the discussion, we consider geometries
which have only smooth boundaries. We also only consider thecase of Neumann
boundary conditions imposed on the curved boundary. Our approach is based on a
�nite volume discretization of the Laplacian and is a variant of the methods referred to
asEmbedded Boundary Methods, Cartesian Grid Methods, Cut-Cell Methods, see [36{
42].

The boundary is approximated over the regular structured mesh by piecewise lin-
ear segments. The linear segments are de�ned by connecting the points of intersection
of the boundary with the faces of the partition cells f 
 m g, see Figure 7.1. We refer
to any partition cell containing a linear boundary segment as a \cut-cell." From the
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assumed smoothness of the boundary, it is always possible tore�ne su�ciently the
mesh so that each partition cell contains at most one linear boundary segment. For
each cut-cell of the boundary 
 m , two sub-regions are de�ned. The �rst subregion
corresponds to the part inside the solution domain of the reaction-di�usion system
and is denoted by 
 0

m . The second corresponds to the region outside the solution
domain and is denoted by 
 00

m . The full partition cell is always assumed to be the
union of these two parts, 
 m = 
 0

m [ 
 00
m .

To obtain a discretization of the Laplacian, we use the GaussDivergence Theorem
on each partition cell [92]

Z


 0
m

� cdx =
Z

@
 0
m

JdAx(7.1)

J = �r c � n:(7.2)

The n denotes the inward normal on the partition boundary @
 0
m . The 
 0

m refers to
the part of the partition cell inside the solution domain. Th e J denotes the inward
concentration 
ux across the face per unit length.

A discretization is obtained for the Laplacian by approximating the two sides of
equation 7.1. By treating the Laplacian as constant on each partition cell and the
concentration gradient as constant on each partition face,we obtain the discretization

[Lc]m =
1

j
 0
m j

X

k

J [k ]
m j@
 0

m ;k j:(7.3)

The j
 0
m j denotes the area of the inside sub-region of the partition cell indexed by

m. The j@
 0
m ;k j denotes the length of thekth face of the inside sub-region of the

partition cell. The J [k ]
m denotes the concentration 
ux across thekth face into the

interior sub-region.
The concentration �eld of the chemical species is represented by values at the

center of each full partition cell, even when the partition cell is cut by a boundary.
This center value is used even when the full partition cell center falls within the
exterior sub-region 
 00

m . In this latter case, the value at the cell center can be thought
of as representing the extrapolation of a smooth concentration �eld solution into the
exterior sub-region. This approach of using values at the center of the full partition
cell is based on the work of [42].

For the discretization in equation 7.3 to be useful, accurate estimates are required
for the concentration 
uxes J [k ]

m . Estimates are needed only for the faces aligned with
the Cartesian directions. The concentration 
ux on the curved boundary is speci�ed
since we are only considering the case of Neumann boundary conditions. To estimate
the concentration 
ux at a given face, a bilinear interpolat ion is made to de�ne locally
a concentration �eld

~c[k ](x) = ��c m 1 + (1 � � )�c m 2 + � (1 � � )cm 3 + (1 � � )(1 � � )cm 4(7.4)

� (x) = ( x (1)
2 � x (1) )=� x

� (x) = ( x (2)
4 � x (2) )=� x:

For the m th partition cell and kth face we assignm 1 = m. The other indices indices
m 2; m 3; m 4 are assigned to the nearest neighbors in the direction of thekth face. For
the collection of partition cells for the case ofk = 1 and k = 2, see Figure 7.1. The
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notation ( �)( ` ) refers to the vector component indexed bỳ . The notation ( �)[k ] refers
to values associated with the face indexed byk. The 
ux is estimated by

J [k ]
m = �r ~c[k ](xk � ) � n [k ]

m :(7.5)

The xk � denotes the location of the center of the face, where the center location
depends on how the face is cut by the boundary, see Figure 7.1.The n [k ]

m denotes the
inward normal of the kth face.

Even though only linear interpolation was used, in fact the estimate is second
order accurate for the 
ux evaluated at the center of faces aligned with the cartesian
directions. We discuss this for the case of estimatingJ [1]

m , where the center of the face

has componentx (1)
1� = 1

2

�
x (1)

2 + x (1)
1

�
. In the case of a full partition cell where the

face is not cut, equation 7.5 yields the usual central di�erence approximation for the
gradient component in the x-direction

J [1]
m =

cm 2 � cm 1

� x
:(7.6)

This shows the estimate is second order accurate in the case of an uncut cell.
In the case of a partition cell in which a face is cut, the estimate corresponds to

a linear interpolation in the y-direction of two central di�erence approximations for
the gradient component in the x-direction, see equations 7.4 and 7.5,

J [1]
m = �

cm 2 � cm 1

� x
+ (1 � � )

cm 4 � cm 3

� x
:(7.7)

Since each central di�erence is second order accurate, the linear interpolation ensures
the estimate at the face center is also second order accurate. Using these estimates in
equation 7.3 yields a �rst order accurate discretization of the Laplacian. For a more
detailed discussion, see [42].

At curved boundaries we use the discretization for the Laplacian de�ned by equa-
tions 7.3, 7.4, and 7.5. For the approximation of the SPDEs given in equation 2.1, the
stochastic driving �eld must be discretized at the curved boundaries. Approximation
at curved boundaries poses a challenge, since the partitioncells have non-homogeneous
areas and geometries de�ned by the boundary. This irregularity must be handled in
the discretization of the stochastic driving �eld. For a dis cretization to be useful in
practice, methods are are needed for the e�cient generationof random variates with
the required covariance structure representing the discrete stochastic driving �eld.

7.2. Discretization of the Stochastic Driving Field on Mesh es with
Curved Boundaries. To discretize the stochastic driving �eld on meshes with
curved boundaries, we take an approach similar to the case ofmultilevel meshes
discussed in Section 5. The approach uses the 
uctuation-dissipation principle es-
tablished for the discrete system in equation 3.10. The curved boundary introduces
irregular terms in the discretizations as a result of the non-homogeneous areas and
face lengths of the cut partition cells. To obtain a consistent spatial discretization
of the stochastic driving �eld, the covariance of the equilibrium 
uctuations C is
speci�ed to be

C` ;m =
�C

j
 0
m j

� ` ;m :(7.8)
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Fig. 7.1 . Domain with a Curved Boundary and Cut Partition Cells: On the left is shown the
disk-shaped domain for the reaction-di�usion system. On th e right is shown for a cut cell, partition
cells of the mesh used for computing the concentration 
ux J [1]

m . The symbol + denotes the location
of the center of the full partition cells. The symbol � denotes the location of the center of the faces
of the partition cells. For cut faces, the center is located a t the mid-point of the face segment inside
the solution domain. The light region denotes for the partit ion cells the subregions 
 0

m inside the
solution domain. The dark region denotes for the partition c ells the subregions 
 00

m outside the
solution domain. On the right are shown for the interior subr egion 
 0

m 1
the inward concentration


uxes labeled by J [k ]
m .

