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Abstract. In this paper a direct correspondence is made between the effective stochastic dy-
namics of elastic structures of an Immersed Boundary Method incorporating thermal fluctuations
and Stokesian-Brownian Dynamics. The correspondence is made in the limit of small Reynolds num-
ber, in which the fluid relaxes rapidly on the time scale of the motion of the immersed structures, by
performing an averaging procedure directly on the stochastic equations of the Immersed Boundary
Method. It is found that there is agreement with Stokesian-Brownian Dynamics for the far-field
hydrodynamic interactions and that a fluctuation-dissipation relation is satisfied for the stochastic
fluctuations of the effective equations.
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1. Introduction. In Stokesian-Brownian Dynamics (3; 6) elastic structures im-
mersed in a fluid are modeled by discretization into a set of interacting particles which
evolve according to effective stochastic equations. The effective equations are obtained
by eliminating the fluid degrees of freedom by making a steady-state approximation
in which it is assumed that the fluid relaxes rapidly given the forces impinging on the
fluid for the instantaneous configuration of the particles (3; 6).

In the Immersed Boundary Method (17) both the particle and fluid degrees of
freedom are dynamically modeled. A feature of the Immersed Boundary Method
distinguishing it from other hydrodynamic models is the simple manner in which
fluid-particle coupling is handled. The hydrodynamic equations in the Immersed
Boundary Method can be viewed as conservation equations for the momentum of both
the fluid body and particles in a Eulerian reference frame. In the Immersed Boundary
Method a weight function δa, which integrates to one, is used to assign momentum
to an immersed structure and to transmit forces acting on a structure to the fluid.
Given this difference with hydrodynamic models in which stresses at the structures’
interface are used to couple the fluid and structures, an important question for the
Immersed Boundary Method incorporating thermal fluctuations (1; 14) is whether or
not in the limit of small Reynolds number and fast relaxation of the fluid the effective
stochastic equations for the immersed structure degrees of freedom are consistent
with the hydrodynamic effects captured by other methods such as Stokesian-Brownian
Dynamics.

In previous work (13), a correspondence was established using a rigorous, but
somewhat abstract, stochastic mode reduction procedure (10) on the Kolomogorov-
Backward equations (16) associated with an Immersed Boundary Method incorporat-
ing thermal fluctuations. It was remarked in this work that the effective stochastic
equations are not obvious from the primitive equations due to the nature of the simul-
taneous fluid and structure dynamics. In this work we show how a more direct, but

∗Department of Mathematical Sciences, Rensselaer Polytechnic Institute.
†Address: Rensselaer Polytechnic Institute; 308 Amos Eaton Hall; Troy, NY 12180; E-mail:

atzberg@rpi.edu; Phone: 518 - 258 - 3128; Fax: 518 - 276 - 4824.
‡Supported by NSF VIGRE postdoctoral fellowship under research grant DMS - 9983646.

1



2 P. ATZBERGER

less rigorous, approach can be taken working directly with the primitive stochastic
equations.

In Section 2, we discuss an Immersed Boundary Method which incorporates ther-
mal fluctuations (1; 14). A correspondence between the Immersed Boundary Method
and Stokesian-Brownian Dynamics is made in Section 3. The effective stochastic
equations for multiple particles is then derived in Section 3.1. We then discuss in
Section 3.1 the hydrodynamic coupling matrix derived for particles represented in the
Immersed Boundary Method and show that a fluctuation-dissipation relation holds
for the correlations of the effective thermal fluctuations and the hydrodynamic cou-
pling. In Section 3.2 we discuss the effective stochastic equations for a single particle
and show that the fluctuation-dissipation relation reduces to the classical Einstein
relation (5), provided the friction coefficient of a particle is defined appropriately.
The Smoluchowsky dynamics (20) of a single Brownian particle is also shown to be
recovered.

2. The Immersed Boundary Method Incorporating Thermal Fluctua-

tions. For microscopic systems on the order of tens of microns or smaller where the
structures undergoing Brownian motion are immersed in water at room temperature,
the Reynolds number is very small. This allows in the Navier-Stokes equations for the
nonlinear advection term to be neglected, but not the derivative in time, which can
not be dropped as a consequence of the fast time scales associated with the thermal
fluctuations of the fluid. In this regime the hydrodynamics can be modeled by the
stochastically forced Stokes equations (2; 7; 8):

ρ
∂u(x, t)

∂t
= µ∆u(x, t) −∇p + fprt(x, t) + fthm(x, t)(2.1)

∇ · u = 0,(2.2)

where p is the pressure arising from the incompressibility constraint, ρ is the fluid
density, µ is the dynamic viscosity, and fprt, fthm are force densities which model the
particle forces and thermal fluctuations of the fluid, respectively. The details of the
particle force fprt and thermal force fthm will be discussed below. We shall consider
the fluid equations in three dimensions on a cubic domain Λ having sides L with
periodic boundary conditions.

