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Abstract. A stochastic numerical scheme for an extended immersed boundary method which
incorporates thermal fluctuations for the simulation of microscopic biological systems consisting
of fluid and immersed elastica was introduced in (1). The numerical scheme uses techniques from
stochastic calculus to overcome stability and accuracy issues associated with standard finite difference
methods. The numerical scheme handles a range of time steps in a unified manner, including time
steps which are greater than the smallest time scales of the system. The time step regimes we
shall investigate can be classified as small, intermediate, or large relative to the time scales of the
fluid dynamics of the system. Small time steps resolve in a computationally explicit manner the
dynamics of all the degrees of freedom of the system. Large time steps resolve in a computationally
explicit manner only the degrees of freedom of the immersed elastica, with the contributions of the
dynamics of the fluid degrees of freedom accounted for in only a statistical manner over a time step.
Intermediate time steps resolve in a computationally explicit manner only some degrees of freedom
of the fluid with the remaining degrees of freedom accounted for statistically over a time step. In
this paper, uniform bounds are established for the strong error of the stochastic numerical method
for each of the time step regimes. The scaling of the numerical error with respect to the parameters
of the method is also given.
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1. Introduction. With experimental advances in optical tweezers, fluorescent
probes, and protein assays, there has been a steady increase in the amount of bio-
chemical, structural, and even mechanical information available for cellular and in-
tracellular processes (4; 26; 37). Integrating this information to formulate models of
biological processes within the cell is challenging given the wide range of active length
and time scales. While molecular dynamics yields insight into the role of individual
molecules and small assemblies (35), understanding complex processes involved in cell
division and motility (3; 14; 34; 39) or in the functioning of organelles such as the golgi
apparatus and endoplasmic reticulum (2) requires modeling on a more coarse-grained
level (8). Which spatial and temporal scales are modeled depends on the mechanisms
being studied. The mechanics of many biological systems to a first approximation
can be thought of in terms of immersed elastic structures which interact with a fluid
(3; 23). The immersed boundary method of (29) has been used to model the mechan-
ics of many macroscopic biological systems such as blood flow in the heart (30), wave
propagation in the cochlea (12), and lift generation in insect flight (25). However, for
cellular and intracellular processes thermal fluctuations also play an important role
(13; 16; 28; 33). An extended immersed boundary method which incorporates thermal
fluctuations for modeling of the elastic mechanics and fluid dynamics of microscopic
biological systems was recently introduced in (1; 18).

The extended immersed boundary method incorporates thermal fluctuations through
appropriate stochastic forcing terms in the fluid equations consistent with the princi-
ples of statistical mechanics. Integrating these equations numerically poses a number
of difficulties arising from fast time scales introduced by the stochastic forcing terms.
This leads to stiffness in the fluid equations, which severely restricts admissible time
steps for standard finite difference methods, such as explicit or implicit Runge-Kutta
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methods (17). To overcome these restrictions, a numerical scheme was devised in (1)
using results from stochastic calculus to avoid a full discretization in time of the fluid
equations, thereby allowing large time steps to be taken.

We shall be concerned here with the accuracy of the proposed stochastic numeri-
cal method. Given the analytic manner in which the dynamics of the fluid is partially
integrated using stochastic calculus, a high level of accuracy can be attained even
for relatively large time steps, provided certain asymptotic conditions are met by the
time step relative to the parameters of the method. This requires that a somewhat
different approach be taken to understand the accuracy of the method than in stan-
dard numerical analysis in which one typically analyzes the limit as the time step is
made small relative to all time scales of the problem (36).

Instead, we shall perform analysis of the numerical method by rigorously estab-
lishing, under a few natural assumptions, general error bounds which hold uniformly
over all time steps. The terms in these bounds will then be further estimated in as-
ymptotic regimes in which the time step is of a size which is small, intermediate, or
large relative to the time scales associated with the dynamics of the fluid degrees of
freedom. This approach allows for the accuracy of the scheme to be understood in a
variety of different parameter regimes depending on the desired mode of operation of
the method and the specific physical system being simulated.

The paper is organized as follows. In Section 2, the extended framework of the
immersed boundary method incorporating thermal fluctuations is introduced along
with a summary of the numerical scheme formulated in (1). Some notational con-
ventions that will be used throughout the paper are then discussed in Section 3. In
Section 4, general error estimates are proved for the numerical method. To investigate
how the errors scale for small, intermediate, and large time steps, further refinements
of the general error estimates are made in Sections 5–7. Finally, in Section 8, the
scaling of the numerical error with respect to the parameters of the method is given.

2. The Immersed Boundary Method with Thermal Fluctuations. In
microscopic biological systems, the Reynolds number is very small and to a good
approximation the fluid dynamics is governed by the Stokes’ equations (22):

ρ
∂u(x, t)

∂t
= µ∆u(x, t) −∇p+ f(x, t)(2.1)

∇ · u = 0(2.2)

where p is the pressure arising from the incompressibility constraint, ρ is the fluid
density, µ is the dynamic viscosity, and f is a force density acting on the fluid. In
the immersed boundary method with thermal fluctuations, the force density has two
components:

f(x, t) = fprt(x, t) + fthm(x, t).(2.3)

The component fthm represents a forcing of the fluid equations which represents
thermal fluctuations of the system. The detailed form of this force will be discuss at
greater length below.

The force density fprt(x, t) arises from forces acting on structures immersed in
the fluid, such as particles, polymers, and membranes. These structures can be rep-
resented in the immersed boundary method through discretization into a finite set of
moving control points which we shall refer to as “elementary particles”. The force
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density has the form:

fprt(x, t) =

M∑

j=1

F[j]({X(t)}) δa(x − X[j](t))(2.4)

where X[j] and F[j] denote respectively the position and force acting on the of the jth

elementary particle. If the forces were, for example, governed by a general potential
function V , then we would have F[j] = −∇X[j]V ({X}). The notation {X(t)} denotes
the composite vector of all particle positions. The factor δa is a weight function
which integrates to one and represents the spatial region occupied by a particle. The
parameter a designates the approximate size of a particle which corresponds to the
region on which δa is non-zero (9; 24).

To update the position of an elementary particle, an interpolation of the fluid
velocity is performed in the vicinity of the particle:

dX[j](t)

dt
=

∫

Λ

δa(x − X[j](t))u(x, t)dx(2.5)

with the integral taken over the entire spatial domain Λ of the fluid.
The equations 2.1 – 2.5 constitute what we refer to as the immersed boundary

method with thermal fluctuations (1). We shall now discuss a spatial discretization
of these equations and the thermal forcing term which, for a given discretization, is
chosen in such a manner as to be consistent with laws of statistical mechanics.

The discretization used for equations 2.1 and 2.2 in space is:

ρ
dum

dt
= µ

3∑

ℓ=1

um−eℓ
(t) − 2um(t) + um+eℓ

(t)

∆x2
(2.6)

−
3∑

ℓ=1

pm+eℓ
− pm−eℓ

2∆x
eℓ + ftotal(xm, t)

3∑

ℓ=1

u
(ℓ)
m+eℓ

(t) − u
(ℓ)
m−eℓ

(t)

2∆x
= 0(2.7)

where eℓ denotes the standard basis vector with all zero entries except for a one in
the ℓth position. The parenthesized superscripts denote the vector component. The
subscripts denote the indices of the lattice points used in the discretization.

The fluid-structure coupling equations 2.4 and 2.5 are discretized by:

fprt(xm, t) =

M∑

j=1

F[j]({X(t)}) δa(xm − X[j](t))(2.8)

dX[j](t)

dt
= U(X[j](t), t)(2.9)

U(x, t) =
∑

m

δa(xm − x)u(xm, t)∆x
3.(2.10)

All quantities with subscript m = (m1,m2,m3) are specified on a cubic lattice
with N points in each direction. We define L as the edge length of the cubic computa-
tional domain, so the spacing between grid points is ∆x = L/N . The position of the
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grid point with index m is denoted by xm. In addition, periodic boundary conditions
are imposed.

To handle the equations numerically, the following Discrete Fourier Transform
(DFT) will be used (5; 31):

ûk =
1

N3

∑

m

um exp (−i2πk · m/N)(2.11)

um =
∑

k

ûk exp (i2πk · m/N)(2.12)

where each of the sums in the above equations runs over any translate of the N3

lattice points defined by 0 ≤ k(ℓ) ≤ N − 1 and 0 ≤ m(ℓ) ≤ N − 1 where ℓ = 1, 2, 3.
Under the discrete Fourier Transform (DFT), the Stokes equation can be ex-

pressed in differential notation as:

dûk = −αk℘
⊥
k
ûkdt+ ρ−1℘⊥

k
f̂prt,kdt+ ρ−1℘⊥

k
f̂thm,kdt(2.13)

where

αk =
2µ

ρ∆x2

3∑

j=1

(1 − cos(2πk(j)/N))).(2.14)

The incompressibility constraint becomes:

ĝk · ûk = 0(2.15)

with

ĝ
(j)
k = sin(2πk(j)/N)/∆x.(2.16)

In 2.13, this constraint is handled by the projection method (6) where the projection
operator in the direction orthogonal to ĝk is denoted by:

℘⊥
k =

(
I − ĝkĝ

T
k

|ĝk|2
)
.(2.17)

For those modes for which ĝk = 0, the projections is defined as ℘⊥
k

= I. The set of
indices on which ĝk = 0 is given by:

K =
{
(k(1),k(2),k(3)) | k(j) = 0 ∨ k(j) = N/2, j = 1, 2, 3

}
.(2.18)

For the above discretization, the thermal forcing was derived in (1) and is given
by:

f̂thm,k(t)dt =
√

2Dk℘
⊥
k
dB̃k(t)(2.19)

where

Dk =

{
kBT
ρL3 αk , k ∈ K
kBT
2ρL3αk , k 6∈ K(2.20)

and B̃k(t) denotes a three dimensional complex-valued stochastic process which in
each real and imaginary component is a standard Brownian motion. In 2.13 and 2.19,
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the use of differential notation is made as is common when working with stochastic
processes to avoid taking derivatives of Brownian motion, which do not exist as a
consequence of the order

√
∆t scaling of increments of B̃(t+∆t)−B̃(t). All stochastic

differential expressions are to be interpreted in the sense of Itô (11; 27).
The requirement that the velocity field of the fluid be real-valued gives the fol-

lowing condition which must be satisfied by solutions of equation 2.13:

ûN−k = ûk,(2.21)

where N is shorthand for (N,N,N)T and the overbar denotes complex conjugation.
Provided the force is real-valued, it can be shown that if this constraint holds for the
initial conditions, then it will be satisfied for all time.