The �Cij = �ci � ij and �ci = hci i is the average concentration of thei th chemical species.
For each partition cell, the j
 0

m j is the area of the sub-region within the solution
domain. This choice of covarianceC corresponds to the equilibrium 
uctuations of
the continuum system obtained when the concentration �eld is spatially averaged over
the interior subregion of each partition cell, see equation3.1.

For the choice of equilibrium covarianceC in equation 7.8 and the discrete Lapla-
cian L in equation 7.3, the discretized stochastic driving �eld has the covariance �
given by

� = � LC � CL T :(7.9)

The stochastic driving �eld must also be discretized in time. The SPDE given in
equation 2.1 is approximated by the following stochastic process, see Section 3,

dct = Lct dt + f dt + QdB t(7.10)

QQT = � :(7.11)

To obtain a numerical approximation of equation 2.1, the stochastic process of equa-
tion 7.10 must be discretized in time. We use the Euler-Maruyama Method [14] which
gives the discretization

cn +1 = cn + Lcn � t + f n � t + � n :(7.12)

The cn denotes the composite vector of concentrations of the molecular species over
the mesh at time tn = n� t. The time-step is denoted by � t. The term � n denotes a
vector-valued Gaussian random variate with mean zero and covariance

h(� m )( � n )T i = �� t� m;n :(7.13)
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For the precise de�nition of the covariance � of � , reference the equations 7.9, 7.8,
and 7.3. The random variates� provide the discretization both in space and in time
for the stochastic driving �eld n of equation 2.1. For numerical methods based on this
approach, an important issue is whether the variates� can be generated e�ciently on
meshes with curved boundaries having the required covariance given in equation 7.13.

7.3. Generation of the Discretized Stochastic Driving Fiel ds on Meshes
with Curved Boundaries. To obtain e�cient generation methods for the variates
of the discretized stochastic driving �eld � on meshes with curved boundaries, we
use a splitting approach similar to the one used in Section 5.3. To simplify the
discussion we focus on methods to generate random variatesg with covariance �
given in equation 7.9. The random variates� can be generated readily fromg, since
the covariances of� and g di�er only by a scalar factor.

To generate the random variateg we shall use the splitting g = g1 + g2 into two
independent random variatesg1; g2. The covariance ofg, g1, and g2 then satisfy

� = � 1 + � 2:(7.14)

For details of how this is obtained and notational conventions, see Section 5.3.
To obtain � 1 we consider a modi�ed Laplacian. The discrete divergence operator

has a matrix representation in which the entries correspondto weights on the faces of
the partition cells. The modi�ed divergence operator D 00is obtained by setting to zero
all weights for faces shared with a cut partition cell. For the matrix representation,
all rows are set to zero corresponding to cut partition cells. This de�nes a divergence
operator D 00which is non-zero only on the domain consisting of the uncut partition
cells. We similarly modify the discrete gradient operator to obtain G00 by setting
to zero all weights associated with the cut-partition cells and faces shared with cut-
partition cells.

An important property of the modi�ed divergence and gradient is

D 00= � G00:(7.15)

We de�ne a modi�ed Laplacian by

L 00= D 00G00= � D 00(D 00)T :(7.16)

The modi�ed Laplacian is non-zero only on the domain of uncut partition cells. For
this domain, the modi�cation corresponds to imposing Neumann conditions on rect-
angular boundaries having a stair-case-like geometry. Thefactor � 1 is de�ned by

� 1 = � 2L 00C(7.17)

� 2 = � � � 1:(7.18)

From equation 7.16 the factor � 1 can be explicitly factored using an approach similar
to the one used in Section 5.3, see equation 5.25. The explicit factorization also allows
for a similar generation method to be used for the random variates, see Section 5.3.
The computational cost of generating the random variates bythese methods isO(N )
operations, whereN is the total number of partition cells.

To obtain � 2 we consider the remaining entries of the covariance. This factor
is more di�cult to handle since the entries are irregular. Th e entries correspond
to weights over the cell centers of cut partition cells whichhave di�erent areas and
geometries. The covariance matrix �2 can be shown to be block diagonal. Each block
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is denoted by � (q)
2 and corresponds to each disjoint collection of partition cells which

are cut by the boundaries. The blocks �(q)
2 can be shown to be positive semide�nite,

which shows the splitting provides a valid factorization of � in equation 7.14. The
semide�niteness poses issues for the use of commonly used generation methods, such as
the Cholesky factorization. The Cholesky factorization requires positive de�niteness.

To handle this issue we use that �(q)
2 is symmetric, which ensures a complete basis

of orthonormal eigenvectors [86]. We generate the random variate using

g(q)
2 =

M qX

k=1

� (q)
k

q
� (q)

k v (q)
k :(7.19)

The � (q)
k denotes thekth eigenvalue andv (q)

k denotes thekth orthonormal eigenvector.

The � (q)
k denote independent Gaussian random variables with mean zero and variance

one. The notation (�)(q) refers to the vector components associated with the indices
of the matrix block indexed by q. We denote by M q the number of components of
g(q)

2 . To obtain the random variate g2, a sweep is made over all blocks

g2 =
nX

q=1

g(q)
2 :(7.20)

We denote by n the total number of blocks.
To evaluate the cost of generating random variates, we consider each step of the

above procedure. The eigenvalue and eigenvectors can be obtained for � (q)
2 with a com-

putational cost of O(M 3
q ) operations [86; 94]. Since this must be performed for each

block, the total cost of computing the eigenvectors and eigenvalues isO(
P n

q=1 M 3
q ).

While this has an unfavorable M 3
q scaling, the number of partition cells M q which

are cut by the curved boundary comprise a lower one dimensional set and will often
be only a small fraction of the partition cells of the mesh. Also, this eigenvector-
eigenvalue procedure is only required when the geometry of the curved boundaries
of the mesh change. For many problems this procedure is only required once at the
beginning of a simulation.

