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We develop topological methods for characterizing the relationship between polymer chain entanglement and
bulk viscoelastic responses. We introduce generalized Linking Number and Writhe characteristics that are appli-
cable to open linear chains. We investigate the rheology of polymeric chains entangled into weaves with varying
topologies and levels of chain density. To investigate viscoelastic responses, we perform non-equilibrium molec-
ular simulations over a range of frequencies using sheared Lees-Edwards boundary conditions. We show how
our topological characteristics can be used to capture key features of the polymer entanglements related to the
viscoelastic responses. We find there is a linear relation over a significant range of frequencies between the
mean absolute Writhe Wr and the Loss Tangent tan(δ). We also find an approximate inverse linear relation-
ship between the mean absolute Periodic Linking Number LKP and the Loss Tangent tan(δ). Our results show
some of the ways topological methods can be used to characterize chain entanglements to better understand the
origins of mechanical responses in polymeric materials.
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I. INTRODUCTION

A central aim in polymeric material science is to under-
stand the relationships between chemistry, molecular-level in-
teractions, and bulk material properties. We consider poly-
meric materials and develop approaches for investigating the
relationship between the topology of polymeric chain interac-
tions and the resulting bulk viscoelastic mechanical responses.
The collective configurations of the chains can result in com-
plex entangled structures that greatly restrict chain motions
and augment transmission of mechanical stresses within the
material [7, 9, 49]. Characterizing the intuitive notion of en-
tanglement in a way that is quantitatively precise poses many
interesting challenges. For instance, entanglement in poly-
mer melts or gels often involves kinetics over a broad range
of time-scales with collective responses that often depend on
both the frequency and duration of the mechanical pertur-
bations. In addition, the polymer chains often exhibit fric-
tion with respect to one another or coupling from immersion
within a solvent fluid. This can result in significant variations
in the viscoelastic responses that may depend sensitively on
frequency [3, 4, 9].

When investigating polymer chain entanglement, a com-
mon approach is to consider two length and time scales. First,
there is the length and time scale of the entire chain, where
global entanglement occurs as the chains get knotted and
linked to each other [2, 9–11, 26, 28]. Second, one has lo-
cal entanglement arising from the local constraints, obstacles,
that a chain feels over a small length and time scale. This
entanglement length often plays a central role in models of
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entangled polymer dynamics and is closely related to the tube
diameter in tube model theories [22, 30, 49, 52, 55]. Under-
standing the relation between these scales poses a number of
challenges in practice. For instance, experimentally there are
different methods for the determination of the plateau mod-
ulus and different entanglement molecular weights give dif-
ferent results [36]. Since Edwards’ tube model, several im-
provements of this theory have emerged, but inconsistencies
still remain [8, 15, 35, 54]. Moreover, an even shorter length
scale, that of the packing length, has been shown to have an
influence and has been incorporated in some theories of poly-
mer viscoelasticity [18, 56, 60].

The relation between entanglement and viscoelastic prop-
erties of materials has been studied indirectly by varying
the density or molecular weight of the chains thereby influ-
encing the number of contacts between neighboring chains
[17, 25, 29, 50, 59]. A measure of polymer entanglement
that has been very helpful in such studies is the number of
”kinks” per chain, which is derived from the application of a
contour reduction algorithm on a polymer melt [5, 17, 29, 59].
However, the global entanglement complexity is more subtle
and cannot be assessed by only measuring the number of con-
tacts. This has led to the use of tools from knot theory to study
entanglement in polymers [10, 11, 16, 17, 19, 31, 46]. The
difficulty in using tools from knot theory is that they are de-
fined on simple closed curves in space (rings) while the poly-
mers often have other architectures, such as being open linear
chains. Toward dealing with this issue, a new statistical def-
inition of knotting was introduced in [38]. This method can
determine the principal knot type of a fixed configuration of
an open chain. However, the polymer chains move in time and
this method may have problems when applied to study entan-
glement in non-equilibrium conditions. Moreover, the tools
from knot theory have not yet been developed sufficiently for
polymeric systems with three-dimensional Periodic Boundary
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Conditions (PBC) which are often used in practice [40].