2.1. Summary of the Numerical Method. Each time step the following
operations are performed to advance the velocity field of the fluid and the configuration
of the immersed structures, as represented by the positions of the elementary particles:

1. The forces acting on the elementary particles are computed and the force
density field which is applied to the fluid is obtained from

fn(x) =
N∑

j=1

F[j]({Xn}) δa(x − Xn,[j])(2.22)

The Fourier coefficients f̂n
k

are computed using a discrete Fast Fourier Trans-
form (FFT).

2. The velocity field of the fluid is updated by the stochastic recurrence

ûn+1
k

= e−αk∆tûn
k +

1

ραk

(
1 − e−αk∆t

)
℘⊥

k f̂n
k + ℘⊥

k Ξ̂
n

k(2.23)

where ℘⊥
k

denotes the projection orthogonal to ĝk defined in 2.16 and is

used to enforce the incompressibility constraint 2.15. The factor Ξ̂
n

k
= σkη

k

accounts for potentially rapid fluctuations over the time step. In the notation
η

k
denotes a complex vector-valued random variable independent in k having

independent real and imaginary components, each of which are Gaussian
random variables with mean zero and variance one. The variance of Ξ̂

n

k is
determined in (1) and is given by

σ2
k =

Dk

αk

(1 − exp (−2αk∆t))(2.24)

where αk is defined in 2.14 and Dk is defined in 2.20.
3. The particle positions are updated by

Xn+1,[j] − Xn,[j] =
∑

m

δa(xm − Xn,[j])Γn
m∆x3(2.25)

where Γn
m

is the time integrated velocity field of the fluid. It is obtained by
a discrete Inverse Fast Fourier Transform (IFFT) of appropriately generated

random variables Γ̂n
k

in Fourier space:

Γn
m

=

∫ tn+1

tn

um(s)ds =
∑

k

Γ̂n
k
· exp (i2πk · m/N) .(2.26)
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The Γ̂n
k

are computed from

Γ̂n
k = Ẑk + c1,k℘

⊥
k Ξ̂

n

k + c2,k℘
⊥
k Ĝk(2.27)

where Ξ̂
n

k
is obtained from step 2 and Ẑk is computed from step 1 and 2 by

(2.28)

Ẑk =
1 − exp (−αk∆t)

αk

ûn
k +

(
∆t

αk

+

(
1

αk

)2

(exp (−αk∆t) − 1)

)
ρ−1℘⊥

k f̂n
k .

The random variable Ĝk is computed from scratch for each mode k by gener-
ating a complex vector-valued random variable having independent real and
imaginary components, each of which are Gaussian random variables with
mean zero and variance one. The constants in 2.27 are given by

c1,k =
1

αk

tanh

(
αk∆t

2

)
(2.29)

and

c2,k =

√(
2Dk

α3
k

)(
αk∆t− 2 tanh

(
αk∆t

2

))
(2.30)

In this manner the time integrated velocity field is generated consistently
with the correct correlations with {un

k
} and {un+1

k
} from steps 1 and 2.

This procedure is discussed in greater detail in (1).
The computational complexity of the method, when excluding the application specific
forces acting on the elementary particles, is dominated by the FFT and IFFT which
for a three dimensional lattice requires O(N3 ln(N3)) arithmetic steps.

3. Error Estimates of the Numerical Method. To quantify the accuracy of
the method, the strong error will be considered, following (17). The strong error for
the kth mode of the fluid is defined as:

êfld,k(∆t) := E
(∣∣∣ûk(∆t) − ˆ̃uk(∆t)

∣∣∣
)
.(3.1)

For the velocity field expressed in physical space, the associated strong error is
defined by:

efld(∆t) := E

(
1

L3

∑

m

|um(∆t) − ũm(∆t)|∆x3

)
.(3.2)

The strong error of an elementary particle constituting the immersed structures
is defined by:

eprt(∆t) := E
(∣∣∣X(∆t) − X̃(∆t)

∣∣∣
)
.(3.3)

In the notation, X(t) denotes the exact solution of equation 2.9 for the elementary
particles and ûk(t) denotes the exact solution to equation 2.6 for the Fourier modes of
the velocity field of the fluid. The numerically computed trajectories of the elementary
particles are denoted by X̃(t) and the numerically computed fluid modes are denoted
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by ˜̂uk(t). Since we are interested in analyzing the error incurred only over a time step
we shall assume that the numerically computed particle positions and fluid modes
are the same as the exact solution at the beginning of each time step, which for
convenience will be taken as time 0. The superscript j is dropped throughout the
discussion since we shall be interested in the generic error associated with a typical
elementary particle.

Error estimates will be established rigorously for the strong error of the numerical
method for both the fluid and structural degrees of freedom as defined in 3.1, 3.2, and
3.3 under a few specified assumptions. An important feature of the numerical method
is that depending on the time scales of the problem simulated and the choice of time
step, the dynamics of the fluid can be either resolved in detail or under-resolved with
the contributions of such degrees of freedom handled statistically over a time step (1).

We will always assume here that the structural degrees of freedom are resolved,
so our analysis is most relevant for the situation in which the dynamics of some of the
fluid modes is fast compared to the dynamical time scale of the immersed structures.
This is a rather general situation in microbiology, where the Kubo and Reynolds
numbers are small (19; 20). Unlike standard numerical methods which are typically
analyzed when the time step is taken smaller than all time scales of the problem,
for the stochastic immersed boundary method we shall be interested in analyzing the
error even when the time step is taken larger than some of the time scales of the
problem.

To obtain estimates of the error in the different regimes of the time step, we first
establish general error bounds which hold uniformly for all time steps which resolve
the structural degrees of freedom. This is done in Propositions 4.1 and 4.2. To
obtain more insight into how the error behaves in each of the time step regimes, more
specialized error expressions are derived from the general estimates. The analysis
reveals that there are four natural regimes to consider.

The first regime, which we shall refer to as the small time step regime, occurs
when all time scales of the fluid and immersed structures are explicitly resolved by the
numerical method. The second and third regime, to which we shall refer collectively
as the intermediate time step regimes, occur when some of the fluid modes are under-
resolved while other fluid modes and all structural modes are explicitly resolved. There
are two regimes as a consequence of the fluid-structure coupling 2.8. One regime occurs
when the time step is taken sufficiently small to resolve all of the relevant fluid modes
which contribute to the dynamics of the structures while still under-resolving some
of the fastest modes of the fluid dynamics with high wavenumbers. The other regime
occurs when some, but not all, of the fluid modes which contribute non-negligibly to
the structural dynamics are under-resolved. The fourth time step regime occurs when
all of the fluid modes are under-resolved, and this is referred to as the large time step
regime.

We first derive in Sections 5–7 several bounds for the numerical errors, each
of which are uniformly valid for time steps which resolve the structural degrees of
freedom (but not necessarily the fluid degrees of freedom). In each of the time regimes
described above, one of the rigorous bounds is in fact fairly sharp, and the estimates
are correspondingly organized into sections according to the regime for which they
are best suited. To better elucidate the error incurred by the method in each of the
time step regimes, the scaling of the error estimates with respect to the parameters
of the numerical method are given in Section 8.
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3.1. Notation Used in the Error Analysis. Throughout the analysis it will
be useful to decompose the positions of the elementary particles and the modes of the
fluid into two contributions. The first consists of a component that arises primarily
from the forces acting on the particles and is associated with the local systematic
drift in the fluid velocity. The second arises primarily from the thermal fluctuations
of the system and is drift-free. We shall make this decomposition more precise by
introducing a number of notational conventions and definitions.

The notation ⊔ will be used to demarcate contributions to the dynamics that
arise primarily from the structural forces. For the terms associated with the thermal
fluctuations of the system, the symbol ⊓ will be used. With this convention the
Fourier modes of the fluid are decomposed into the contributions:

ûk(t) =
⊔

ûk (t)+
⊓

ûk (t)(3.4)

where we define:

⊔

ûk (t) := ρ−1

∫ t

0

e−αk(t−s)℘⊥
k
f̂k(s)ds+ e−αkt

⊔

ûk (0)(3.5)

and

⊓

ûk (t) :=
√

2Dk

∫ t

0

e−αk(t−s)℘⊥
k dB̃k(s) + e−αkt

⊓

ûk (0)(3.6)

where f̂k(s) is the Discrete Fourier Transform of the force density of the fluid at time
s.

In the analysis we shall assume that the fluid velocity components at the beginning
of the time step at time 0 are random variables with probability distributions defined
by:

⊔

ûk (0) := ρ−1

∫ 0

−∞

eαks℘⊥
k
f̂k(s)ds(3.7)

and

⊓

ûk (0) :=
√

2Dk

∫ 0

−∞

eαks℘⊥
k
dB̃k(s).(3.8)

These expressions should be regarded as weak definitions in the sense that only
the probability distributions of the random variables have been specified. The analysis
will only use features of the distributions, making the results independent of which
specific strong definition of the random variables is used.