To evaluate the cost of generating the random variateg(q)
2 , the sum in equa-

tion 7.19 must be considered. In general, the eigenvectors will have almost all non-
zero vector components. As a consequence the generation of each random variateg(q)

2
from the sum in equation 7.19 has a cost ofO(M 2

q ) operations. Using sparse data
structures, the sum in equation 7.20 can be evaluated with a cost of O(

P n
q=1 M q)

operations. Once the eigenvalues and eigenvectors are known, this gives for the gen-
eration of each random variateg2 the cost of O(

P n
q=1 M 2

q ) operations.
The introduced methods allow for the generation of each random variate g with

a computational cost of O(N +
P n

q=1 M 2
q ), where N is the total number of parti-

tion cells in the mesh. Obtaining the required factors for the generation method has
a computational cost of O(N +

P n
q=1 M 3

q ). While the curved boundaries introduce
a non-optimal M 2

q and M 3
q scaling in the methods, the introduced approach is still

expected to be much more e�cient than commonly used approaches. For instance,
a direct eigenvector decomposition of � would cost O(N 3) to generate the required
factors and O(N 2) to generate each random variateg. The approach we introduce
is signi�cantly more e�cient since the number of partition c ells M q which are cut by
the curved boundary comprise a lower one dimensional set andwill often be only a
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small fraction of N . This substantially reduces the size of the matrices for which the
expensive eigenvector decomposition procedure must be performed and yields a more
e�cient generation procedure for g.

8. Convergence of the Stochastic Numerical Methods for the L inearized
Equations. The proposed stochastic numerical methods are shown formally to con-
verge in the case when the system is near steady-state and the
uctuations are small
relative to the mean concentration. As discussed in Section1, the solutions of equa-
tion 2.1 do not have classical solutions in terms of functions with well-de�ned point-
wise values. Instead, the solutions are represented by linear functionals (distribu-
tions) [68; 70; 72]. To simplify the discussion and to avoid delving into too many
technical issues, we formally demonstrate a form of weak convergence of the stochas-
tic numerical methods which are semi-discretized in space.We consider bounds only
in terms of the in�nity norm, but it is expected that similar b ounds can also be
developed for theL 2-norm.

The form of weak convergence we consider corresponds to convergence of the
moments of linear functionalsA of the form

a(x; t) = A[c] =
Z




Z t

0
� (x ; y ; s)c(y ; s)dsdy(8.1)

when numerically approximated by ~A of the form

~a(x; t) = ~A[c] =
X

m

Z t

0
� (x ; ym ; s)~cm (s)ds� xd

m :(8.2)

The � (x; y ; s) is a bounded compactly supported function which is smoothly varying
in spacex, y and in time s. The form of weak convergence we consider is de�ned as
convergence of all moments






 M (n )

~A 1 ; ~A 2 ;:::; ~A n
� M (n )

A 1 ;A 2 ;:::;A n






 ! 0; as � x ! 0:(8.3)

The nth moment is de�ned by

M (n )
A 1 ;A 2 ;:::;A n

(x1; t1; x2; t2; : : : ; xn ; tn ) = ha1(x1; t1)a2(x2; t2) � � � an (xn ; tn )i(8.4)

M (n )
~A 1 ; ~A 2 ;:::; ~A n

(x1; t1; x2; t2; : : : ; xn ; tn ) = h~a1(x1; t1)~a2(x2; t2) � � � ~an (xn ; tn )i :(8.5)

This convergence is required for each momentn � 1 and for any choice of functionals
A1; A2; : : : ; An of the form of equation 8.1 when approximated by ~A1; ~A2; : : : ; ~An of
equation 8.2. The formal analysis will use the in�nity-norm de�ned by

kf (x1; t1; x2; t2; : : : ; xn ; tn )k1 = sup
x 1 ;::: x n ;t 1 ;:::t n

jf j:(8.6)

The supremum is taken over the domainf xk 2 
, tk 2 [0; T ]g, where both the
spatial and temporal domains are bounded,j
 j < 1 and T < 1 . The de�nition for
convergence given by equation 8.3 is only one of many di�erent types of convergence
which can be de�ned for stochastic processes, see [14].

An intuitive motivation for this form of weak convergence is to think of the func-
tionals A as being analogues of physical observations which would be obtained from
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experimental measurements of an underlying 
uctuating concentration �eld. In ex-
periments any measured quantity is averaged to some extent in space and time. Such
averaging is represented in the functional by integrating the concentration �eld against
the function � . Weak convergence corresponds to the situation where the statistics of
any measurement of the underlying concentration �eld can bereproduced by simula-
tions up to a speci�ed precision provided one uses a su�ciently re�ned discretization
mesh.

A number of simpli�cations can be made by utilizing linearit y of the functional
A and properties ofc. From linearity and the smoothness of� we have that a(x; t) is
a Gaussian random �eld with well-de�ned pointwise values. This has the important
consequence that statistics of the random �eld are completely determined by the
�rst two moments. As a result, only the case of n � 2 needs to be considered in
equation 8.3.

For the system close to statistical steady-state and for su�ciently small 
uctua-
tions relative to the mean concentration it is su�cient to co nsider the linearization of
equations 2.1. This corresponds in equation 2.1 to a functional of the form F[c] = F c
whereF denotes a linear functional. To simplify discussion of the formal analysis, for
both the Laplacian and the linearized part of F we account for contributions in one
linear operator L of the reaction-di�usion system. We denote the discretization of L
by L .

In the linearized regime, taking an average of equation 2.1 and equation 3.2 gives
for the �rst moment a deterministic reaction-di�usion equa tion. For the �rst moments
the convergence follows straightforwardly from the deterministic convergence theory.
We focus on demonstrating convergence of the second momentswhich arise from the

uctuations.

When working with the second moments it is helpful to consider the covariance
function R (x1; t1; x2; t2) = M (2)

A 1 ;A 2
� M (1)

A 1
M (2)

A 2
, which can be expressed as

(8.7)

R (x1; t1; x2; t2) =
Z

dy1dy2

Z
ds1ds2 � 1(x1; y1; s1)q(y1; s1; y2; s2)� 2(x2; y2; s2)

q(y1; s1; y2; s2) = h(c(y1; s1) � �c)(c(y2; s2) � �c)i :

The � 1 and � 2 correspond to the linear functionalsA1 and A2 represented in the form
of equation 8.1. The integrals iny1, y2 and s1, s2 are taken over the bounded domain
f (y1; y2; s1; s2) 2 
 � 
 � [0; t1] � [0; t2]g. Similarly for the semi-discretized system
we have the covariance function~R(x1; t1; x2; t2) = M (2)

~A 1 ; ~A 2
� M (1)

~A 1
M (2)

~A 2
, which can be

expressed as

~R(x1; t1; x2; t2) =
X

m 1

X

m 2

Z
ds1ds2 � 1(x1; ym 1 ; s1) �(8.8)

�~q(ym 1 ; s1; ym 2 ; s2)� 2(x2; ym 2 ; s2)� xd
m 1

� xd
m 2

~q(ym 1 ; s1; ym 2 ; s2) = h(cm 1 (s1) � �c)(cm 2 (s2) � �c)i :