In our work, we take a complimentary approach building on
mathematical ideas from topology and geometry to quantify
the complexity of the polymer entanglements. We introduce
two quantities referred to as the collective “Linking Number”
and “Writhe” [41–43]. The advantage of the Gauss linking
integral is that it can be applied to both linear and ring poly-
mers and it is a continuous function of the chain coordinates.
Moreover, in [41] it has been shown that it can be extended
to systems with 1,2 or 3 PBC to provide a new continuous
measure of entanglement. These measures have been applied
to study polymer entanglement in both equilibrium and non-
equilibrium conditions. More precisely, it was shown that the
writhe in combination with the Z1 algorithm can provide a
new estimator of the entanglement length with several advan-
tages over other estimators and our proposed measures have
also been used to understand the dis-entanglement of poly-
mer chains in a melt under an elongational force [42–44].
Recently, the Gauss linking integral has been also used to
study protein folding kinetics [? ]. These results indicate the
promise of such topology-based estimators in polymer theo-
ries.

Here, we develop further these topological approaches for
characterizing polymer entanglements within non-equilibrium
systems subject to external materials deformations, such as
oscillatory shearing. To investigate viscoelastic responses,
we develop methods for non-equilibrium three-dimensional
molecular simulations with shearing Lees-Edwards periodic
boundary conditions (LE-PBC) [32]. We use our approach to
study the frequency dependent viscoelastic responses and re-
lationships to the underlying topology of the polymer chain
entanglements.

We consider in our investigations polymeric weaves which
have well-controlled topological properties that we can vary.
We consider polymeric systems that have local topologies
arising from short linear polymer chains and those with global
topologies arising from long linear polymer chains. We also
vary density to consider systems ranging from weakly entan-
gled to strongly entangled. Our topological approaches al-
low us to investigate both the local and global entanglement
effects. We find an approximate linear relation over a large
range of frequencies between the mean absolute Writhe Wr
and the loss tangent tan(δ). We also find an approximate in-
verse linear relationship between the mean absolute Periodic
Linking Number LKP and the loss tangent tan(δ). We expect
our topological approaches could be useful in gaining addi-
tional quantitative information relevant to understanding the
mechanics of polymeric materials.

We organize the paper as follows. In Section II we in-
troduce approaches from knot theory to precisely character-
ize the topology of the polymeric chains. In Section III we
describe a class of polymeric materials having a weave-like
topology. In Section IV, we discuss the details of our com-
putational methods and simulation approaches. In Section V,
we present our results and discuss relationships revealed by
our methods between the topology of the polymer entangle-
ments and bulk material responses.

II. CHARACTERIZING POLYMER ENTANGLEMENT

We measure the degree to which polymer chains interwind
and attain complex configurations using the Gauss Linking
Integral [21]. We define the Gauss Linking Number as

(1)

L(l1, l2) =
1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))

||γ1(t)− γ2(s)||3
dtds.

We use this for two disjoint (closed or open) oriented curves
l1 and l2 whose arc-length parametrizations are respectively
γ1(t), γ2(s). The double integral is over l1 and l2. In this no-
tation (γ̇1(t), γ̇2(s), γ1(t) − γ2(s)) denotes the scalar triple
product of γ̇1(t), γ̇2(s) and γ1(t)−γ2(s). The Gauss Linking
Number is a topological invariant for closed chains and a con-
tinuous function of the chain coordinates for open chains. We
also define a one chain measure for the degree of intertwining
of the chain around itself.

We define the Writhe of a chain as

(2)

Wr(l) =
1

4π

∫
[0,1]

∫
[0,1]

(γ̇(t), γ̇(s), γ(t)− γ(s))

||γ(t)− γ(s)||3
dtds.

For a curve ` with arc-length parameterization γ(t) is the dou-
ble integral over l. The Writhe is a continuous function of the
chain coordinates for both open and closed chains.