In the Immersed Boundary Method the immersed structures are represented by
a discretization into a finite number of interacting “elementary particles”. A particle
of size a immersed in the fluid is modeled by a Lagrangian coordinate X(t) with
the fluid-particle coupling handled by treating the particle as part of the fluid body.
In particular, the Stokes equation are viewed as conservation equations for the total
momentum of both the fluid and particles. The momentum associated with a particle
is obtained by averaging the fluid momentum in the vicinity of the particle position
X(t). The following equation of motion is used to model the particle dynamics (17):

dX(t)

dt
= U(X(t), t)(2.3)

with U defined by:

U(x, t) :=

∫

Λ

δa(y − x)u(y, t)dy(2.4)

where δa is a weight function which integrates to one (17) and Λ denotes the periodic.



IMMERSED BOUNDARY METHOD / STOKESIAN-BROWNIAN DYNAMICS 3

To account for the forces that act on the particles the following force density is
used:

fprt(x, t) =
∑

j

F[j](t)δa(x − X[j](t)).(2.5)

The fluid-particle coupling equations 2.3 - 2.5 has been demonstrated to be an effective
approach in modeling many biological systems, see (11; 12; 17).

The Fourier transform of the Stokes equations 2.1 and 2.2 give:

dûk

dt
= −αkûk + ρ−1℘⊥

k
f̂prt,k + ρ−1℘⊥

k
f̂thm,k(2.6)

ĝk · ûk = 0,(2.7)

where

αk :=
4π2µ

ρL2
|k|2(2.8)

ĝk :=
2πk

L
.(2.9)

The projection operator which enforces incompressibility (4) is defined by:

℘⊥
k

:=

(

I − ĝkĝ
T
k

|ĝk|2
)

.(2.10)

In the case that ĝk = 0 the incompressibility constraint becomes trivial and we define
℘⊥

k
= I.
The requirement that the Fourier coefficients represent a real-valued velocity field

gives the extra constraint:

û−k = ûk.(2.11)

To model thermal fluctuations of the system the thermal force is given by Fourier
modes proportional formally to “white noise” (16):

f̂thm, k(t) =
√

2Dk

dB̃k(t)

dt
(2.12)

where the factors B̃k are independent complex-valued Brownian motions (16). To
ensure the thermal forcing is real-valued the following constraint is imposed:

dB̃−k = dB̃k.(2.13)

The coefficients Dk were derived in (1) and satisfy the following fluctuation-dissipation
relation (15; 19):

Dk =
kBT

2ρL3
αk.(2.14)

This gives the following formal representation of the thermal force density:

fthm(x, t) =
∑

k

√

2Dk

dB̃k(t)

dt
exp (i2πk · x).(2.15)
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3. Correspondence with Stokesian-Brownian Dynamics. In Stokesian-
Brownian Dynamics (3; 6), the fluid is eliminated by a steady-state approximation and
the elastic structures are modeled by discretization into a set of interacting particles
with stochastic dynamics of the form:

dX(t) = H̃F(X(t))dt + C̃dB(t)(3.1)

where for M particles X,F,B ∈ R
3M and H̃, C̃ ∈ R

3M×3M . The term X(t) denotes
the composite vector of particle positions, F denotes the composite vector of forces
acting on the particles, and B(t) denotes the vector-valued stochastic process which
in each component is an independent real-valued Brownian motion (16). The term H̃
is a positive definite matrix and models the hydrodynamic coupling of the particles
(3; 6). The term C̃ corresponds to the correlations of the effective thermal forces

acting on the particles and for a given temperature T is defined as C̃ =
√

2kBT · H̃ ,
where kB is Boltzmann’s constant (7; 19).