Sincec is a solution of equation 2.1, we have formally thatc(y ; s) = e(s� r )L c(y ; r )
when s > r . The L denotes the linearized operator which accounts for contributions
from the Laplacian and linearized chemical reaction functional F. The operator L is
assumed to be negative semide�nite. Theet L denotes the solution operator over the
time interval [0 ; t] from the semi-group associated with equation 2.1, see [70;78]. By
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the choice of stochastic driving �eld n in equation 2.2, we have

h(c(y1; s1) � �c)(c(y2; s2) � �c)i = e(s1 � s2 )L C;(8.9)

for s1 � s2. We de�ne C by

C(y1; y2) = �c� (y1 � y2):(8.10)

Substituting this into equation 8.7 yields

R (x1; t1; x2; t2) =
Z

dy1dy2

Z

s1 >s 2

ds1ds2 � 1(x1; y1; s1)e(s1 � s2 )L C� 2(x2; y2; s2)

+
Z

dy1dy2

Z

s2 >s 1

ds1ds2 � 2(x2; y2; s2)e(s2 � s1 )L C� 1(x1; y1; s1):

By a similar argument for the semi-discretized equation 3.2we havec(s) = e(s� r )L c(r )
for s > r , where L denotes the discretized approximation forL . The L is assumed
to represent a negative semide�nite matrix. The etL denotes the matrix exponential
providing a solution operator for the spatially discretized equations, see [86; 87]. By
the choice of stochastic driving �eld gt in equation 3.10, we have



(c(s1) � �c )(c(s2) � �c )T �

= e(s1 � s2 )L C;(8.11)

for s1 � s2. We de�ne C by

[C]m 1 ;m 2 = �c� m 1 ;m 2 =� xd
m 1

:(8.12)

The � m 1 ;m 2 denotes a Kronecker� -function. In the notation [ �]m 1 ;m 2 denotes the
(m 1; m 2) matrix entry. Substituting this into equation 8.8 yields

~R (x1; t1; x2; t2) =
X

m 1 ;m 2

Z

s1 >s 2

ds1ds2 � 1(x1; ym 1 ; s1) �

�[e(s2 � s1 )L C]m 1 ;m 2 � 2(x2; ym 2 ; s2)� xd
m 1

� xd
m 2

+
X

m 1 ;m 2

Z

s2 >s 1

ds1ds2 � 2(x2; ym 2 ; s2) �

�[e(s2 � s1 )L C]m 1 ;m 2 � 1(x1; ym 1 ; s1)� xd
m 1

� xd
m 2

:

To show convergence it is useful to let

� 1(y ; t) =
Z

e( t � s2 )L C(y; y2)� 2(x2; y2; s2)dy2(8.13)

~� 1(ym ; t) =
X

m 2

[e( t � s2 )L C]m ;m 2 � 2(x2; ym 2 ; s2)� xd
m 2

(8.14)

with similar de�nitions for � 2, ~� 2. From the de�nitions of the operators e( t � s2 )L and
e( t � s2 )L we have that � 1 and ~� 1 solve the following di�erential equations with speci�ed
initial values

�
@�1=@t = L � 1; for t > s 2

� 1(y ; s2) =
R

C(y; y2)� 2(x2; y2; s2)dy2 for t = s2

�
(8.15)
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and
�

d~� 1=dt = L ~� 1; for t > s 2
~� 1(ym ; s2) =

P
m 2

[C]m ;m 2 � 2(x2; ym 2 ; s2)� xd
m 2

; for t = s2

�
:(8.16)

The � 2 and ~� 2 solve similar di�erential equations. Using the speci�c form of C and
C given in equations 8.10 and equation 8.12 we have that� 1(y ; s2) = � 2(x2; y ; s2)
and ~� 1(ym ; s2) = � 2(x2; ym ; s2). From a deterministic convergence theory for the
approximation of L by the discretized operator L for such di�erential equations, we
have

k ~� 1 � � 1k ! 0; as � x ! 0:(8.17)

For � 2 and ~� 2 a similar result is obtained from the deterministic convergence theory.
The di�erence of the covariance functions of the discretized system and continuum

system can be bounded using the triangle inequality by

k ~R � R k � I 1 + I 2 + I 3 + I 4:(8.18)

where

(8.19)

I 1 =












X

m

Z

s1 >s 2

ds1ds2 � 1(x1; ym ; s1)
�

~� 1(x1; ym ; s1) � � 1(x1; ym ; s1)
�

� xd
m












I 2 =












X

m

Z

s2 >s 1

ds1ds2 � 2(x2; ym ; s2)
�

~� 2(x2; ym ; s2) � � 2(x2; ym ; s2)
�

� xd
m












I 3 =












X

m

Z

s2 >s 1

ds1ds2 � 2(x2; ym ; s2)� 1(x1; ym ; s1)� xd
m

�
Z

dy
Z

s2 >s 1

ds1ds2 � 2(x2; y ; s2)� 1(x1; y ; s1)










I 4 =












X

m

Z

s1 >s 2

ds1ds2 � 1(x1; ym ; s1)� 2(x2; ym ; s2)� xd
m

�
Z

dy
Z

s1 >s 2

ds1ds2 � 1(x1; y ; s1)� 2(x2; y ; s2)








 :

Using properties of the norm, the I 1 term can be bounded by

I 1 �












X

m

Z

s1 >s 2

ds1ds2 j� 1(x1; ym ; s1)j� xd
m

















 ~� 1 � � 1






 :

An important property of this estimate for I 1 is that the �rst term remains bounded
as � x ! 0. This follows since� 1 is compactly supported. Using this fact, we have
I 1 ! 0 from equation 8.17. By a similar argument, we haveI 2 ! 0.

For I 3 we have the �rst term is the Riemann sum approximation of the second
integral term in y, see equation 8.19. Since� 1 is compactly supported this implies
I 3 ! 0. By a similar argument we haveI 4 ! 0.

These arguments establish thatI 1; I 2; I 3; I 4 ! 0 and formally show that

k ~R � R k ! 0:(8.20)



28 P.J. ATZBERGER

This along with convergence of the �rst moments implies

kM (2)
~A 1 ; ~A 2

� M (2)
A 1 ;A 2

k ! 0:(8.21)

Since the random �elds are Gaussian and completely determined by the �rst two mo-
ments this analysis formally establishes that the stochastic numerical methods weakly
converge. An important feature of this form of weak convergence is that the stochastic
methods produce statistics convergent not only for individual observables represented
by A. The stochastic methods are also convergent for any cross-correlation statistics
for observables represented byA1 and A2 which reference the same underlying con-
centration �eld. Using the same basic approach, similar results are expected to hold
for other norms, such as theL 2-norm.