For systems employing Periodic Boundary Conditions
(PBC), the linking that is imposed from one simulated chain
on another chain propagates in three dimensional space by the
images of the other chain. In other words, for a system with
PBC each simulated chain gives rise to a free chain in the peri-
odic system which consists of an infinite number of copies of
the simulated chain. We call each copy of a chain an image of
the free chain. It has been shown that a measure of entangle-
ment that can capture the global linking in a periodic system
is the periodic linking number LKP [41]:

We define the Periodic Linking Number as

LKP (I, J) =
∑
v

L(Iu, Jv), (3)

The I and J denote two (closed, open or infinite) free chains
in a periodic system. Suppose that Iu is an image of the free
chain I in the periodic system. The sum is taken over all the
images Jv of the free chain J in the periodic system. We say
that the Periodic Linking Number LKP is between two free
chains I and J .

The Periodic Linking Number is a topological invariant for
closed chains and a convergent series for open chains that
changes continuously with the chain coordinates. For its com-
putation, we use a cutoff, the local Periodic Linking Num-
ber [41, 44].

III. POLYMERIC MATERIALS WITH WEAVE-LIKE
ENTANGLEMENTS

We study the role of entanglement topology in the mechan-
ical responses of polymeric materials. We consider both the
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case when the global topology is fixed and when the topol-
ogy can change over time for a few different weave entangle-
ments, see Figures 1 and 2. We investigate how mechanical
responses depend on the topology, chain density, or whether
the polymers are to be considered open chains or closed (infi-
nite) chains.

Figure 1. We consider polymeric chains entangled with weave-like
topologies. The weave0 (w0) denotes case with aligned chains,
weaveI (wI) the case with smaller density of orthogonal and non-
interlaced chains, weaveII (wII) the case with larger density of or-
thogonal and non-interlaced chains, and weaveIII (wIII) the case with
alternating interlaced chains.

Figure 2. We show the entaglements of the polymer chains of wIII.
The weave wIII has a topology with alternating interlaced chains.
We see the chains in the x direction which alternatingly go over and
under chains in the perpendicular y direction. We show one chain in
the x-direction (orange curve) that can be seen locally to meet with
three chains in the perpendicular y direction.

We refer to chains as closed when they are very large rela-
tive to the length-scale of the entanglements. In practice, we

can think of these as effectively infinitely long chains. These
chains have the important property that in computations no
end-points occur within the simulation box. These chains are
treated as extending periodically to create a toopology corre-
sponding to an infinite weave.

We refer to chains as open when they are finite in length.
These chains are open in the sense they always have end-
points within the simulation box. These chains can still cross
the periodic boundary where they interact with the periodic
image points generated by the unit cell. In this case, the
topology of the material simulated can change over time in
response to the deformations and stresses of the material.

We consider in our studies the specific weave topologies
referred to as (w0) for aligned, (wI, wII) for orthogonal non-
interlaced at different densities and (wIII) alternating interlac-
ing. We show the base-line chain density and lengths in Table
I. We show example configurations of each of these weaves in
Figures 1, 2.

We start with the weave w0 which has a relatively simple
global topology. The polymers are simply arranged parallel to
one another without any entanglement, providing a good ref-
erence case for topology and responses. We then consider the
weaves wI and wII that arrange polymers in a regular criss-
cross patterm. Both wI and wII have the same global topol-
ogy, but we take these to have different densities. We take
weave wIII to be an inter-woven topology alternating in-out
entanglements. We take wIII to have the same density as wII.
The weave wIII has a non-trivial global topology. As a result
of the polymer sterics preventing the crossing of chains, the
global topology of the infinite systems cannot change without
breakage of the bonds. It should be noted that the local con-
figurations of the chain interactions can lead to local entan-
glements that change over time under the global constraints
of the topology.