3.1. The Effective Stochastic Dynamics of Multiple Particles. We shall
now consider the effective stochastic equations for the immersed structures as repre-
sented by the elementary particles and force interactions in the Immersed Boundary
Method with thermal fluctuations. We shall obtain the effective equations in the small
Reynolds number limit in which the hydrodynamic dynamics relax rapidly on the time
scales associated with the motion of the structures. The hydrodynamic equations 2.6
and 2.7 can be rewritten in terms of the following integral equation:

ûk(t) = ρ−1

∫ t

−∞

e−αk(t−s)℘⊥
k F̂k({X[j](s)}, s)ds(3.2)

+
√

2Dk

∫ t

−∞

e−αk(t−s)℘⊥
k dB̃k(s).

This expression is obtained by an analogue of the method of integrating factors in
Ito Calculus (16). The last term is obtained from the representation of the thermal
forcing f̂thm,k in 2.12 with integration to be interpreted in the sense of an Ito Integral

(16). In the notation, the jth elementary particle is denoted by X[j] with {X[j]}
denoting the collection of all particle positions and F̂k is used as short-hand for the
Fourier transform of the particle force f̂prt,k.

This leads to a natural decomposition of ûk into a part containing the drift of
the dynamics and a part which is drift-free. We make the following definition for the
drift term:

v̂k(t) = ρ−1

∫ t

−∞

e−αk(t−s)℘⊥
k
F̂k({X[j](s)}, s)ds(3.3)

and the following definition for the drift-free term:

ŵk(t) =
√

2Dk

∫ t

−∞

e−αk(t−s)℘⊥
k dB̃k(s).(3.4)

In addition, we make the definitions:

v(x, t) =
∑

k

v̂k(t) exp (i2πk · x)(3.5)
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and

w(x, t) =
∑

k

ŵk(t) exp (i2πk · x) .(3.6)

To decompose over the time interval [0, t] the contributions of the drift and drift-
free parts to the elementary particle displacement we make the following definitions:

X̄[ℓ](t) − X[ℓ](0) =

∫ t

0

∫

Ω

δa(y − X[ℓ](s))v(y, s)dyds(3.7)

and

X̂[ℓ](t) − X[ℓ](0) =

∫ t

0

∫

Ω

δa(y − X[ℓ](s))w(y, s)dyds(3.8)

where on the right hand side and at time 0 the full particle displacement is used.
To derive the effective stochastic equations for the structures we shall eliminate

the fluid degrees of freedom by taking the limit in which the fluid rapidly relaxes
to a statistical steady-state for the current forces acting on the fluid induced by the
instantaneous configuration of the particles. For a physical system in which the fluid
is undergoing Stokes flow it follows from 3.2 that the time scale on which the fluid
relaxes to statistical steady-state for the kth mode is τk = 1/αk provided that k 6= 0.
We shall denote the longest relaxation time scale by τfld = max{τk}. For the system
with periodic boundary conditions this time scale is given by τfld = ρL2/4π2µ.

For an individual physical particle in a fluid with Stokes flow the time scale on
which a particle moves a displacement comparable to its size a is τprt = min{a2/D, aγ/F},
where γ ≈ 6πµa denotes the friction coefficient of the particle, D ≈ KBT

γ
denotes the

diffusion coefficient of the particle, and F denotes the force acting directly on the
particle. Considering the low Reynolds number limit in which µ → ∞, holding all
other non-derived physical parameters fixed, we have αk → ∞ uniformly for all modes
k 6= 0, γ → ∞, and D → 0. Consequently, τfld → 0 while τprt → ∞ and there is a
separation of time scales indicated for the physical system between the motion of the
structures and the relaxation of the fluid.

To determine the drift of the effective stochastic equation for a given configuration
of the elementary particles X(0) we shall take the following limit and define H :
R

3M → R
3M by its action on arbitrary F:

HF := lim
∆t → 0, µ → ∞

µ∆t → ∞

〈X̄(∆t) − X̄(0)〉
∆t

.(3.9)

In the notation, X̄ denotes the composite vector or all displacements of the elementary
particles as defined in 3.7.