To obtain convergent stochastic numerical methods, the analysis indicates that it
is not only required that the discretization of the di�erent ial operator L be consistent,
but that the discretized system have equilibrium 
uctuatio ns with a covariance struc-
ture C consistent with C of the continuum system. An important issue in practice is
that the equilibrium covariance structure is not discretized independently but rather
arises from the 
uctuations induced by the discretized stochastic driving �eld, as in
equation 3.2. To control the discretization errors introduced in the 
uctuations of
the discretized system as the mesh is re�ned, we utilized a variant of the 
uctuation-
dissipation principle of statistical mechanics, see Section 3. This was used to ensure
that the stochastic numerical methods exhibit equilibrium 
uctuations with the speci-
�ed covariance C, which was chosen to be consistent withC of the continuum system.
This approach is especially important at coarse-re�ned interfaces of multilevel meshes
and cut partition cells of the mesh near the domain boundaries to ensure discretiza-
tions for the stochastic driving �eld yield accurate stochastic numerical methods.

9. Applications. As a demonstration of the developed stochastic numerical
methods, simulation studies are carried out for two applications. The �rst appli-
cation studies the e�ect of 
uctuations in microorganism di rection sensing based on
concentration gradients. The case investigated concerns asingle biological cell which
senses concentration gradients in an environment exhibiting a shallow gradient ob-
scured by 
uctuations. The second application studies 
uctuation-induced pattern
formation in spatially extended systems. A variant of the Gray-Scott chemical re-
actions is considered in a regime where the deterministic reaction-di�usion system
only exhibits a localized stationary pattern. When introdu cing 
uctuations, a rich
collection of patterns emerge over time, in which spotted patterns migrate, combine,
and replicate. In both of the applications, the adaptive features of the stochastic
numerical methods are used to track at high resolution regions where the reactions
are chemically active.

9.1. Modeling the Chemical Reactions. A number of modeling issues arise
for the chemical reactions in the stochastic equations, which are not present in the
deterministic setting. In the deterministic setting, it is usually assumed that the
chemical species are locally well-mixed [103]. This allowsat each point in space for
reactions to be modeled at the mean-�eld level using the sameexpressions as for a
homogeneous reaction chamber. In the stochastic setting the concentration �eld is no
longer well-de�ned pointwise so alternatives must be developed.

A widely used approach is to regularize the concentration �elds over the length
scale of the discretization lattice. This is often done by using in the reaction expression
the point-wise value from the discretized concentration �eld, which corresponds to
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the locally averaged concentration over a partition cell. This has the potential to
cause issues in the convergence of the methods since the rateof reactions may depend
sensitively on the numerical scheme and discretization parameters, such as the discrete
lattice spacing [9; 79; 80; 82{84]. For such methods, spatial discretization parameters
often must be carefully tuned not to be too large or too small relative to the distance
molecules migrate between chemical reactions (reaction mean-free path) to obtain
physically reasonable results [9; 79; 80; 82; 103].

To avoid �ne tuning of the discretization, we introduce addi tional parameters in
our physical models which are independent of the discretization. The parameters are
used in regularization procedures which average the stochastic concentration �eld to
obtain values for use in reaction expressions. Many regularization procedures can
be considered for the stochastic �elds. Ideally, such a procedure would be based on
studies of particle models, dynamic simulations, or analytic reductions of models to
continuum descriptions, such as a Mori-Zwanzig theory [79;81; 95; 96; 98; 99; 103;
105{107]. Here we take a more phenomenological approach.

To model the chemical reactions we use a functional of the following form

F[c](x; t) =
Z

� (x; y ; � (y ; t))dy(9.1)

� (y ; t) =
Z

� (y ; z)c(z; t)dz:(9.2)

The � , � are assumed to be smooth functions which are compactly supported. The
integration used to obtain � has the e�ect of smoothing the concentration �eld over a
length scale`, corresponding to the support of � . The term � uses these regularized
concentration values and determines the rate at which the chemical reactions change
the concentration of each molecular species.

The regularization of solutions of equation 2.1 for use in the functional F can be
conceptually motivated by thinking about a collection of individual molecules which
are distributed in space consistently with the continuum concentration �eld. The
kernels are motivated conceptually by thinking about how the molecules di�usively
migrate and react over time. The change in the spatial distribution of the molecules
and in the type of the molecules ideally would yield the ratesused for the change
in the continuum concentration �eld. From this point of view , the � accounts for
the rate at which molecules of each chemical species are introduced or removed at
location x by the reactions. The � term models the fraction of molecules at location
z which migrate to participate in chemical reactions associated with location y. We
discuss speci�c choices for the kernels in equation 9.1 in the context of applications
in Sections 9.2 and 9.3.

9.2. Microorganism Direction Sensing using Concentration Gradients.
The spatial distribution of chemical species plays a fundamental role in many pro-
cesses in cell biology [1]. The bacteriumEscherichia coli detects gradients in the
concentration of important nutrients in the environment. T he cell uses this informa-
tion to move toward more nutrient rich regions. Individual Dictyostelium discoideum
bacterium cells respond to spatial and temporal features ofconcentration �elds of
signaling molecules, such as cAMP generated by other cells,to coordinate collective
movements which result in the formation of fruiting bodies and spores [60; 61]. In the
development of multicellular organisms, concentration �elds of signaling molecules are
used to determine cell di�erentiation and organization wit hin tissues [1; 100; 113; 114].
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The study of the basic mechanisms by which cells detect localconcentration gradients
and respond is a fundamental part of cell biology.

Features of the external signaling concentration �eld is detected by cells through
the binding of signaling molecules to receptor proteins which reside in the outer cell
membrane. Upon binding, receptor proteins undergo conformational changes which
trigger local chemical reactions which produce products which di�use along the cell
membrane or into the cytoplasm [1; 113; 114]. While many proteins and metabolites
involved in these processes are known, there remain many questions about the partic-
ular interactions and mechanisms by which the external concentration �eld is detected
and generates a cellular response. Currently, this is an active area of experimental
and theoretical research [52; 108; 110{112; 114; 116; 117].

We investigate one mechanism recently proposed for the detection of concentra-
tion gradients [52]. We study the role played by 
uctuations in the external concen-
tration �eld of a signaling chemical species. To appreciatethe possible importance of
concentration 
uctuations, it is illustrative to characte rize the length and time scales
encountered by individual cells. The signaling chemical species in the typical envi-
ronment of a cell can have concentrations ranging from as small as a picomolar (pM)
to as large as molar (M), see [1; 54; 115; 116].