We create open chain systems for w0, wI, wII, wIII by
deleting the same bond from each chain in the simulation box.
Given the periodicity this creates a standard procedure for ob-
taining an initial open-chain configuration. As a result of the
polymer sterics preventing the crossing of chains, the global
topology of the infinite systems cannot change without break-
age of the bonds. In contrast to the infinite chain systems,
the global topology of the open chain system can change over
time by slippage of the chains past the entanglements. This
creates the possibility in response to mechanical reformations
for topology rearrangements over time.

We investigate the mechanical responses of the material
by subjecting the polymeric chains to an oscillatory shear
through deformation of the simulation box in the style of
Lees-Edwards [32]. This provides us with shear stresses for
the material which we can correlate with simultaneous mea-
surements of the chain density and topology of the materials.
We remark that similat to our polymeric weave configurations,
there have also been studies using weaves for investigating
metal organic frameworks and crystals [14].
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Weave Topology Density MW (open)
W0 parallel, non-interlaced 0.0625 (15 amu/nm3) 20 m0

WI orthogonal (non interl.) 0.1875 (45 amu/nm3) 20 m0

WII orthogonal (non interl.) 0.33 (80 amu/nm3) 15 m0

WIII alternating interlaced 0.35 (84 amu/nm3) 21-17 m0

Table I. Densities associated with the polymeric weaves shown in
Figure 1

IV. SIMULATION OF THE POLYMERS

We investigate entangled polymeric chains using three-
dimensional molecular simulations. The polymers are treated
as elastic macromolecules modeled with harmonic bond po-
tential of energy E = Kb(r − r0)2, Kb = 250, r denotes
the length of extension of the polymer bonds and r0 = 1 de-
notes the rest length of the bond. The polymer bending stiff-
ness is controlled with a harmonic angle potential with energy
E = Kθ(1− cos(θ− θ0)), with Kθ = 8, where θ is the angle
between two consecutive bonds. The rest angle is θ0 = π. The
length of the simulation box is approximately 20σ. Each poly-
mer chain has approximately 20 monomers inside the simula-
tion box for the densities and parameters given in Tables I
and II. With this choice of Kθ, the chains have persistence
length of approximately 1/5 of the length of the simulation
box. With these potentials, there is no maximum permitted
length or bond angle constraints, but there is a high energy
penalty for large deviations from the rest length. This does not
exclude the possibility of chains crossing through each other,
especially for large deformations. Our results however, show
that chain crossings are rare enough so as to not influence the
qualitative effects of entanglement observed here (see Section
V). The beads of our polymers interact through the Lennard-
Jones (LJ) potential with energy

ELJ = 4ε

((σ
r

)12
−
(σ
r

)6)
(4)

We use a cutoff of 2.5σ. We simulate the finite tempera-
ture and kinetics of the polymer chain dynamics using the
Langevin Thermostat

m
dV

dt
= −ΥV −∇Φ(X) +

√
2kBTγ

dBt
dt

. (5)

The X denotes the position of the atoms, V = dX/dt is the
velocity, −∇Φ(X) denotes the interaction forces, Υ denotes
the friction coefficient, and

√
2kBTγdBt/dt denotes the ran-

dom force accounting for thermal fluctuations [20]. We per-
form all simulations using the LAMMPS molecular dynamics
package and our custom extension packages [45, 62].

To study the bulk mechanics of the polymeric system, we
perform rheological studies using oscillatory shearing mo-
tions based on Lees-Edwards boundary conditions [32]. In
Lees-Edwards conditions, periodic boundary conditions are
used with shifted image interactions. We use a sinusoidal os-
cillation of the displacement L(t) = L0+A sin(2πt/Tp) with
amplitude A and time periodicity Tp. This corresponds to a

cosine oscillation of the strain with rate γ̇ = γ̇0 cos(ωt) where
ω = 2π/Tp and γ̇0 = Aω.