In 3.7, the probability is defined for a given distribution of the forces acting on
the fluid for s ≤ 0, features of which will be discussed further in the analysis. From
the definition of the Itô integral, we can more directly define the fluid velocity at the
beginning of the time step (3.8) as a vector-valued random variable having in each
component an independent Gaussian distribution with mean 0 and variance Dk

αk

which

is then projected by ℘⊥
k

to ensure incompressibility. We remark that for this random
variable

E

(∣∣∣∣
⊓

ûk (0)

∣∣∣∣
2
)

= Υk

kBT

ρL3
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where Υk is defined in A.4.
The above definitions lead naturally to the definitions:

⊔
um (t) :=

∑

k

⊔

ûk (t) exp (i2πk ·m/N)(3.9)

and

⊔

U (x, t) :=
∑

m

δa(xm − x)
⊔
um (t)∆x3(3.10)

with
⊓
um and

⊓

U (x, t) defined similarly.
For the particle trajectory X(t), we make a similar decomposition by defining:

⊔

X (t) =
⊔

X (0) +

∫ t

0

⊔

U (X(s), s)ds(3.11)

⊓

X (t) =
⊓

X (0) +

∫ t

0

⊓

U (X(s), s)ds(3.12)

so that:

X(t) =
⊔

X (t)+
⊓

X (t).(3.13)

The subsequent analysis does not depend on the precise definition of the quantities
⊔

X (0) and
⊓

X (0), provided that X(0) =
⊔

X (0)+
⊓

X (0). For concreteness, we shall

make the explicit definition
⊔

X (0) = X(0) and
⊓

X (0) = 0.
To bound the strong error of the particle position in terms of the two contributions

3.11 and 3.12 defined above, we introduce:

⊔
eprt (∆t) := E

(∣∣∣∣∣
⊔

X (∆t)−
⊔

X̃ (∆t)

∣∣∣∣∣

)
(3.14)

and

⊓
eprt (∆t) := E

(∣∣∣∣∣
⊓

X (∆t)−
⊓

X̃ (∆t)

∣∣∣∣∣

)
.(3.15)

The strong error of the particle position is then bounded by:

(3.16)

eprt(∆t) ≤
⊔
eprt (∆t)+

⊓
eprt (∆t).

Two statistics appear frequently in the estimates and will be denoted by the
following correlation functions:

(3.17)

ψ(s, r) := sup
1≤β≤3, X(0)∈Ω

E

((
⊓

X

(β)

(s)−
⊓

X

(β)

(0)

)
·
(

⊓

X

(β)

(r)−
⊓

X

(β)

(0)

))
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(3.18)

φ(s, r) := sup
1≤α,β≤3, X(0)∈Ω

E

(
∇

⊓

U

(α,β)

(X(0), s) · ∇
⊓

U

(α,β)

(X(0), r)

)
.

The single superscripts denote the index of a vector component. The double su-
perscripts denote the indices of a matrix entry. We remark that the fluid-particle
equations are discretized on a finite lattice. The expectations appearing in 3.17 and
3.18 do not depend on the external forces acting on the elementary particles and are
nearly translation invariant except for a dependence on the shift of X(0) relative to
the lattice points. This gives a periodic dependence of the expectations with period
∆x in each direction.

A further notation that will be used in the analysis is the following. For any
function f : R

N → R we define the class of functions O(f(y)) by the condition that
g(y) ∈ O(f(y)) if and only if there exists a constant C independent of y such that:

|g(y)| ≤ Cf(y)(3.19)

for all y. A common abuse of notation that we shall use is that expressions of the
form:

h(y) = O(f(y)) or h(y) ≤ O(f(y))(3.20)

should be interpreted as h(y) ∈ O(f(y)). These notations are in the same spirit as
those typically used in asymptotics (15).

4. The General Error Estimates. A general error estimate for the numerical
method 2.22 – 2.30 is now established. The method is designed to allow underresolu-
tion of some or all of the fluid modes, but is intended to be used only with time steps
that resolve the structural degrees of freedom. We formalize the latter restriction by
the following standing assumption on the time step:

• Assumption T1: The time step satisfies 0 < ∆t ≤ τmov(a), where

τmov(a) = E (inf{t > 0 : |X(t) − X(0)| = a})(4.1)

represents the time scale on which a particle moves a distance comparable to
its size, and can be thought of as the fastest time scale for the motion of the
immersed structures.

Our subsequent study of various regimes of underresolution or resolution of the fluid
modes is meaningful under Assumption (T1) because typically at least some of the
fluid degrees of freedom are faster than those of the immersed structures. This is
due to the generally low Kubo and Reynolds number in microbiology (19). This
assumption will be used in our calculations in a more precise manner through the
technical assumption (A1) described below.

In the immersed boundary method, the elementary particle dynamics are governed
by local averages of the velocity field of the fluid. This poses a number of difficulties in
the analysis of the system, as is common in stochastic transport problems (7; 10; 38).
To make the analysis tractable we shall make a few technical assumptions about the
coupling of the dynamics of the elementary particles and fluid. More specifically these
are:
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• Assumption A1: There exists a positive constant CA1 uniform with respect to
all parameters such that for time steps satisfying condition (T1), the following
inequality holds:

E

(∣∣∣∣∣

∫ ∆t

0

U(X(s), s) − U(X(0), s)ds

∣∣∣∣∣

)

≤ CA1E

(∣∣∣∣∣

∫ ∆t

0

∇U(X(0), s) · (X(s) − X(0)) ds

∣∣∣∣∣

)
.

We remark that the assumption A1 is made to avoid technicalities that arise when
using the Mean-Value Theorem and Taylor Expansion in the context of stochastic
processes (11; 17). Indeed, the statement with CA1 = 1 corresponds to a first order
Taylor approximation, which is expected to be accurate provided |X(s)−X(0)| ≪ a,
the length scale on which U varies. The time step restriction T1 reflects this criterion.

• Assumption A2: There exists a positive constant CA2 uniform with respect
to all parameters so that:

E
(
∇W(α,β)(X(0), s)Y(β)(s)∇W(α,β)(X(0), r)Y(β)(r)

)

≤ CA2

∣∣∣E
(
∇W(α,β)(X(0), s)∇W(α,β)(X(0), r)

)
E
(
Y(β)(s)Y(β)(r)

)∣∣∣

where W=
⊔

U or W=
⊓

U and Y (t) =
⊔

X (t)−
⊔

X (0) or Y (t) =
⊓

X (t)−
⊓

X (0).
One motivation for such an inequality is the Corrsin conjecture (7; 10; 38), which

amounts to the unproven but plausible approximation that the position and instan-
taneous velocity of a particle in a random flow become nearly independent on time
scales which are large compared to the correlation time τfld of the flow. Using the
Corrsin Conjecture would imply equality in the above expression for max(s, r) ≫ τfld
with CA2 = 1.

For small time values, s, r ≪ τfld, the particle velocity U is highly correlated
with its initial value, and to leading order we can approximate each of U(X(0), s)
and U(X(0), r) by the constant random variable U(X(0), 0). (We use here also the
notion that for general microbiological applications, the Kubo number is small (1; 18):
τfld ≪ τmov(a).) Then our assumption reduces to a statement concerning the control
of a fourth-order correlation of the random variables U(X(0), 0) and ∇U(X(0), 0)
in terms of their variances. Such an inequality holds for jointly Gaussian random
variables. It would only be violated were weight to concentrate in the tails of the joint
probability distributions of these random variables under certain admissible parameter
choices – we see no reason for this to happen. Having argued for the plausibility of
the inequality for very short times and very long times, a case for the plausibility of
the bound for all times can be made by an interpolation argument.

• Assumption A3: We shall assume throughout that both the particle force
F[j]({X}) and the particle representation function δa(x) are Lipschitz con-
tinuous, that |F[j]| ≤ F ∗ uniformly in j, and that δa(x) ≥ 0. For the force,
we assume that the Lipschitz constant LF is uniform in j and {X} so that:

|F[j]({Y}) − F[j]({X})| ≤ LF |{Y} − {X}|(4.2)

where {X} and {Y} denotes the composite vector consisting of the configu-
rations of all of the elementary particles.
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In our derivations, we shall for simplicity assume that the particle represen-
tation function δa(x) is also continuously differentiable. Our arguments can
be readily extended to the slightly more general situation of functions with
bounded and piecewise continuous derivatives through standard approxima-
tion arguments, the details of which we omit. With this in mind, our estimates
can be shown to hold without modification for one particle representation
function widely used in practice (29), which is only piecewise smooth. To
make transparent how our bounds generalize, we shall express estimates in
terms of Lipschitz constants rather than gradient norms.
A further technical assumption we shall make concerning δa is that the ele-
mentary particle size is an integer multiple of the fluid resolution length scale,
and so in particular a ≥ ∆x.

These assumptions will be used in the derivation of the error estimates in this
section, which will in turn be developed into more specialized error estimates for
various time step regimes in subsequent sections. Therefore, the above assumptions
(T1), (A1), (A2), and (A3) should be understood as standing assumptions underlying
all results.

Proposition 4.1. For the numerical method 2.22 – 2.30, the following estimate

holds for the strong error of the fluid dynamics:

(4.3)

efld,k(∆t) ≤
[
E
(
|ûk(∆t) − ˆ̃uk(∆t)|2

)]1/2

≤
(
ρ−1M2LF δ̂

∗
a,k + ρ−1MF ∗Lδ,k

)
·

·
[
B0

(
1

αk

)2 (
αk∆t− 1 + e−αk∆t

)

+
√

3

∫ ∆t

0

e−αk(∆t−s) (ψ(s, s))
1
2 ds

]

where the function ψ(r, s) is defined in 3.17 and the constants are defined in Table

C.3.

Proof.

Before we give the analysis of the fluid error, we first establish a few basic es-
timates which will be used in this and later derivations. Using equation 3.9 we can
bound the magnitude of the contributions associated with the systematic drift of the
fluid by:

| ⊔
um (t)| = |

∑

k

⊔

ûk (t) exp (i2πk ·m/N) |(4.4)

≤
∑

k

∫ t

−∞

ρ−1e−αk(t−s) |̂fk(s)|ds.

The Fourier coefficients of the force density arising from the particle forces acting on
the fluid are bounded by:

|̂fk(s)| = |
∑

j

F[j]δ̂a,k(X[j](s))|(4.5)

≤MF ∗δ̂∗a,k



ERROR ANALYSIS OF THE STOCHASTIC IB METHOD 13

where M denotes the number of elementary particles, F ∗ denotes the maximum force
applied to a particle, and δ̂∗a,k denotes the maximum of the Fourier coefficient of the
δa representation function over all shifts (see Appendix B). We remark that in the
force density, the reference “prt” has been dropped in the notation since all forces
associated with the thermal fluctuations of the system will be written out explicitly.

From this we obtain the following bound which holds uniformly in m and t:

| ⊔
um (t)| ≤ B0(4.6)

where

B0 :=
MF ∗

ρ

∑

k

δ̂∗a,k

αk

.(4.7)

The constant B0 is the largest magnitude the drift of the fluid can attain from the
forces acting on the particles.