For illustrative purposes, we consider an intermediate concentration of 1mM and
the length scale of a 100nm cubic box. One millemolar corresponds to mM =
10� 3NA =litre = 6 :022� 1023 molecules/m3, where NA is Avogadro's number. On
the length scale of 100nm there is on average only 6:022� 102 molecules per box.
For a rough estimate of the time scale of the 
uctuations we note that typical sig-
naling molecules, such as cAMP, have di�usion coe�cients on the order of 108nm2/s,
see [48]. For a box with edge length̀ = 100nm the amount of time required for a
particle to di�use out of the box is of the order � D = `2=D = 10 � 4s. This provides
a rough estimate of the time scale on which 
uctuations are expected to be corre-
lated. For very shallow concentration gradients, cells areobserved to change course
in chemotaxis on the time scale of seconds or faster. This suggests that concentration

uctuations may play an important role [55]. We show how equations 2.1 { 2.7 and
the proposed numerical methods can be used to investigate the role of 
uctuations in
the concentration of the signaling chemical species.

To model how a cell initially processes a signal detected by membrane receptors,
we consider a system of three basic chemical species which originate and di�use within
the cellular membrane. The chemical species are (i) an activator molecular species
denoted by E, (ii) an inhibitor molecular species denoted by I , and (iii) a reporter
molecular species denoted byQ. The reporter speciesQ is meant to account for
how the receptor binding events result in an internal chemical signal which feeds into
further cellular reactions. The internal chemical signal could take the form of chemical
products within the cell membrane or cytoplasm. The internal chemical could signal
cell motility through local activation of actin polymeriza tion, cell polarization, or
calcium release from local bu�ers / internal stores [1; 52; 114; 116].

In our model, we consider each of the molecular species as being in one of two
possible forms: active or inactive, which are denoted byP � and P, respectively. Tran-
sitions between inactive and active can occur, for example,through phosphorylation
or methylation of the individual proteins. We generically r efer to this as the pro-
duction of the active species or deactivation of the active species. In the model, we
posit that the cell processes the external signal to form thereporter products Q by
two competing processes. The �rst involves increases in theconcentration of species
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Fig. 9.1 . Microorganism Direction Sensing based on Concentration Gr adients: Basic mecha-
nism by which a single cells senses an environmental concent ration gradient through receptor binding
of an external chemical species (top left). Chemical signal s generated within the cell from bound re-
ceptors to indicate the direction of the gradient (top right ). The adaptive multilevel mesh which
is used to spatially discretize the system on the domain exte rior to the cell and between two walls
of apparatus which control the concentration of external si gnaling molecules (lower left). A more
detailed view of the adaptive multilevel mesh showing the in crease of resolution near the surface of
the cell where there are curved boundaries (lower right). Pe riodic boundary conditions are imposed
on the upper and lower boundaries of the domain. Dirichlet bo undary conditions are imposed on the
left and right boundaries of the domain.

E which increases the local production of the active reporterspeciesQ� ! Q. The
second involves increases in the concentration of speciesI which increases the local
deactivation of the reporter speciesQ ! Q� . The external concentration �eld in-

uences these processes through the receptor binding events which locally produce
active species ofE and I . More precisely, the model for the chemical species inside
the biological cell is given by the following system of reaction-di�usion equations

@E
@t

= DE � E � � deE + � re S(9.3)

@I
@t

= D I � I � � di I + � ri S(9.4)

@Q
@t

= DQ � Q + � qeE(QT � Q) � � qi IQ:(9.5)

The total concentration of the reporter species is denoted by QT = Q� + Q. The
S denotes the local concentration of the external signaling chemical species which is
bound to membrane receptors. The biological cell is modeledspatially as a domain
having the geometry of a disk of radiusR. The cell membrane corresponds to the circle
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Fig. 9.2 . Simulation Results for the Gradient Sensing Model. The mean concentration �elds
are plotted by the symbol � along with estimated error bars corresponding to three stan dard devia-
tions. For clarity, the concentration levels are scaled by t he maximum mean concentration value for
each chemical species. The receptor activation level has a s hallow concentration gradient obscured
by 
uctuations, see upper left. This had maximum mean concen tration of 1:5mM. The inhibitor
responds slowly to external signals and acts to �lter out 
uc tuations, see bottom left. This had max-
imum mean concentration of 1:5mM. The activator chemical species responds quickly to exte rnal
signals and exhibits signi�cant 
uctuations, see bottom ri ght. This had maximum mean concentra-
tion of 1:5mM. The concentration pro�le of the reporter chemical speci es which di�uses in the cell
membrane yields a robust signal, see top right. The maximum m ean concentration was 9:3mM. The
combination of slow inhibitor and fast activator acts to yie ld a �ltered signal which robustly indicates
the gradient direction.

of radius R, see Figure 9.1. The equations 9.3 - 9.5 should be consideredto reside on
this circular membrane with periodic boundary conditions. Three dimensional models
can also be considered using an approach similar to what we present.

The external concentration �eld c(x; t) is obtained as the solution of

@c
@t

= DC � c + �(9.6)

h� (x; t)� (x0; t0)i = � 2DC � � (x � x0)� (t � t0):(9.7)

For the speci�c choice of di�usivity tensor D = DC I , this is equation 2.1. The
concentration equation is solved on the domain exterior to the disk of radiusR of the
biological cell and between two walls of experimental apparatus which maintain a �xed
level of concentration. To model no-
ux of the signaling molecule into the biological
cell, Neumann conditions are imposed on the boundary of the disk. To model the
constant level of concentration maintained at each of the walls, Dirichlet conditions
are imposed. The Dirichlet conditions are used to generate aconcentration gradient
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by imposing di�erent concentration levels at each of the walls. For the remaining
top and bottom boundaries of the spatial domain, periodic boundary conditions are
imposed. To capture the geometry of the domain for the solution we use a mesh
which is both adaptive in space and includes cut-cells near the curved surface of the
biological cell, see Figure 9.1. More complex geometries intwo and three dimensions
can also be considered with a fairly straight-forward extension of the methodology
proposed here.

An interesting feature of the model is the explicit representation of the external
concentration �eld and its solution for the given geometry of the cell. In many models
in the literature a linear gradient is imposed for use in the internal chemical kinetics
of the cell. We �nd by solving the deterministic equations that the concentration
gradient is in fact non-linear when taking into account the no-
ux boundary conditions
and cellular geometry. The geometry enhances at the cell surface the largest and
smallest concentrations, which serves to amplify locally the concentration di�erences
induced by the conditions at the walls. This often overlooked feature could have
important implications for the behaviors of models used forinterpreting experimental
data.