As a measure of material response, we consider the dy-
namic complex modulusG(ω) = G1(ω)+ iG2(ω). The com-
ponents are defined from measurements of the stress as the
least-squares fit of the periodic stress component σxy by the
function g(t) = G1(ω)γ0 sin(ωt) + G2(ω)γ0 cos(ωt). This
offers a characterization of the response of the material to os-
cillating applied shear stresses and strains as the frequency ω
is varied. The G1 is referred as the Elastic Storage Modu-
lus and G2 is described as the Viscous Loss Modulus. These
dynamic moduli are motivated by considering the linear re-
sponse of the stress components σxy to applied stresses and
strains. At low frequency the polymer stresses appear to have
sufficient time to equilibrate to the applied shear stresses. At
high frequencies, the polymer stresses do not appear to have
sufficient time to equilibrate to the applied shear stresses. This
is manifested in σxy(t) which is seen to track the applied
stress very closely. A phase lag 0 is representative of solids
and π/2 is representative of liquids. This delay is caused by
propagating the stress through the domain via the chain topol-
ogy. The increase ofG2 indicates that the mechanics arises ef-
fectively from chains’ resistance to more rapid motions, such
as sliding, while the increase of G1 indicates in the mechan-
ics a resistance to direct deformation represented by increases
in the elastic bond lengths or from the bending stiffness of
chains.

To estimate the dynamic complex modulus in practice,
the least-squares fit is performed for σxy(t) over the entire
stochastic trajectory of the simulation after some transient pe-
riod of approximately 10T (see Table IV), which is of the or-
der of the diffusion time of the open chains under study. In
our simulations, the maximum strain over each period was
chosen to be half the periodic unit cell in the x-direction, cor-
responding to a strain amplitude γ0 = 1

2 . A description of the
parameters and specific values used in the simulations can be
found in Tables II and III. We notice that the applied strain is
large and would imply a nonlinear regime for polymer melts.
However, the systems considered in this study are polymer so-
lutions of very low molecular weight and our results indicate a
linear regime so we can neglect higher harmonic contributions
to stress [61].

The effective stress tensor associated with the polymers at
a given time is estimated using the Irving-Kirkwood method
[9, 24]

σl,k =
1

V

∑
n

n−1∑
j=1

〈
f
(l)
j · (x

(k)
qn − x

(k)
qj )
〉

(6)

where V is the volume of the periodic box, x(k)qv is the k-th
coordinate of the qv-th atom (the minimum image convention
is used for the difference) and f (l)j is the l-th coordinate of the
pairwise interaction between the two atoms.
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Parameter Description Value
σ monomer radius 1.0 nm
ε energy scale 2.5 amu · nm2/ps2

m0 reference mass 1 amu
wc energy potential width 2.5σ
m monomer mass 240 m0

τ LJ-time-scale σ
√
m0/ε = 0.6 ps

kBT thermal energy 1.0 ε
ρ solvent mass density 39 m0/σ

3

µ solvent viscosity 25 m0/τσ
Υ drag coefficient 476 m0/τ

Table II. Parameterization for the polymer weave models.

Parameter Description Value
Eb harmonic bonds potential constant 619.5 amu/ps2

b harmonic bonds rest length 1.0 nm
Eθ harmonic angle potential constant 19.8 amu · nm2/ps2

θ0 harmonic angles’ rest length 180o

Table III. Parameterization for the stiffness and connectivity of the
polymer chains.

Table IV shows how the simulation time and oscillation
period range compare to characteristic times in our systems
(computed using the parameters used in our simulations,
shown in the previous tables). The advection time is com-
puted as τA = m/Υ. The Rouse time, τR, is computed for
an ideal chain of length 20. The critical time τ0, refers to the
characteristic time where cross-overs are observed in our sim-
ulations, shown in Section V. Notice that we do not report an
entanglement time because our chains are short (with number
of discrete local topological constraints Z < 2 in many cases)
and the notion of entanglement length does not apply to them.