From the definitions 3.10, 3.11, and the pointwise bound 4.6, we have the following
bound for the component of the particle displacement associated with the structural
forces over the time interval [0, t]:

|
⊔

X (t)−
⊔

X (0)| ≤ B0t.(4.8)

The contributions to the error of the particle displacement associated with the
thermal fluctuations can be estimated using the Cauchy-Schwartz inequality:

E

(
|

⊓

X (t)−
⊓

X (0)|
)

≤
[
E

(
|

⊓

X (t)−
⊓

X (0)|2
)] 1

2

(4.9)

=
√

3 (ψ(t, t))
1
2

where ψ is defined in 3.17.
From 4.8, 4.9 and the triangle inequality, this gives the following bound:

E (|X(t) − X(0)|) ≤
[
E
(
|X(t) − X(0)|2

)]1/2 ≤ B0t+
√

3 (ψ(t, t))
1
2 .(4.10)

Now using the above estimates, we shall establish expressions for the error in-
curred for the kth Fourier mode of the fluid. In the numerical scheme the force is
approximated as constant over the time step. From the definition of the strong error
in 3.1 and 2.23 this gives:

(4.11)

efld,k(∆t) ≤
[
E
(
|ûk(∆t) − ˆ̃uk(∆t)|2

)]1/2

≤



E




∣∣∣∣∣ρ

−1

∫ ∆t

0

e−αk(∆t−s) |̂fk(s) − f̂k(0)|ds
∣∣∣∣∣

2







1/2

.

We remark that in the analysis, the range in the integrand is from 0 to ∆t and refers
to a time step in which both the exact solution and numerical solutions start from
the same value at time 0.
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From assumption (A3), expressions 4.2 and B.1, and using the definition of the
force field 2.8, we have:

(4.12)

|̂fk(s) − f̂k(0)| =

∣∣∣∣∣∣

∑

j

[
F[j]({X(s)}) − F[j]({X(0)})

]
δ̂a,k(X[j](s))

+
∑

j

F[j]({X(0)})
[
δ̂a,k(X[j](s)) − δ̂a,k(X[j](0))

]
∣∣∣∣∣∣

≤
∑

j

LF

∑

j′

|X[j′](s) − X[j′](0)|δ̂∗a,k +
∑

j

F ∗Lδ,k|X[j](s) − X[j](0)|

≤
(
MLF δ̂

∗
a,k + F ∗Lδ,k

)∑

j

|X[j](s) − X[j](0)|

≤
(
MLF δ̂

∗
a,k + F ∗Lδ,k

)


MB0s+
∑

j

|
⊓

X[j] (s)−
⊓

X[j] (0)|



 .

Plugging 4.12 into 4.11 and using the triangle inequality of the L2 norm we have:

(4.13)
[
E
(
|ûk(∆t) − ˆ̃uk(∆t)|2

)]1/2

≤
(
MLF δ̂

∗
a,k + F ∗Lδ,k

)
·

·






E




∣∣∣∣∣ρ

−1

∫ ∆t

0

e−αk(∆t−s)MB0sds

∣∣∣∣∣

2







1/2

+
∑

j



E




∣∣∣∣∣ρ

−1

∫ ∆t

0

e−αk(∆t−s)|
⊓

X[j] (s)−
⊓

X[j] (0)|ds
∣∣∣∣∣

2







1/2



≤
(
MLF δ̂

∗
a,k + F ∗Lδ,k

)
·

·
(
ρ−1

∫ ∆t

0

e−αk(∆t−s)MB0sds

+
∑

j

ρ−1

∫ ∆t

0

e−αk(∆t−s)



E




∣∣∣∣∣

⊓

X[j] (s)−
⊓

X[j] (0)

∣∣∣∣∣

2







1/2

ds




Performing the integration and using equation 4.9 establishes the general error esti-
mate for the fluid 4.3.

Proposition 4.2. For the numerical method 2.22 – 2.30 , the following estimate

for the error of the elementary particle dynamics can be established:

(4.14)

eprt(∆t) ≤ 9CA1Lδ,aAaB0



B0
∆t2

2
+
√
CA2

(∫ ∆t

0

∫ ∆t

0

ψ(s, r)drds

) 1
2




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+
∑

k

(
ρ−1M2LF δ̂

∗
a,k + ρ−1MF ∗Lδ,k

)
·

·
[
B0

(
1

αk

)2(
αk

∆t2

2
− ∆t+

(
1

αk

)(
1 − e−αk∆t

))

+
√

3

∫ ∆t

0

∫ s

0

e−αk(s−r) (ψ(r, r))
1
2 drds

]

+ 9B0CA1

√
CA2

(∫ ∆t

0

∫ ∆t

0

φ(s, r)srdrds

) 1
2

+ 9CA1

√
CA2

(∫ ∆t

0

∫ ∆t

0

φ(s, r)ψ(s, r)drds

) 1
2

.

where the constants are defined in Table C.3.

Proof.
Using the definitions 3.3, 3.11, and 3.12 as well as the triangle inequality, the

strong error over the time step can be bounded by:

(4.15)

eprt(∆t) ≤
⊔
eprt (∆t)+

⊓
eprt (∆t)

where
⊔
eprt (∆t) and

⊓
eprt (∆t) denote the natural decomposition of the strong error

of the particle using the drift and drift-free contributions to the particle positions
defined in 3.11 and 3.12.

From 2.25 and 3.11, we have for the contributions associated with the systematic
drift of the particle:

⊔
eprt (∆t) = E

(∣∣∣∣∣
⊔

X (∆t)−
⊔

X̃ (∆t)

∣∣∣∣∣

)
≤

⊔

A1 +
⊔

A2

where

⊔

A1 := E

(∣∣∣∣∣

∫ ∆t

0

⊔

U (X(s), s)−
⊔

U (X(0), s)ds

∣∣∣∣∣

)

⊔

A2 := E

(∣∣∣∣∣

∫ ∆t

0

⊔

U (X(0), s)−
⊔

Ũ (X(0), s)ds

∣∣∣∣∣

)
.

From assumption (A1) we have:

(4.16)

E

(∣∣∣∣∣

∫ ∆t

0

⊔

U (X(s), s)−
⊔

U (X(0), s)ds

∣∣∣∣∣

)
≤ CA1E

(∣∣∣∣∣

∫ ∆t

0

∇
⊔

U (X(0), s) · (X(s) − X(0)) ds

∣∣∣∣∣

)
.

The estimate can be further broken down into:

(4.17)
⊔

A1 ≤
⊔

A1,1 +
⊔

A1,2
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with

(4.18)

⊔

A1,1 := CA1E

(∣∣∣∣∣

∫ ∆t

0

∇
⊔

U (X(0), s) ·
(

⊔

X (s)−
⊔

X (0)

)
ds

∣∣∣∣∣

)

⊔

A1,2 := CA1E

(∣∣∣∣∣

∫ ∆t

0

∇
⊔

U (X(0), s) ·
(

⊓

X (s)−
⊓

X (0)

)
ds

∣∣∣∣∣

)
,

where 3.13 has been used.
From 3.10, 4.6 and 4.8, the following estimate can be obtained:

(4.19)

⊔

A1,1 ≤ CA1E




3∑

α,β=1

∣∣∣∣∣

∫ ∆t

0

∇
⊔

U
(α,β)

(X(0), s) ·
(

⊔

X
(β)

(s)−
⊔

X
(β)

(0)

)
ds

∣∣∣∣∣





≤ CA1

∑

α,β

∑

m

|∇δa(xm − X(0))|B0∆x
3 ·
∫ ∆t

0

B0sds

= 9CA1Lδ,aAaB
2
0

∆t2

2

where Lδ,a is the Lipschitz constant of δa(x), and Aa = n∆x3 with n the number of
lattice points on which δa is non-zero.

The second term can be estimated using the Cauchy-Schwartz inequality and
assumption (A2) to obtain:

(4.20)

⊔

A1,2 ≤ CA1

3∑

α,β=1

E




∣∣∣∣∣

∫ ∆t

0

∇
⊔

U

(α,β)

(X(0), s) ·
(

⊓

X

(β)

(s)−
⊓

X

(β)

(0)

)
ds

∣∣∣∣∣

2




1
2

≤ 9CA1

√
CA2

(∫ ∆t

0

∫ ∆t

0

E

(
∇

⊔

U

(α,β)

(X(0), s) · ∇
⊔

U

(α,β)

(X(0), r)

)

E

((
⊓

X
(β)

(s)−
⊓

X
(β)

(0)

)(
⊓

X
(β)

(r)−
⊓

X
(β)

(0)

))
drds

) 1
2

≤ 9CA1

√
CA2Lδ,aAaB0

(∫ ∆t

0

∫ ∆t

0

ψ(s, r)drds

) 1
2

where ψ(s, r) is defined in 3.17, and Lδ,a and Aa are defined as in 4.19.
Combining the estimates 4.19 and 4.20 gives:

⊔

A1 ≤ 9CA1Lδ,aAaB0



B0
∆t2

2
+
√
CA2

(∫ ∆t

0

∫ ∆t

0

ψ(s, r)drds

) 1
2



 .(4.21)

To estimate
⊔

A2 we shall use:
∣∣∣∣
⊔
um (s)−

⊔

ũm (s)

∣∣∣∣ ≤
∑

k

efld,k(s).(4.22)
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From the estimate established for efld,k(s) in 4.3 and using that
∑

m
δa(xm−X(0))∆x3 =

1, we have:

⊔

A2 ≤ E

(∫ ∆t

0

∑

m

δa(xm − X(0))

∣∣∣∣
⊔
um (s)−

⊔

ũm (s)

∣∣∣∣∆x
3ds

)
(4.23)

≤
∑

k

(
ρ−1M2LF δ̂

∗
a,k + ρ−1MF ∗Lδ,k

)
·

·
[
B0

(
1

αk

)2(
αk

∆t2

2
− ∆t+

(
1

αk

)(
1 − e−αk∆t

))

+
√

3

∫ ∆t

0

∫ s

0

e−αk(s−r) (ψ(r, r))
1
2 drds

]
.

By combining 4.21 and 4.23, an estimate is obtained for
⊔
eprt (∆t).