The external concentration �eld in
uences the production r ates of internal chem-
ical species by receptor binding events. The receptor binding events are modeled at a
coarse level by considering the local number of molecules which are in the vicinity of
a receptor cluster. In the model we use a �nite number of receptor clusters indexed
by i and located at x i . The number of moleculesni in the vicinity of the i th cluster
is obtain from the external concentration �eld by

ni =
Z

�( jx � x i j)c(x; t)dx:(9.8)

The kernel is de�ned by �( r ) = 1 for r < a and zero otherwise. For the number of
molecules bound to thei th receptor cluster, we use the number density �eld

Si (x; t) = �n i � (x � x i ):(9.9)

The parameter � accounts for the fraction of molecules in the vicinity of the cluster
which are bound to a receptor. For the concentration �eld of all signaling molecules
bound to the receptors, we use

S(x; t) =
X

i

Si (x; t):(9.10)

This concentration �eld S plays an important role in the model by activating the
excitatory chemical species at the rate� re S and activating the inhibitory chemical
species at rate� ri S, see equation 9.3.

We investigate the e�ect of 
uctuations on the cells ability to detect an external
concentration gradient. We consider the case where the external concentration gra-
dient is small relative to the magnitude of the relevant 
uct uations. To parameterize
appropriately the model for this physical regime, we use kinetic rates and di�usion
coe�cients on the same order of magnitude as rates found in the experimental and
theoretical cell biology literature [47{55; 57]. A summary of our speci�c choice of
parameters can be found in Table 9.2.

The external signaling molecules are taken to have di�usioncoe�cients on the
order of 108nm2s� 1. This choice was made since the signaling molecule cAMP is
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Table 9.1
Cell Gradient Sensing Model: Description of the Parameters

Parameter Description
R Radius of the disk shaped cell.
DC Di�usion coe�cient of external signaling chemical species.
a Receptor sensor associated length scale.
DE Di�usion coe�cient of excitatory chemical species.
� re Rate of receptor initiated activation of excitatory chemical species.
� de Rate of degradation/deactivation of excitatory chemical species.
D I Di�usion coe�cient of inhibitory chemical species.
� ri Rate of receptor initiated activation of inhibitory chemic al species.
� di Rate of degradation/deactivation of inhibitory chemical species.
QT Total concentration of reporter chemical species.
DQ Di�usion coe�cient of reporter chemical species.
� qe Rate of production of active reporter aided

by the excitatory chemical species.
� qi Rate of degradation/deactivation of active reporter

aided by the inhibitory chemical species.

Table 9.2
Cell Gradient Sensing Model: Values of the Parameters

Parameter Description
R 2 � 104 nm.
DC 108 nm2s� 1.
a 100 nm.
DE 106 nm2s� 1.
� re 104 s� 1.
� de 104 s� 1.
D I 5 � 107nm2s� 1.
� ri 1 s� 1.
� di 1 s� 1.
QT 100 mM.
DQ 106 nm2s� 1.
� qe 10� 1 mM � 1s� 1.
� qi 1 mM� 1s� 1.

reported to have a di�usion coe�cient of 2 :7 � 0:2 108 nm2s� 1, see [48]. We use
di�usion coe�cients for molecules di�using inside of the ce ll in the reported range
105 nm2s� 1 { 107 nm2s� 1, see [49; 50]. Concerning the overall time scales associated
with cell gradient sensing, it is observed that cells are able to respond to changes in
the external concentration �eld on the order of seconds [52;60]. The rates of the
�rst order rates in the biochemical chemical reactions are taken to range from 1s� 1 {
104s� 1. The rates of the second order rates in the biochemical chemical reactions are
taken to range from
10� 1 mM � 1s� 1 { 1 mM � 1s� 1.

Simulations of the cell gradient sensing mechanism were carried out by using the
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introduced stochastic numerical methods. A time step of 2:5� 10� 5s was used and the
model was simulated for 1:6� 106 time steps corresponding to a physical time scale of
40s. For the proposed gradient sensing mechanism, it was found that directions can
be reliably detected even when subject to signi�cant concentration 
uctuations in the
external signaling chemical species. The robustness of thebasic mechanism hinges on
the reporter chemical species reaching a steady-state concentration on times scales
long relative to the correlation time scale of the 
uctuatio ns. The slow response of
the inhibitor and reporter act to �lter out many of the 
uctua tions of the external
concentration �eld. This has the e�ect of yielding a mean signal which reliably indi-
cates the direction of the gradient. The simulation results for the 
uctuations of the
signaling and intracellular chemical species are reportedin Figure 9.2.

9.3. Fluctuation Induced Pattern Formation in Spatially Ex tended Sys-
tems. Spatial patterns emerge in many deterministic reaction-di�usion systems. A
widely studied mechanism is the Turing instability. In the T uring instability, the dif-
fusion of the chemical species act in concert with the chemical reactions to destabilize
the spatially homogeneous steady-state [73]. In the deterministic case of only two
chemical species, the Turing instability requires the reactions to include both posi-
tive and negative feedback in the rates of production of the chemical species [75; 76].
We consider a related mechanism by which patterns can be induced in spatially ex-
tended systems. Instead of the mean di�usive concentration
ux acting alone with
the reactions to induce the formation of patterns, we discuss a parameter regime in
which the 
uctuations serve to destabilize a linearly stable steady-state. We consider
parameters for which the deterministic system settles intoa stable steady-state while
the stochastic system exhibits a rich collection of spatialpatterns which continually
grows over time.

We consider a reaction-di�usion system with chemical reactions which are a vari-
ant of the Gray-Scott reactions [90; 91]. Using equation 2.1, the reaction-di�usion
equations can be expressed as

@u
@t

= D1� u + f [u; v] + � 1(9.11)

@v
@t

= D2� v + g[u; v] + � 2(9.12)

where � 1, � 2 account for the concentration 
uctuations and are Gaussian random
�elds with mean zero and covariance

h� 1(x; t)� 1(x0; t0)i = � 2�uD 1� x � (x � x0)� (t � t0)(9.13)

h� 2(x; t)� 2(x0; t0)i = � 2�vD2� x � (x � x0)� (t � t0)(9.14)

h� 1(x; t)� 2(x0; t0)i = 0 :(9.15)

This corresponds to the choice of the di�usion tensor with block diagonal matrices
D1I and D2I in equation 2.1. The I denotes the identity matrix. The D1, D2

denote the scalar isotropic di�usion coe�cients of the chemical species. The chemical
reactions of the molecular species are accounted for by the functionals f , g. In the
reaction-di�usion system the concentrations of the chemical species are chosen to be
nearly homogeneous with only small variations in space. Forthis purpose, we use a
variant of the Gray-Scott reactions which we express as cubics of the form

f [u; v](x; t) = � 6nu n2
v + � 5n2

u + � 4n2
v + � 3nu nv + � 2nu + � 1nv + � 0(9.16)

g[u; v](x; t) = � 6nu n2
v + � 5n2

u + � 4n2
v + � 3nu nv + � 2nu + � 1nv + � 0:(9.17)
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Fig. 9.3 . Phase Portrait of the Local Dynamics Associated with the Che mical Reactions. There
is one stable steady-state at u = 1 :0; v = 1 :1. Shown in the inset is the region of phase space where
the nullclines pass in close proximity, 1:03 < u < 1:07.