Parameter Description value
τA advection time propagation in fluid 0.0013 ps
τD diffusion time monomer moves a dist. σ 302 ps
τR Rouse time ideal chain N = 20 6937 ps
τ0 critical time cross-over reference time 598 ps
T period of oscillation 6ps < T < 3600ps
t simulation time longest simulation time 150ps < t < 90000ps

Table IV. Characteristic time scales

V. BULK MECHANICAL RESPONSES

A. Complex modulus

We show the log-log plot of the Elastic Storage Modulus
G1 and Viscous Loss ModulusG2 for all the infinite and open
weave polymeric materials as the shear response frequency is
varied in Figure 3. The frequency of oscillation is normalized
by ω0 = 2π/τ0 where τ0 = 943τ = 598ps = 1.98τD is
a time-scale on the order of the diffusion time τD (see Table
IV).

Figure 3. Polymer Weave Frequency Response: Dynamic Moduli.
The Elastic Storage and Viscous Loss Moduli of the infinite chain
weaves are shown above and those of the open chain weaves be-
low. The infinite weaves behave like crosslinked polymers with a
primarily elastic behavior throughout the range of frequencies sim-
ulated. The exponents 1/2 and 1/4 are similar to those in the Rouse
model[12]. The open weaves transition from an elastic to a viscous
behavior as frequency is varied. The exponents 3/4 and 3/2 indicate
the predicted scaling for semi-dilute solutions of semi-flexible chains
and for the BEL model respectively [12]. The slope increases with
decreasing topological complexity.

Comparing G1, G2 for the infinite weaves we see that, in
the range of frequencies studied, we have G1 > G2 for all
the simple weaves. The crossover of G1 and G2 is absent
for those systems within this range of frequencies, which in-
dicates no behavioral transition in the samples which exhibit
solid properties. When G1 is larger than G2 the elastic re-
sponse is dominant indicating there is relatively few poly-
mer rearrangements (reptation) within the network structure.
This indicates that energy is mainly stored elastically in the
stretching and bending of bridging polymeric chains. This
can be verified by our Writhe quantity for the chains as it
reaches a minimum at the extrema of the oscillatory strain pe-
riod within this regime (see Section V B). The systems with
large G1 behave like stiff materials having strong entangle-
ments similar to imperfect networks having transient covalent
crosslinking [6, 23, 34, 39, 47, 48, 58]. This indicates that
polymer solutions of long linear semiflexible chains can be-
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have like crosslinked networks, even in the absence of explicit
crosslinks.

Initially, G1 and G2 are independent of the frequency of
oscillation and we see a crossover at frequency ω0 that cor-
responds to period τ0. At frequencies higher than ω0 (pe-
riod times shorter than τ0) there is a significant dependence
of moduli on the frequency which increases with increasing
topological complexity. This is in agreement with predictions
for polymeric networks [12]. The line segments shown in the
figure indicate a scaling between ∼ ω1/4 and ∼ ω1/2, respec-
tively, to be compared with that of Rouse chains.

The alternate interlacing weave, wIII, is the only infinite
weave for which G1, G2 intersect and for which G1 and G2

both seem to scale as ω1/2 in the intermediate frequencies.
Moreover, for wIII, G1 ≈ G2, with G1 < G2 for low fre-
quencies. We find that the original configuration of wIII is not
favorable to the stiffness of the chains and the chains need to
stretch resulting in a larger G1. This causes extra collisions
with other chains which results in larger values of G2 as well.
At high frequencies, we notice a shift from filament bending
to stretching which results in higher values of G1. Such tran-
sitions have also been observed in networks of actin filaments
[27, 33].

Comparing G1, G2 for the open systems we find that both
G1 and G2 are initially constant up to ω ≈ ω0 and then in-
crease and intersect at ω ≈ 10ω0. We have G2 < G1 for
ω < 10ω0 and G1 < G2 for ω > 10ω0. This suggests
two critical times in the polymer chain dynamics. The first is
τe = τ0/10 and the second is τ0 at which we find have a trend
of slightly increasing with decreasing density of the systems
as predicted in [37]. We find that with increasing frequency
the response tends to become dissipative.