To determine the strength of the thermal fluctuations in the effective equations
for a given configuration of the elementary particles X(0) we shall take the following
limit and define Γ : R

3M → R
3M by:

Γ := lim
∆t → 0, µ → ∞

µ∆t → ∞

〈

(X̂(∆t) − X̂(0))(X̂(∆t) − X̂(0))T

〉

∆t
.(3.10)

In the notation, X̂ denotes the composite vector of all displacements of the elementary
particles as defined in 3.8.
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We now compute each of these terms directly from the primitive stochastic equa-
tions of the immersed boundary method. In the limit αk → ∞ the drift term can be
computed using the following quasi-steady-state approximation which follows directly
from 2.6 and 3.3:

v̂k(s) ≈ ρ−1℘⊥
k
F̂k({X[j]}, s)

αk

.(3.11)

The factors F̂k are the Fourier coefficients of the elementary particle force density
acting on the fluid given by:

F̂k =
∑

j

F[j]δ̂a,k(X[j]).(3.12)

The short-hand notation δ̂a,k(X[j]) denotes the Fourier coefficient in x of the function
δa(x−X[j]) and includes the phase factor arising from the shift of δa from the origin.

Using 3.11 the contribution of the drift term to the particle displacement, as
defined in 3.7, can be expressed as:

(3.13)

X̄[ℓ](∆t)−X[ℓ](0)

=

∫ ∆t

0

∫

Ω

δa(y − X[ℓ](s))
∑

k

∑

j

ρ−1℘⊥
k
F[j]δ̂a,k(X[j])L3

αkL3
exp (i2πk · y) dyds

=
∑

j

∫

Ω

∫

Ω

∫ ∆t

0

δa(y − X[ℓ](s))δa(y − X[j](s))Q[j](y − y′, s)dsdydy′

where

Q[j](z, s) :=
∑

k

ρ−1℘⊥
k
F[j](s)

αkL3
exp (i2πk · z) .(3.14)

The second equality in 3.13 follows from the Fourier Convolution Theorem.
From 3.13 the limit in 3.9 is computed as:

(3.15)

(HF(t))[ℓ] =
∑

j

∫

Ω

∫

Ω

δa(y − X[ℓ](t))δa(y − X[j](t))Q[j](y − y′, t)dydy′.

From 3.14 it follows that the drift is a linear function of the elementary particle forces.

The entries of the matrix H can be computed by substituting F = e
[ℓ′]
q′ for the force.

The notation e
[ℓ′]
q′ denotes a composite vector in R

3M where all components are zero

except for the entry corresponding to q′th vector component of the ℓ′th elementary
particle force. In other words, the non-zero entry has index 3ℓ′ + q′ in the composite

vector e
[ℓ′]
q′ .

Making this substitution the entries of H are given by:

(3.16)

H
[ℓ,ℓ′]
q,q′ (s) =

∫

Ω

∫

Ω

δa(y − X[ℓ](s))δa(y′ − X[ℓ′](s))
∑

k

ρ−1
(

℘⊥
k

)

q,q′

αkL3
exp (i2πk · (y − y′)) dydy′
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where
(

℘⊥
k

)

q,q′
denotes the entry corresponding to the qth row and q′th column of the

matrix. The notation H
[ℓ,ℓ′]
q,q′ (s) denotes the entry corresponding with the 3ℓ + q row

and 3ℓ′ + q′ column of the matrix.
We now compute the effective thermal fluctuations of the structures when the

fluid degrees of freedom are eliminated:

〈(

X̂[ℓ]
q (∆t) − X[ℓ]

q (0)
) (

X̂
[ℓ′]
q′ (∆t) − X

[ℓ′]
q′ (0)

)〉

(3.17)

=

〈

∫

Ω

∫ ∆t

0

δa(y − X[ℓ](s))wq(y, s)dsdy·

·
∫

Ω

∫ ∆t

0

δa(y′ − X[ℓ′](s′))wq′ (y′, s′)ds′dy′

〉

.

The notation wq denotes the qth vector component of w. We denote by X̂
[ℓ]
q the 3ℓ+q

vector component of X̂ with the other terms to be interpreted similarly.
To avoid computing the full expectation above we shall assume a separation of

time scales between the time scale of the elementary particle motion and the fluid
dynamics so that τfld ≪ ∆t ≪ τprt. For such ∆t the elementary particles move a
negligible distance relative to their size over the time increment [0, ∆t]. Approximat-
ing the particle position as constant gives:

〈(

X̂[ℓ]
q (∆t) − X[ℓ]

q (0)
) (

X̂
[ℓ′]
q′ (∆t) − X

[ℓ′]
q′ (0)

)〉

(3.18)

≈
∫

Ω

∫

Ω

δa(y − X[ℓ](0))δa(y′ − X[ℓ′](0)) ·

·
∫ ∆t

0

∫ ∆t

0

〈wq(y, s)wq′ (y′, s′)〉 ds′dsdy′dy.