An estimate for the error of the particle displacement in the component associated
with the thermal fluctuations is now established. Since 2.23 of the numerical method
resolves the contributions of the thermal fluctuations of the fluid dynamics exactly
over a time step, we have:

⊓

Ũ (X(0), s) =
⊓

U (X(0), s).(4.24)

From assumption (A1) and the triangle inequality we obtain:

(4.25)

⊓
eprt (∆t) = E

(∣∣∣∣∣

∫ ∆t

0

⊓

U (X(s), s)−
⊓

Ũ (X(0), s)ds

∣∣∣∣∣

)

≤
⊓

A1 +
⊓

A2

where

⊓

A1 := CA1E

(∣∣∣∣∣

∫ ∆t

0

∇
⊓

U (X(0), s) ·
(

⊔

X (s)−
⊔

X (0)

)
ds

∣∣∣∣∣

)
(4.26)

⊓

A2 := CA1E

(∣∣∣∣∣

∫ ∆t

0

∇
⊓

U (X(0), s) ·
(

⊓

X (s)−
⊓

X (0)

)
ds

∣∣∣∣∣

)
.(4.27)

To estimate
⊓

A1 and
⊓

A2 we shall use Cauchy-Schwartz inequality and assumption
(A2), which gives:

(4.28)

⊓

A1 ≤ CA1

√
CA2

3∑

α,β=1

(∫ ∆t

0

∫ ∆t

0

E

(
∇

⊓

U

(α,β)

(X(0), s) · ∇
⊓

U

(α,β)

(X(0), r)

)

E

((
⊔

X

(β)

(s)−
⊔

X

(β)

(0)

)(
⊔

X

(β)

(r)−
⊔

X

(β)

(0)

))
dsdr

) 1
2

≤ 9CA1

√
CA2B0

(∫ ∆t

0

∫ ∆t

0

φ(s, r)srdrds

) 1
2
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and

(4.29)

⊓

A2 ≤ CA1

√
CA2

3∑

α,β=1

(∫ ∆t

0

∫ ∆t

0

E

(
∇

⊓

U

(α,β)

(X(0), s) · ∇
⊓

U

(α,β)

(X(0), r)

)

E

((
⊓

X

(β)

(s)−
⊓

X

(β)

(0)

)(
⊓

X

(β)

(r)−
⊓

X

(β)

(0)

))
dsdr

) 1
2

≤ 9CA1

√
CA2

(∫ ∆t

0

∫ ∆t

0

φ(s, r)ψ(s, r)drds

) 1
2

.

The function φ(s, r) is defined in 3.18 and ψ(s, r) is defined in 3.17. From 4.28 and

4.29 we obtain the estimate for
⊔
eprt (∆t).

Finally, by substituting 4.21 4.23, 4.28, and 4.29 into 4.15 we obtain the general
estimate 4.14 for the strong error eprt(∆t) incurred in computing the trajectory of
an elementary particle each time step.

5. Uniform Bounds Suited for Small Time Steps. In this section, we de-
velop uniform bounds on the numerical error which are designed to give tight scaling
estimates for small time steps ∆t ≪ min 1/αk in which the dynamics of the fluid is
explicitly resolved by the numerical method. In particular, the inequalities defining
the bounds for the small time step regime considered in this section will follow essen-
tially from asymptotic expansions of the terms in the general bound. The bounds will
in fact, with some apparent fortune, also serve as uniform bounds over the broader
range of time steps restricted by Assumption (T1), which requires the time step be
sufficiently small to resolve the dynamics of the immersed structures. The form of the
bounds which we present in this section follows from rigorous mathematical analysis,
under the assumptions discussed in Section 4. The results are presented in a somewhat
technical form in terms of various mathematical quantities related to the smoothness
and bounds of various functions entering the numerical method. For ease in inter-
pretation, we present in Section 8 more transparent versions of the error estimates
presented here, which exhibit the scaling of the errors with respect to fundamental
physical and numerical parameters. We follow a similar approach for the other two
time step regimes in subsequent sections.

We now establish uniform error estimates which are essentially sharp for small
time steps ∆t≪ min 1/αk:

Proposition 5.1. The error incurred by the numerical method 2.22 – 2.30 for

the dynamics of the fluid is bounded by:

(5.1)

efld,k(∆t) ≤ E
(
|ûk(∆t) − ˆ̃uk(∆t)|2

)1/2

≤
(
ρ−1M2LF δ̂

∗
a,k + ρ−1MF ∗Lδ,k

)
·(5.2)

·



B0 +
√

3

(
kBT

ρ

∑

m

δ2a(xm)∆x3

)1/2


 ∆t2

2
·

·
(
1 +O

(
1/N3

)
+O (∆x/a)

)
.
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Proof. The velocity autocorrelation function is bounded by (see Appendix A):

(5.3)

E
(
⊓
um (s)· ⊓

un (r)
)
≤ kBT

ρL3

∑

k

Υk exp (i2πk · (m − n)/N)

≤ 3
kBT

ρ

χm,n

∆x3

(
1 +O

(
1/N3

))

where χm,n is the Kronecker delta function which is one if m = n and zero otherwise.
The error contribution O

(
1/N3

)
arises when approximating the sum by the discrete

Fourier transform of the Kronecker delta function because of the 8 modes which have
Υk = 2.

From 5.3 and the smoothness of δa we have the following bound:

(5.4)

ψ(s, r) =
1

3

∫ s

0

∫ r

0

∑

m,n

δa(xm)δa(xn)E
(
⊓
um (s)· ⊓

un (r)
)

∆x6drds ·

· (1 +O(∆x/a))

≤ kBT

ρ

(
∑

m

δ2a(xm)∆x3

)
sr
(
1 +O

(
1/N3

)
+O(∆x/a)

)
.

The error contribution O(∆x/a) arises from shifting the arguments of the particle
representation functions δa in the lattice sums so that the arguments fall on the lattice,
and is estimated quantitatively by noting that the shifts are bounded by ∆x in each
coordinate direction and that the global Lipschitz constant for δa is bounded uniformly
by a multiple of 1/a (Appendix B).

Substituting 5.4 into the general error estimate 4.3 and taking the Taylor expan-
sion of the exponential terms, the fluid error 5.1 is obtained. We remark that this in
fact turns out to furnish a uniform inequality by the negativity of the neglected terms
in the expansion.

Proposition 5.2. The numerical method 2.22 – 2.30 incurs an error for the

particle error which can be bounded by:

(5.5)

eprt(∆t) ≤








9CA1Lδ,aAaB0



B0 +
√
CA2

(
kBT

ρ

∑

m

δ2a(xm)∆x3

) 1
2





+ 9B0CA1

√
CA2

(
kBT

ρ
L2

δ,aAa

) 1
2

+ 9CA1

√
CA2

((
kBT

ρ

)2

L2
δ,aAa

∑

m

δ2a(xm)∆x3

) 1
2



 ∆t2

2

+
∑

k

ρ−1
(
M2LF δ̂

∗
a,k +MF ∗Lδ,k

)



B0 +
√

3

(
kBT

ρ

∑

m

δ2a(xm)∆x3

) 1
2



 ∆t3

6




 ·

·
(
1 +O

(
1/N3

)
+ O (∆x/a)

)
.
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Proof. To obtain the bound, we shall estimate for small time steps the function
φ, ψ and the integrals that appear in the general error expression 4.14. Using the
definition of φ given in 3.17 and approximating the velocity autocorrelation function
using 5.3, we obtain:

(5.6)

φ(s, r) ≤ 1

3

∑

m,n

∇δ(β)
a (xm)∇δ(β)

a (xn)E
(
⊓
um (s)· ⊓

un (r)
)

∆x6 (1 +O(∆x/a))

≤ kBT

ρ

(
∑

m

(∇δa(xm))
2
∆x3

)
(
1 +O

(
1/N3

)
+O (∆x/a)

)

≤ kBT

ρ

(
L2

δ,aAa

) (
1 +O

(
1/N3

)
+O (∆x/a)

)
.

The last expression was obtained using an argument similar to that in 4.19.
Together with 5.4, this yields the following approximations for the integrals ap-

pearing in the general particle error estimate 4.14:
∫ ∆t

0

∫ ∆t

0

ψ(s, r)drds(5.7)

≤ kBT

ρ

(
∑

m

δ2a(xm)∆x3

)
∆t4

4
·
(
1 +O

(
1/N3

)
+O (∆x/a)

)
.

∫ ∆t

0

∫ ∆t

0

φ(s, r)srdrds(5.8)

≤ kBT

ρ

(
∑

m

(∇δa(xm))
2
∆x3

)
∆t4

4

(
1 +O

(
1/N3

)
+O (∆x/a)

)

≤ kBT

ρ

(
L2

δ,aAa

) ∆t4

4

(
1 +O

(
1/N3

)
+O (∆x/a)

)
.

(5.9)
∫ ∆t

0

∫ ∆t

0

φ(s, r)ψ(s, r)drds

≤
(
kBT

ρ

)2
(
∑

m

(∇δa(xm))2 ∆x3

)(
∑

m

δ2a(xm)∆x3

)
∆t4

4
·

·
(
1 +O

(
1/N3

)
+O (∆x/a)

)

≤
(
kBT

ρ

)2 (
L2

δ,aAa

)
(
∑

m

δ2a(xm)∆x3

)
∆t4

4
·

·
(
1 +O

(
1/N3

)
+O (∆x/a)

)
.

∫ ∆t

0

e−αk(s−r) (ψ(r, r))
1
2 drds(5.10)
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≤
(
kBT

ρ

∑

m

δ2a(xm)∆x3

) 1
2

∆t2

2
·

·
(
1 +O

(
1/N3

)
+O (∆x/a)

)
.

Using the estimates 5.7 – 5.10 in the general particle error bound 4.14, the ex-
pression 5.5 for the small time step regime is obtained.

6. Uniform Bounds Suited for Large Time Steps. Error estimates designed
for the regime max1/αk ≪ ∆t in which the dynamics of the fluid are under-resolved
by the numerical method are now discussed. As always, an upper limit ∆t ≤ τmov(a)
is imposed on the size of the time step (Assumption (T1)) so that the structural
degrees of freedom are resolved and assumption (A1) is reasonable. We remark that
the error estimates hold uniformly for all time steps consistent with (T1), but are
tight in the large time step regime max 1/αk ≪ ∆t≪ τmov(a).

Proposition 6.1. The numerical method 2.22 – 2.30 incurs an error for the

fluid dynamics bounded by:

(6.1)

efld,k(∆t) ≤
[
E
(
|ûk(∆t) − ˆ̃uk(∆t)|2

)]1/2

≤ ρ−1
(
M2LF δ̂

∗
a,k +MF ∗Lδ,k

)(
B0

∆t

αk

+
√

6D
∆t

1
2

αk

)
·(6.2)

· (1 +O(∆x/a))

where the constants are defined in Table C.3.