Table 9.3
Reaction-Di�usion System: Values of the Parameters

Parameter Description
[� 0; � 1; � 2; � 3; � 4; � 5; � 6] [1:100605; � 2:2; � 1:10055; 2:2; 1:1; 0:0; � 1:1]� 106:
[� 0; � 1; � 2; � 3; � 4; � 5; � 6] [� 0:998845; 1:998845; 1:0; � 2:0; � 1:0; 0:0; 1:0] � 106:
Du 5:5 � 103:
D v 5:0 � 103:
L 5:632� 102.
�u 1.1.
�v 1.0.

To determine the local number of molecules which participate in reactions, we use a
regularization of the form discussed in Section 9.1

nu (x; t) =
Z

�( y � x)u(y ; t)dy(9.18)

nv (x; t) =
Z

�( y � x)v(y ; t)dy :(9.19)

The kernel is �( z) = (1 =2�� 2) exp
�
�j zj2=2� 2

�
. This provides a regularization of the

concentration �eld over the length scale � for use in the reactions expressions. To
obtain a discrete approximation on the multilevel mesh to the integrals in equations
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Fig. 9.4 . Reaction-Di�usion System in the Deterministic Case

9.18 { 9.19, we use

~nu; m =
X

m

~� m ;n cm � ym(9.20)

~� m ;n =
1

Zm
�( xm � xn )� xd

n(9.21)

Zm =
X

n

�( xm � xn )� xd
n :(9.22)

We use a similar de�nition for ~nv;m . The Zm normalizes the discretized kernel so the
sum of the kernel over the mesh evaluates to one. As the mesh isre�ned � x ! 0,
it follows that Zm ! 1, ~nu; m ! nu , and ~nv;m ! nv . This ensures as the mesh is
re�ned a well-de�ned limit is obtained for the reaction expr essions.

To study the model in a regime in which the concentrations of the chemical
species are nearly homogeneous and exhibit interesting dynamics we use the parameter
values in Table 9.3. For the chemical reactions there is an associated non-spatial two
dimensional dynamical system de�ned byf; g . The phase portrait of this dynamical
system is given in Figure 9.3. For the choice of parameters, the system has dynamics
in which there is only one stable steady-state atnu = 1 :1; nv = 1 :0.

To study a possible mechanism by which 
uctuations can induce patterns, we
choose parameters so that the phase space exhibits some special features. In the
phase space there is a region in which two nullclines pass in close proximity. This
indicates the chosen parameters are close to a bifurcation [118]. Given this proximity
of the nullclines, even relatively small perturbations to the dynamical system can
cause a crossing of the nullclines. Such back and fourth switching has the potential
to destabilize the steady-state, which is the mechanism we consider, see Figure 9.3.

In the reaction-di�usion system, the dynamical system associated with the chem-
ical reactions can be associated with the local dynamics of the system. The di�usion
of chemical species acts to couple laterally these local dynamical systems. Perturba-
tions are introduced in the local dynamics through the concentration 
uctuations. To
investigate the behavior of the reaction-di�usion system when subject to 
uctuations,
we use the developed stochastic numerical methods to approximate equation 9.11. To



38 P.J. ATZBERGER

Fig. 9.5 . Reaction-Di�usion System with Concentration Fluctuation s. The 
uctuations induce
a rich spatial pattern of spots which replicate, migrate, an d merge. Shown is the concentration �eld
of u for the time steps 103 , 104 , 4 � 104 , 7 � 104 , where � t = 0 :1. It is found that the spatial
patterns grow to �ll the entire domain. Periodic boundary co nditions are imposed at the domain
boundaries. For re�nement, a threshold is set for the concen tration of v in a localize region. The
re�nement is triggered when v is found above the threshold.

track regions in which the chemical reactions are most active, an adaptive mesh is
introduced which re�nes the mesh for any concentration ofv above a critical threshold.

In the simulations an initial perturbation is introduced in to the system in which
a small square region centered at the origin of edge length 17:6 is set to u = 1 :07; v =
1:03. The concentrations are set elsewhere to beu = 1 :1; v = 1 :0. This initial
perturbation is introduced to avoid having to simulate 
uct uations over a potentially
long period of time to observe a \nucleating event", which breaks su�ciently the
translational symmetry of the homogeneous state. While spontaneous realization
of con�gurations similar to the initial perturbation are li kely rare, they do have a
non-zero probability of occurring in the 
uctuating stocha stic system. To ensure the
initial perturbation alone is not responsible for the observed results, simulations were
performed in the absence of 
uctuations. For the deterministic system, it was found



SPATIALLY ADAPTIVE METHODS FOR REACTION DIFFUSION SYSTEMS 39

that a simple symmetric pattern of only four spots is obtained and appears to be
stable, see Figure 9.4.

To investigate the reaction-di�usion system with 
uctuati ons, simulations were
performed using the developed stochastic numerical methods. Using the same initial
conditions as in the deterministic case, it is found that a rich collection of patterns
emerge. The pattern takes the form of spots which continually grow, migrate and
replicate, see Figure 9.5. Movies of the full evolution process of the emerging pattern
can be found on-line [109]. The simulation results show that
uctuations have the
potential to induce the formation of interesting patterns i n spatially extended systems.
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10. Conclusions. Stochastic Partial Di�erential Equations (SPDEs) were in-
troduced for modeling concentration 
uctuations in reacti on di�usion-systems. The
SPDEs account for 
uctuations arising primarily from the �n ite number of molecules
which undergo di�usive migrations as opposed to arising from the chemical reac-
tions. For numerical approximation of the non-classical solutions of the SPDEs a
discretization approach was introduced. The discretizations for the stochastic driv-
ing �elds were derived by controlling errors in how the equilibrium 
uctuations of
the discrete system approximate those of the continuum system. For the discretized
stochastic driving �elds, algorithms were developed for the e�cient generation of ran-
dom variates with the required covariance structure. Stochastic numerical methods
were developed and demonstrated for discretizations on meshes with multiple levels
of resolution and on domains having curved boundaries. The approaches introduced
for the derivation of discretizations for the SPDEs and for the development of the
stochastic numerical methods are expected to be widely applicable in the study of
spatially extended stochastic systems.
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