From 3.4 we can express the expectation by:

(3.19)

〈wq(y, s)wq′ (y′, s′)〉

=
∑

k,k′

2Dk

∫ s

−∞

∫ s′

−∞

e−αk(s+s′−r−r′)

〈

℘⊥
k dB̃k(r)

(

℘⊥
k

dB̃k′(r′)
)T
〉

q,q′

ds′ds

where 〈·〉q,q′ denotes the (q, q′) entry of the expectation of the matrix.
From the properties of the complex-valued Brownian motion driving the system

with constraint 2.13 we have:

〈

℘⊥
k

dB̃k(r)
(

℘⊥
k

dB̃k′(r′)
)T
〉

= ℘⊥
k

〈

dB̃k(r)dB̃T
k′(r′)

〉

(

℘⊥
k

)T
(3.20)

= ℘⊥
k 2Iδ(r − r′)δk,k′

(

℘⊥
k

)T

= 2℘⊥
k δ(r − r′)δk,k′

where δ(r − r′) denotes the Dirac δ-function and δk,k′ denotes the Kronecker δ-

function. To obtain the last expression we also use that
(

℘⊥
k

)T
= ℘⊥

k
and

(

℘⊥
k

)2
= ℘⊥

k

which follow from 2.10.
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From this it follows that:

(3.21)

〈wq(y, s)wq′ (y′, s′)〉 =
∑

k

2Dk

αk

(

℘⊥
k

)

q,q′
e−αk|s−s′| exp (i2πk · (y − y′))

and

(3.22)
∫ ∆t

0

∫ ∆t

0

〈wq(y, s)wq′ (y′, s′)〉 ds′ds =
∑

k

4Dk

αk

(

℘⊥
k

)

q,q′

1

αk

(

∆t − 1

αk

(

1 − e−αk∆t
)

)

.

Substituting this into equation 3.18 and taking the limit in 3.10 we obtain:

Γ
[ℓ,ℓ′]
q,q′ = 2kBT

∫

Ω

∫

Ω

δa(y − X[ℓ](0))δa(y′ − X[ℓ′](0)) ·(3.23)

·
∑

k

ρ−1
(

℘⊥
k

)

q,q′

αkL3
exp (i2πk · (y − y′)) dydy′.

From 3.16 and 3.23 it follows that a fluctuation-dissipation relation holds for the
effective equations (15; 19):

Γ
[ℓ,ℓ′]
q,q′ = 2kBT · H [ℓ,ℓ′]

q,q′ .(3.24)

We now discuss the correspondence between the Immersed Boundary Method
and Stokesian-Brownian Dynamics. The equation 3.16 for the hydrodynamic coupling
matrix H can be expressed by computing the Inverse Fourier Transform:

(3.25)

H
[ℓ,ℓ′]
q,q′ (s)

=

∫

Ω

δa(y − X[ℓ](s))

∫

Ω

Tq,q′(y′ − y)δa(y′ − X[ℓ′](s))dy′dy

where

T (r) =
ρ

8πµ|r|

(

I +
rrT

|r|2
)

.(3.26)

From 3.25 the matrix H is symmetric and positive definite so that a matrix C
can be found from 3.24 with:

Γ = CCT .(3.27)

The matrix C can be expressed from 3.24 as:

C =
√

2kBT · H.(3.28)

In practice, C can be found by numerically performing a Cholesky factorization of
H (18).
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The effective stochastic dynamics of the structures in the Immersed Boundary
Method can then be expressed as:

dX(t) = HF(X(t), t)dt +
√

2kBT · HdB(t).(3.29)

From 3.25 we find that the hydrodynamic coupling in the effective elementary
particle dynamics recovers the Oseen tensor T used in Stokesian-Brownian Dynamics
(3; 6) (also referred to as the Green’s function of Stokes equation or the Stokeslet
tensor). A notable difference in how this tensor arises in the Immersed Boundary
Method is that the force is spread out over a region determined by the function δa.
In Stokesian-Brownian Dynamics in which a particle is represented on small scales
with a sharply delineated boundary with the fluid, the forces act on the fluid through
stresses integrated over the surface of the particles (3; 6).

In numerical practice carrying out this integration would be expensive so the
integral is often handled only approximately. A simple approximation often used is
to treat the force acting on the fluid only at a single point at the center of a particle
(3; 6). For small particles which are far apart relative to their size the differences
between the Stokesian-Brownian Dynamics approach and that associated with the
effective dynamics of particles in the Immersed Boundary Method in 3.25 is small.