Proof.
In this regime we shall use the velocity autocorrelation function derived in Ap-

pendix A:

E
(
⊓
um (s)· ⊓

un (r)
)

=
kBT

ρL3

∑

k

Υke
−ak|s−r| exp (i2π(n− m) · k/N) .(6.3)

To estimate ψ and φ we shall use the fact that the correlation statistics appearing
in 3.17 and 3.18 only depend with period ∆x on X(0) with respect to the shift relative
to the lattice points, and can therefore relate the lattice sums to the case where X(0)
is lattice node with O(∆x/a) error, as in the proof of Proposition 5.1.

From 3.17, 3.18 and the smoothness of δa, we have:

(6.4)

ψ(s, r) ≤ 1

3

∑

m,n

δa(xm)δa(xn)

∫ s

0

∫ r

0

E
(
⊓
um (p)· ⊓

un (q)
)
dpdq∆x6 (1 +O(∆x/a))

≤
[
2Dmin(s, r) − kBTL

3

3ρ

∑

k

|δ̂a,k|2Υk

α2
k

(
1 + e−αk|s−r| − e−αks − e−αkr

)]
·

· (1 +O(∆x/a))

where D is defined by:

D :=
kBTL

3

3ρ

∑

k

|δ̂a,k|2Υk

αk

(6.5)
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and Υk is defined in A.4; see (1). The factor D can be interpreted as the diffusion
coefficient of a particle (1; 18). From 6.4 we have for all s, r:

ψ(s, r) ≤ 2Dmin(s, r) (1 +O(∆x/a)) .(6.6)

From 6.6 we have the bound:

∫ ∆t

0

e−αk(∆t−s) (ψ(s, s))
1
2 ds ≤

√
2D

(∆t)
1
2

αk

(1 +O(∆x/a)) .(6.7)

To obtain expression 6.1 for the error associated with the modes of the fluid, the
estimate 6.7 is substituted into 4.3 and the explicit terms are bounded by their large
∆t asymptotics.

Proposition 6.2. The numerical scheme 2.22 – 2.30 incurs an error for the

particle dynamics which can be bounded by:

(6.8)

eprt(∆t) ≤
{

9CA1Lδ,aAaB0

(
B0

∆t2

2
+

(
2CA2

3
D

)1/2

∆t3/2

)

+
∑

k

(
ρ−1M2LF δ̂

∗
a,k + ρ−1MF ∗Lδ,k

)( B0

2αk

∆t2 + 2

√
2D

3

∆t3/2

αk

)

+ 9B0CA1

√
CA2

(
2

9

kBTL
3

ρ

∑

k

L2
δ,kΥk

αk

)1/2

∆t3/2

+ 9CA1

√
CA2

(
2D

3

kBTL
3

ρ

∑

k

L2
δ,kΥk

αk

)1/2

∆t




 (1 +O(∆x/a)) .

Proof.
To obtain the bound 6.8 we shall use estimates of the functions φ, ψ and the

integrals appearing in 4.14.
To estimate φ we use 6.3 to obtain:

φ(s, r) ≤ 1

3

∑

m,n

∇δ(β)
a (xm)∇δ(β)

a (xn)E
(
⊓
um (s)· ⊓

un (r)
)

∆x6 ·(6.9)

· (1 +O(∆x/a))

≤ 1

3

kBTL
3

ρ

∑

k

|∇̂δ
(β)

a,k|2Υke
−αk|s−r|

· (1 +O(∆x/a))

≤ 1

3

kBTL
3

ρ

∑

k

L2
δ,kΥke

−αk|s−r|

· (1 +O(∆x/a))

where the notation ∇̂δ
(β)

a,k refers to the β vector component of the Fourier transform
of ∇δa(x).
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To estimate the integrals, the following estimates will be useful:

∫ ∆t

0

∫ s

0

e−αk(s−r)rdrds ≤ ∆t2

2αk

(6.10)

and

∫ ∆t

0

∫ ∆t

0

e−αk|s−r|srdrds ≤ 2

3

∆t3

αk

.(6.11)

From 6.6 we have:

(6.12)
∫ ∆t

0

∫ ∆t

0

ψ(s, r)drds ≤
∫ ∆t

0

∫ ∆t

0

2Dmin(s, r)drds (1 +O(∆x/a))

=
2

3
D∆t3 (1 +O(∆x/a)) .

It follows from 6.7 that:

(6.13)
∫ ∆t

0

∫ s

0

e−αk(s−r) (ψ(s, r))
1
2 drds ≤

√
2D

∫ ∆t

0

s
1
2

αk

ds (1 +O(∆x/a))

≤ 2

3

√
2D

αk

∆t3/2 (1 +O(∆x/a)) .

Using 6.6, 6.9, and 6.10, we obtain:

(6.14)
∫ ∆t

0

∫ ∆t

0

φ(s, r)ψ(s, r)drds ≤ 2D

3

(
kBTL

3

ρ

∑

k

L2
δ,kΥk

αk

)
∆t2 ·

· (1 +O(∆x/a)) .

From 6.9 and 6.11 we have:

(6.15)
∫ ∆t

0

∫ ∆t

0

φ(s, r)srdrds ≤
∑

m,n

∇δ(β)
a (xm)∇δ(β)

a (xn) ·

· kBT

ρL3

∑

k

∫ ∆t

0

∫ ∆t

0

Υke
−αk|s−r|srdrds exp (i2π(m − n) · k/N)∆x6 ·

· (1 +O(∆x/a))

≤ 2

9

kBTL
3

ρ

∑

k

L2
δ,kΥk

αk

∆t3 (1 +O(∆x/a)) .

By substituting 6.12, 6.13, 6.14, 6.15 into 4.14 we obtain 6.8.



24 P. ATZBERGER, P. KRAMER

7. Uniform Bounds Suited for Intermediate Time Steps. We shall now
discuss the error when the time step is in the intermediate range:

min
1

αk

. ∆t . max
1

αk

.(7.1)

In this regime at least some of the modes of the fluid are under-resolved by the
numerical method. An important feature of the immersed boundary method which
is relevant in this regime is that the particle dynamics depend on the fluid velocity
though a convolution with the function δa(x). As a consequence of the rapid decay

of δ̂a,k for |k| >> (L/a), only a subset of the fluid modes contribute non-negligibly
to the particle dynamics. This requires that two intermediate time step regimes be
considered. The first regime occurs when a significant number of the modes which
contribute to the particle dynamics are under-resolved:

ρa2

µ
≪ ∆t . max

1

αk

.(7.2)

In this regime the thermal component of the displacement of a particle over a time

step
⊓

X (∆t)−
⊓

X (0) is expected to have diffusive-like ∆t1/2 scaling. The second
intermediate time step regime occurs when all of the fluid modes which contribute
non-negligibly to the particle dynamics are resolved:

min
1

αk

. ∆t≪ ρa2

µ
.(7.3)

The scaling of the thermal component of the particle displacement
⊓

X (∆t)−
⊓

X (0)
over a time step in this regime is expected to have ballistic ∆t scaling. Much of the
analysis proceeds in the same manner as in the case of the small and large time step
regimes with only a few changes made to the error estimates which take into account
the features mentioned above concerning the dependence of the particle dynamics on
the fluid modes.

We shall first establish a proposition concerning estimates of ψ which is used to
bound the thermal component of the particle displacement over a time step. We then
establish estimates for the fluid and particle dynamics in each of the intermediate
time step regimes. For convenience we shall consider only the case when s ≥ r, with
the other case when s ≤ r following similarly by symmetry of the function ψ in the
parameters s and r.

Two uniform estimates will be established for ψ. Which estimate is better depends
on the specific regime of the time step. The first estimate will be used in the regime
s, r ≤ ρa2/µ. The second estimate will be used in the regime s > ρa2/µ.

Lemma 7.1. The following two bounds for ψ(s, r) hold uniformly for 0 < r ≤ s:

ψ(s, r) ≤ kBTL
3

3ρ

∑

k

Υkδ
2
a,ksr(7.4)

(7.5)

ψ(s, r) ≤ 2kBTL
3

3ρ

∑

k

Υk

δ2a,k

αk

r.
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Proof.
From 3.17 we have:

ψ(s, r) =
kBTL

3

3ρ

∑

k

Υkδ
2
a,kQk(s, r)(7.6)

where

(7.7)

Qk(s, r) =

∫ s

0

∫ r

0

e−αk|s
′−r′|dr′ds′

= 2

(
1

αk

)2 (
αkr −

(
1 − e−αkr

))
−
(

1

αk

)2 (
e−αk(s−r) − 1 − e−αks + e−αkr

)

when r ≤ s. The estimates for ψ are a direct consequence of bounding the terms in
the sum 7.6 using the following two inequalities for Qk(s, r), which hold uniformly for
0 < r ≤ s:

Qk(s, r) ≤ sr(7.8)

Qk(s, r) ≤ 2r

αk

.(7.9)

The corresponding regimes in which the estimates are optimal can be established
by using the scaling of αk given in Table C.1.

We shall now consider the fluid and particle errors for the regime in which

ρa2

µ
≪ ∆t . max

1

αk

.(7.10)

When the time step under-resolves the kth mode of the fluid, the error estimate
for efld,k(∆t) in Proposition 6.1 suffices. When the time step is sufficiently small to

resolve the kth mode of the fluid, the error estimate for efld,k(∆t) can be improved

relative to the estimate for the resolved case established in proposition 5.1. This
occurs since the thermal component of the particle displacement is now expected to
scale in a diffusive-like ∆t1/2 fashion as a consequence of the under-resolved modes.

More precisely, the error of the kth fluid mode is bounded best by proposition 6.1
when αk∆t≫ 1 and by the following estimate when αk∆t≪ 1:

Proposition 7.2.

(7.11)

efld,k(∆t) ≤
[
E
(
|ûk − ˆ̃uk|2

)]1/2

≤ ρ−1
(
M2LF δ̂

∗
a,k +MF ∗Lδ,k

)(
B0∆t

2 +
2

3

√
6D∆t3/2

)
·

· (1 +O(∆x/a))

where D is defined in 6.5.

Proof.
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From the second estimate in Lemma 7.1 and the definition of the diffusion coef-
ficient given in 6.5, we have:

ψ(s, r) ≤ 2Dmin(s, r) (1 +O(∆x/a)) .(7.12)

From 7.12, we have the bound:

∫ ∆t

0

e−αk(∆t−s) (ψ(s, s))
1/2

ds ≤ 2

3

√
2D∆t3/2 (1 +O(∆x/a)) .(7.13)

To obtain expression 7.11 for the error associated with the modes of the fluid over
intermediate time steps, the estimate 7.13 is substituted into 4.3 and the exponential
terms are bounded by their second order Taylor expansion in ∆t.

For the time step regime

ρa2

µ
≪ ∆t . max

1

αk

(7.14)

the estimate for the particle error in Proposition 6.2 suffices.
The second intermediate regime occurs for the time step:

min
1

αk

. ∆t≪ ρa2

µ
.(7.15)

In this regime all of the fluid modes which contribute non-negligibly to the particle
dynamics are resolved over the time step. This follows since for time steps in this
regime the smallest wavenumber k for which the fluid dynamics is under-resolved
satisfies |k| ≫ L/a. As a consequence, the particle error eprt(∆t) in this regime
is also tightly bounded by the estimate of Proposition 5.2. The only error estimate
which can be substantially improved from the previous analysis is the fluid error for
under-resolved modes. More precisely the error of the kth fluid mode when αk∆t≪ 1
is given by proposition 5.1 and when αk∆t≫ 1 is bounded tightly by:

Proposition 7.3.

(7.16)

efld,k(∆t) ≤
[
E
(
|ûk − ˆ̃uk|2

)]1/2

≤ ρ−1
(
M2LF δ̂

∗
a,k +MF ∗Lδ,k

)


B0
∆t

αk

+
√

3

(
kBT

ρ

∑

m

δ2a(xm)∆x3

)1/2
∆t2

2



 ·

· (1 +O(∆x/a)) .

Proof. The integral involving ψ in the general error expression 4.3 can be handled
in this regime using the uniform estimate 7.4. The integrals are then handled in
otherwise the same manner as in estimate 5.4 in Proposition 5.1.

8. Scaling of the Error Estimates in the Parameters of the Method. To
better elucidate the numerical error, we shall use the uniform estimates in Sections 5–
7 to bound the error using the best approximation among the bounds in each of the
asymptotic scaling regimes of the time step. To make the estimates as transparent
as possible, the scaling of the expressions with respect to the parameters used in the
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numerical method 2.22 – 2.30 will be derived. The scaling of key terms that appear
in the estimates are summarized in Table C.1. To estimate the fluid error in physical
space, as defined in 3.2, we use the fact that L1 averages are bounded by L2 averages.
Along with Plancherel’s Theorem, we can then obtain the spatial fluid error in terms
of our L2 estimates for the error of the fluid Fourier modes:

efld(∆t) ≤
(
∑

k

E
(
|ûk(∆t) − ˆ̃uk(∆t)|2

))1/2

.(8.1)

To simplify the discussion, it will be assumed throughout that the particle size is no
larger than the length scale of variation of the force fields: a . ℓF .

In the notation, factorsC will be superscripted with primes and are non-dimensional
constants approximately independent of the physical parameters. These factors can
be thought of as order unity constants. To avoid cumbersome notation and unduly
emphasizing the role of these factors, the notation is reused in each equation, with
the understanding that C denotes distinct factors for each estimate.

We remark that in the following sections we are discussing our rigorous mathe-
matical results in a more physically intuitive manner. Given the less formal approach
of these sections, we shall discuss the the error estimates as approximate equalities
rather than inequalities. This is meant to convey the intended content of the in-
equalities derived in the previous sections, which could be shown to be approximate
equalities in the corresponding asymptotic regimes.

8.1. Scaling for Small Time Steps which Fully Resolve the Fluid Dy-

namics. The scaling is now discussed for the error estimates 5.1 and 5.5 in the regime
∆t≪ min 1

αk

, where the time step is taken sufficiently small so that the dynamics of
all modes of the fluid are resolved by the stochastic immersed boundary method.

From the estimates 4.3 and 4.14 with the scalings of key terms given in Table
C.1, we obtain for the numerical errors:

êfld,k(∆t) ≈ MF ∗

ρ
δ̂∗a,k

(
M

ℓF
+ C

1

a

)
(C′vfrc + C′′vthm)∆t2(8.2)

efld(∆t) ≈ MF ∗

ρa3/2L3/2

(
M

ℓF
+ C

1

a

)
(C′vfrc + C′′vthm)∆t2(8.3)

eprt(∆t) ≈
(
Cv2

thm + C′vfrcvthm + C′′v2
frc

) ∆t2

a
(8.4)

+
MF ∗

ρa3

(
M

ℓF
+ C′′′ 1

a

)
(C′′′′vfrc + C′′′′′vthm)∆t3,

where the parameters are defined in Table C.2 and C.3. To simplify the notation
and aid in interpretation of the estimates, two factors were introduced. The first
vthm =

√
kBT/ρa3 is the typical thermal velocity associated with a particle under the

equipartition theorem of statistical mechanics (21; 32). The second vfrc = MF ∗/µa
is the velocity scale of a particle in a viscous fluid subject to a force of magnitude
MF ∗.

These error estimates indicate that the stochastic immersed boundary method be-
haves like a strong first order accurate method when the time step is taken sufficiently
small. For more details, see the discussion in reference (1).
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8.2. Scaling for Large Time Steps which Under-resolve All Fluid Modes.

We now present estimates for how the numerical error scales in the physical parame-
ters when the time step is taken large enough to under-resolve all modes of the fluid,
but always small enough to resolve the elementary particle dynamics:

max
1

αk

≪ ∆t≪ τmov(a).(8.5)

The notation τmov(a) denotes the typical time required for an elementary particle to
move a displacement equal to its size a, either by advection or diffusion. It can be
estimated to scale with respect to physical parameters as follows:

τmov(a) ≈ min(Ca/vfrc, C
′a2/D).

In the regime 8.5, the numerical error scales as:

(8.6)

êfld,k(∆t) ≈ MF ∗L2

µ|k|2 δ̂∗a,k

(
M

ℓF
+ C

1

a

)(
C′vfrc∆t+ C′′

√
D∆t1/2

)

(8.7)

efld(∆t) ≈
√
a

L

MF ∗

µL

(
M

ℓF
+ C

1

a

)(
C′vfrc∆t+ C′′

√
D∆t1/2

)

(8.8)

eprt(∆t) ≈ C
D

a
∆t

+

(
C′M

ℓF
+ C′′ 1

a

)(√
Dvfrc∆t

3/2 + v2
frc∆t

2
)

where D denotes the diffusion coefficient of an elementary particle defined in 6.5,
which scales with respect to the parameters as:

D ≈ C
kBT

µa
.(8.9)

The factors C denote order unity nondimensional constants. For the definitions of
the parameters of the method, see Tables C.2 and C.3.

The smaller powers of ∆t appearing in the error estimates may suggest that the
accuracy is deteriorating more rapidly with respect to the time step in the under-
resolved regime under discussion, but in fact the opposite is true. The error estimates
reported above are in fact considerably smaller than the error estimates in Subsec-
tion 8.1, for the range of time steps defining the under-resolved regime. Indeed, the
ratio of terms appearing in the above estimates to corresponding terms in the equa-
tions in Subsection 8.1 involve ratios such as ρL2/(µ|k|2∆t), D1/2/(vthm∆t1/2), and
L1/2a3/2ρ/µ∆t, all of which are much smaller than one in the asymptotic regime
defined by 8.5.

A more important point is that the numerical errors remain small relative to
the changes in the system variables throughout this range of time steps, so that the



ERROR ANALYSIS OF THE STOCHASTIC IB METHOD 29

numerical method maintains accuracy for all ∆t . τmov(a). We emphasize that unlike
traditional numerical analysis, the presence of terms proportional to ∆t in the error
estimate 8.8 does not imply that the method is inconsistent. It must be remembered
that these error estimates are good approximations not in the ∆t ↓ 0 limit, but rather
in the asymptotic regime 8.5. See (1) for a more detailed discussion.

8.3. Scaling for Intermediate Time Steps which Under-resolve Only

Some Fluid Modes. An important feature of the stochastic numerical scheme is
that time steps can be chosen which only partially resolve the dynamics of the fluid.
This corresponds to the time step ∆t falling into the range:

min
1

αk

. ∆t . max
1

αk

.(8.10)

In this case, there are in fact two asymptotic regimes of the time step for the
scaling of the numerical error:

ρa2

µ
≪ ∆t . max

1

αk

(8.11)

and

min
1

αk

. ∆t≪ ρa2

µ
.(8.12)

The first regime corresponds to the situation in which a significant number of the fluid
modes which influence the dynamics of the immersed structures is under-resolved over
a time step. The second corresponds to the case when all of the fluid modes which
contribute non-negligibly to the dynamics of the immersed structures are resolved
over a time step.

Most scaling estimates can be derived in a similar fashion to those in the other
time step regimes. Only the spatial fluid error (8.1) requires special attention because
it involves a sum over the errors of the fluid Fourier modes, which switch between two
forms depending on the magnitude of the wavenumber k. The critical wavenumber
for the transition between the regimes αk∆t≪ 1 and αk∆t≫ 1 is given by:

kc =

(
ρL2

µ∆t

)1/2

.(8.13)

We then split the sum over wavenumbers in 8.1 into two parts consisting of
wavenumbers for which the fluid dynamics are resolved and under-resolved. We shall
obtain the scalings using the following integral approximations for each part of the
sum:

∑

|k|≤kc

δ̂∗a,k ≈ C

∫ min{kc,L/a}

1

1

L3
r2dr(8.14)

and

∑

|k|>kc

δ̂a,k

|k|2 ≈ C

∫ L/a

kc

1

L3
dr.(8.15)
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In the first regime:

ρa2

µ
≪ ∆t . max

1

αk

,(8.16)

we have:

∑

|k|≤kc

δ̂∗a,k ≪ C

L3

(
ρL2

µ∆t

)3/2

(8.17)

and

∑

|k|>kc

δ̂∗a,k

|k|2 ≈ C

aL2
.(8.18)

From the scaling of the summation terms above, Table C.1, and using the best
approximation among the established bounds for the fluid and particle error for this
regime, the following estimates are obtained. For those fluid modes which are well
resolved in this regime (αk∆t≪ 1), we have from Proposition 7.2 that:

(8.19)

êfld,k(∆t) ≈ MF ∗

ρ
δ̂∗a,k

(
M

ℓF
+ C

1

a

)(
C′vfrc∆t

2 + C′′
√
D∆t3/2

)
.