To deal with particles when they become close in Stokesian-Brownian Dynamics
an additional hydrodynamic lubrication term is often included to capture the effects
of the small scale flow in which the fluid is “squeezed out” from between the rigid
boundaries of the particles as they approach one another (3; 6). In the Immersed
Boundary Method no such near-field lubrication term is explicitly included.

For microscopic biological systems the boundaries of the structures when ap-
proaching molecular length scales are less rigid or sharply delineated with the fluid
than in systems encountered in the engineering applications which originally moti-
vated the Stokesian-Brownian Dynamics approach (3; 6). In some circumstances even
the no-slip boundary condition of a particle may be called into question (9). Thus de-
termining appropriate hydrodynamic lubrication terms in the biological context poses
a number of interesting challenges and is possibly application specific.

The Immersed Boundary Method as a consequence can only be expected to reli-
ably capture hydrodynamic effects at large separation distances between the particles.
These differences show that when particles become close in the Immersed Boundary
Method care must be taken in how the particle dynamics are handled and additional
correction terms may be warranted. To summarize, we find that the effective sto-
chastic dynamics of particles in the Immersed Boundary Method agrees well with
Stokesian-Brownian Dynamics when considering only the far-field hydrodynamic cou-
pling interactions.

3.2. The Effective Stochastic Dynamics of a Single Particle. The effective
dynamics of a single particle can readily be obtained by reduction of the multiple
particle expressions. For the hydrodynamic drift term we have:

(3.30)

H(s) =

∫

Ω

∫

Ω

δa(y − X(s))δa(y′ − X(s))
∑

k

ρ−1℘⊥
k

αkL3
exp (i2πk · (y − y′)) dydy′

and for the correlations of the thermal fluctuations we have:

CCT = 2kBT

∫

Ω

∫

Ω

δa(y − X(0))δa(y′ − X(0)) ·(3.31)



10 P. ATZBERGER

·
∑

k

ρ−1℘⊥
k

αkL3
exp (i2πk · (y − y′)) dydy′.

Using the definition 2.10 and assuming rotational symmetry for δa(z) about the
origin it can be shown that the off-diagonal terms of the matrix H are zero. Moreover,
the diagonal entries can be shown to be equal. This allows for an effective friction
coefficient γ to be defined for the particle:

(3.32)

γ :=

(

∫

Ω

∫

Ω

δa(y − X(s))δa(y′ − X(s))
∑

k

ρ−1
(

℘⊥
k

)

q,q

αkL3
exp (i2πk · (y − y′)) dydy′

)−1

.

We remark that this definition is independent of both the index (q, q) used for the
diagonal entry and the particle location X(s).

From 3.28 and 3.32 we have that:

C =
√

2kBT · H(3.33)

=

√

2kBT

γ
I.

In the absence of a particle force the effective stochastic equation 3.29 can be
solved exactly and the diffusion coefficient of the particle is given by:

D =
1

6
trace

(

C2
)

(3.34)

=
kBT

γ
.

This shows that the classical Einstein’s relation (5) for a Brownian particle holds for
a particle modeled by the effective stochastic equations of the Immersed Boundary
Method when the effective friction coefficient is defined by 3.32.

When a force F acts on the particle the drift term can be expressed from 3.30
and 3.32 as:

HF =
1

γ
F.(3.35)

For a single particle the effective stochastic equations, when defining the particle
friction coefficient by 3.32, reduces to classical Smoluchowsky dynamics (20):

dX(t) =
1

γ
Fdt +

√
2DdB(t).(3.36)

4. Conclusion. In this work, a correspondence of an Immersed Boundary Method
incorporating thermal fluctuations was made with Stokesian-Brownian Dynamics by
working directly with the stochastic equations. It was found in the small Reynolds
number limit that the effective stochastic dynamics of structures of the Immersed
Boundary Method are in agreement with Stokesian-Brownian Dynamics with respect
to the far-field hydrodynamic interactions. Further, it was found that the effective
stochastic dynamics obey a fluctuation-dissipation relation which reduces in the case
of a single particle to Einstein’s relation, provided the particle friction coefficient is
defined appropriately. These results indicate that the Immersed Boundary Method in-
corporating thermal fluctuations captures in a physically accurate manner phenomena
associated with the fluctuations of immersed structures in microscopic hydrodynamic
systems.
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