For the under-resolved modes (with αk∆t≫ 1), we have the same error estimate 8.8
as in the fully under-resolved case.

The errors incurred in the physical space variables describing the velocity and
elementary particle positions can be estimated in this asymptotic regime as:

(8.20)

efld(∆t) ≈ MF ∗

ρν3/4L3/2

(
M

ℓF
+ C

1

a

)(
C′vfrc∆t

5/4 + C′′
√
D∆t3/4

)

and

(8.21)

eprt(∆t) ≈ C
D

a
∆t

+

(
M

ℓF
+ C′ 1

a

)[√
Dvfrc∆t

3/2 + v2
frc∆t

2
]

where ν = µ/ρ.
In the second regime:

min
1

αk

. ∆t≪ ρa2

µ
,(8.22)

we have:

∑

|k|≤kc

δ̂∗a,k ≈ C

a3
(8.23)
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and the contribution from large wavenumbers is comparatively negligible. For these
time steps, all error estimates presented in Subsection 8.1 for the fully resolved regime
remain good approximations for the particle error, spatial fluid error, and resolved
fluid Fourier mode errors. The estimate for the individual under-resolved fluid modes
can be improved in this intermediate regime using Proposition 7.3 to obtain:

êfld,k(∆t) ≈ MF ∗L2

µ|k|2
(
M

ℓF
+ C

1

a

)
δ̂∗a,k (C′vfrc + C′′vthm)∆t.(8.24)

As with the other regimes, the estimates can be used to show that the errors are small
relative to the magnitude of the changes of the actual system variables over a time
step. For a further discussion see (1).

9. Conclusions. By using stochastic calculus to integrate analytically some of
the degrees of freedom in the immersed boundary method with thermal fluctuations,
a stable and accurate numerical method was obtained, even in regimes when the time
step is larger than some time scales of the system. In this paper it was shown how
numerical analysis can be carried out for the method, including the regimes where
some dynamical features of the system are under-resolved.

The basic approach was to decompose the error contributions of the fluid and
particle degrees of freedom in such a manner that general bounds holding uniformly
for all time steps could be obtained in terms of the correlation functions ψ, φ of
the system, as defined in 3.17 and 3.18. The terms of the general bound were then
further developed by obtaining more specific estimates of the correlation functions for
each time step regime. The scaling of the estimates with respect to the parameters
of the method were then developed. The scaling of the estimates yields information
about how the error behaves in each regime, giving insight into how to determine an
appropriate time step or into numerical issues that can arise for specific parameter
regimes when using the method in practice. The numerical analysis shown in this
paper for the stochastic immersed boundary method may also be applicable in a
similar fashion to other “multiscale” explicit integrators which under-resolve dynamics
on small time scales arising from stochastic forcing terms.
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Appendix A. The Autocorrelation Function of the Velocity Field of the

Fluid. In this section the autocorrelation function is computed for the component

of the velocity field
⊓
um which is driven by the thermal force, as defined below 3.9.

This is done by representing the velocity field in Fourier space and computing the
autocorrelation function for each mode k. From equation 3.6 and 3.8 and standard
stochastic calculus, the steady-state autocorrelation function of the kth mode when
s > r is

E

(
⊓

ûk (s)·
⊓

ûk (r)

)
(A.1)

= 2DkE

(∫ s

−∞

e−αk(s−w)℘⊥
k
dB̃k(w) ·

∫ r

−∞

e−αk(r−q)℘⊥
k
dB̃k(q)

)
,(A.2)

where the notation ℘⊥
k

denotes projection orthogonal to ĝk as defined in 2.16.
By applying Ito’s Isometry to A.2, and observing the symmetry under the inter-

change s↔ r, the autocorrelation function is given by

E

(
⊓

ûk (s)·
⊓

ûk (r)

)
=

{
3Dk

αk

e−αk|s−r| if k ∈ K
4Dk

αk

e−αk|s−r| if k 6∈ K(A.3)

= Υk

kBT

ρL3
e−αk|s−r|,

where

Υk =

{
3, k ∈ K
2, k 6∈ K,(A.4)

and the index set K is defined in 2.18. The factor Υk arises from the incompressibility
constraint 2.15, the real-valuedness constraint 2.21, and the dimensionality of the
space orthogonal to ĝk.
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The spatio-temporal correlation function of the thermal velocity field
⊓
u is then

given by:

E
(
⊓
um (s)· ⊓

un (r)
)

=
∑

k

∑

k′

E

(
⊓

ûk (s)· ⊓
uk′ (r)

)
exp (i2π(n · k′ − m · k)/N)

=
∑

k

E

(
⊓

ûk (s)·
⊓

ûk (r)

)
exp (i2π(n− m) · k/N)(A.5)

=
kBT

ρL3

∑

k

Υke
−ak|s−r| exp (i2π(n− m) · k/N) .

To obtain the second equality, we used the statistical independence of the Fourier
modes of the velocity field when the indices k and k′ are distinct and do not correspond
to conjugate modes (see 2.21). When the indices k and k′ do refer to conjugate, but
distinct, modes then the average vanishes because a mean zero random variable Z
with independent and identically distributed real and imaginary components satisfies
〈Z2〉 = 0. The last equality follows by substitution from equation A.3.

Appendix B. Technical Properties of the Particle Representation Func-

tion δa.
Throughout the paper it will be useful to consider the Fourier coefficients of the

function δa(x − X) used to represent an elementary particle situated at position X.
While the function is defined for all x ∈ Λ, it is often useful to consider the restriction
of the function to the discrete lattice points {xm = m∆x|m ∈ Z

3
N}.

We will use the following notation to denote the discrete Fourier transform of the
particle representation function restricted to the lattice:

δ̂a,k(X) =
1

N3

∑

m

δa(xm − X) exp (−i2πk ·m/N) .

The dependence of the Fourier coefficients on the particle position X (relative to the
lattice) is explicitly noted. When the dependence on X is not explicitly noted, then
we will be referring implicitly to the discrete Fourier transform of the delta function
when centered on a lattice point: δ̂a,k := δ̂a,k(0).

Continuous differentiability of δa (part of Assumption A3) implies the existence
of a global Lipshitz constant Lδ,k for the shift dependent Fourier coefficients of δa so
that:

|δ̂a,k(y) − δ̂a,k(x)| ≤ Lδ,k|y − x|.(B.1)

In implementations, the δa depends only on the parameter a as a length scale para-
meter:

δa(x) =
1

a3
φ

(
x(1)

a

)
φ

(
x(2)

a

)
φ

(
x(3)

a

)
,(B.2)

where φ(r) is a non-dimensional “shape” function for an elementary particle. More-
over, this shape function has the property that the sum of φ over any translate of the
integer lattice is equal to one (29). From these properties of the particle representation
function, we can readily derive the following asymptotics for the Fourier coefficients:

δ̂∗a,k ≈
{

1/L3 |k| ≪ L/a
0 |k| ≫ L/a

.(B.3)
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and also establish the existence of a constant C independent of all parameters such
that:

|Lδ,k| ≤ C/a.
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Appendix C.

Table C.1

Scaling of Key Terms

αk ∝ µ|k|2/ρL2
P

m
δ2

a(xm)∆x3 ∝ 1/a3
P

m
(∇δa(xm))2 ∆x3 ∝ 1/a5

Aa ∝ a3
P

k
δ̂a,k ∝ 1/a3

P
k

∇δa,k ∝ 1/a4

B0 ∝ MF ∗/µa
P

k
δ̂a,k/|k|2 ∝ 1/aL2

P
k

∇δa,k/|k|2 ∝ 1/a2L2

LF ∝ MF ∗/ℓF

P
k

δ̂2

a,k/|k|2 ∝ 1/aL5
P

k

�
∇δa,k

�2

/|k|2 ∝ 1/a3L5

|δ∗a| ∝ 1/a3
P

k
δ̂2

a,k/|k|4 ∝ (1/L6)
Lδ,a ∝ 1/a4
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Table C.2

Parameters of the Numerical Method

Parameter Description
kB Boltzmann’s constant
T Temperature
L Period Length of Fluid Domain
µ Fluid Dynamic Viscosity
ρ Fluid Density
a Effective Elementary Particle Size (approximate radius)
N Number of Grid Points in each Dimension
M The Number of Elementary Particles
∆t Time Step
∆x Space Between Grid Points L/N
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Table C.3

Notational Conventions

Notation Description
δa Representation function of an immersed elementary particle of size a.
δa,k The kth Fourier coefficient of the particle representation function, as defined in Appendix B.

δ̂∗a,k The maximum value of the kth Fourier coefficient defined in Appendix B.

Lδ,k The Lipschitz constant defined in B.1 of the Fourier coefficient δa,k defined in Appendix B.
Lδ,a The Lipschitz constant of the function δa(x)
αk Damping time scale of the kth Fourier mode, defined in 2.14.
Dk Strength of the thermal forcing of the kth Fourier mode, defined in 2.20.
℘⊥

k
Incompressibility projection operator, defined in 2.17.

um Fluid velocity at the mth grid point.
ûk The kth Fourier mode of the fluid velocity field.
U Smoothed fluid velocity field for elementary particles, defined in 2.10.
xm Position vector of the mth Eulerian grid point.
X[j] Position vector of the jth elementary particle.
D The particle diffusion coefficient, defined in 6.5.
Aa The volume of the region over which δa is non-zero.
Υk Mode dependent factor in the velocity autocorrelation function, defined in A.4.
fprt Force density arising from the immersed structures.
fthm Force density arising from the thermal forcing.

f̂k The kth Fourier mode of the force field.
F ∗ The largest force acting on an individual elementary particle.
B0 The maximum fluid velocity induced by the structural forces, defined in 4.7.
LF The Lipschitz constant of the structural force field, defined in 4.2.
ℓF Length scale associated with the structure force: LF = F ∗/ℓF .
vfrc Typical particle velocity arising from the forces, MF ∗/µa.
vthm Typical particle velocity arising from thermal fluctuations, kBT/ρa

3.