At low frequenciesG1 ∼ ω1/2 we find the trends follow the
Rouse model. For larger frequencies we find that G1 ∼ ω3/2,
G2 ∼ ω3/4 and then G1, G2 tend to a plateau value. Sim-
ilar scalings were reported in [63] and in [61] for polymer
solutions of linear FENE chains of similar molecular weight,
which further shows that the use of harmonic bonds does
not significantly influence our findings. We find a decreas-
ing slope of G1 for increasing entanglement which suggests a
slower relaxation mechanism.

Figure 4. Polymer Weave Frequency Response: Loss Tangent. The
infinite systems behave like crosslinked polymers with a loss tan-
gent less than 1 at all frequencies. The open chains transition from a
liquid-like behavior to that of a solid-like behavior as the frequency
increases. The inset plot shows the log-log plot for open chains.
These results show that the crossover frequency increases with de-
creasing topological complexity. Similarly, the slope of decrease in-
creases with decreasing topological complexity.

We show the loss tangent as a function of the frequency of
oscillation in Figure 4. We remark that tan δ can be inter-
preted as reflecting the strength of what is sometimes called
“colloidal forces”. In other words, if tan δ < 1 then the par-
ticles are highly associated and sedimentation could occur. If
tan δ > 1, the particles are highly unassociated. The loss
tangent is almost constant, close to 0, for all the simple infi-
nite weaves (w0,wI,wII). The values of the open weaves are
greater than one and then decrease to the values of the cor-
responding infinite weaves. The asymptotic ordering of the
phase lag of the systems is w0 < wI < wII < wIII .

We find that, our data at larger frequencies that all the ma-
terials behave like elastic solids, as is often seen in large fre-
quency responses. The inset graph shows the corresponding
log-log plot only for the open systems. It reveals a cross-over
at approximately ω0, which corresponds to times on the or-
der τ0. This time-scale could be related to the entanglement
time as in [13, 57]. This characteristic time-scale, seems to
decrease with the topological complexity of the weave. The
large frequency tail of tan δ decreases more slowly with in-
creasing topological complexity and density indicating a sub-
stantial dissipation effect related to entanglement.

B. Conformational analysis

We show configurations of the polymer weaves at different
times during deformation in Figure 5. For the small oscil-
lation frequencies, the infinite chains follow the deformation
of the defining box, attaining an s-shape conformation. The
open chains, significantly rearrange in time and tend to avoid
the boundary by aligning with the orientation of the deforma-
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tion. This process happens more slowly for wI and even more
slowly for wII and wIII systems due to topological obstacles.
We note that the chains tend to form bundles of chains, giv-
ing an inhomogeneous material, suggesting that the inhomo-
geneity decreases with increasing density and entanglement
complexity. Similar phase separation of polymer solutions in
oscillatory shear has been observed experimentally in [51].

We find the transition from bundle-dominated structures to
entanglement dominated structures is related to the entangle-
ment of the chains as has been also reported in [53]. A possi-
bility for the bundle formation is finite-size effects. To exam-
ine that, we performed similar simulations in equilibrium in
the NVE and in the NPT ensemble for the w0 infinite system.
In both cases, bundle formation occured rapidly in the simu-
lation. This indicates that the bundle formation is not a finite
size effect.

We propose that the chains bundle together in order to de-
crease their deformation which occurs due to thermal fluctu-
ations and due to the deformation of the cell. As the chains
bundle, they form tubes of chains. A larger diameter tube re-
sists the deformation stronger than the individual chains. This
larger tube structure is apparent in the w0 infinite system. The
same happens in two and three directions respectively for wI,
wII and wIII. This also happens transiently at initial times for
the open systems. At first the open chains form these bundles
then they keep rearranging and entangling further until finally
forming globules.

Our topological methods can be used to more precisely
characterize the conformational features of the chains. We do
this by measuring the Writhe and the Periodic Linking Num-
ber topological quantities that we introduced in Section II.
We remark that the chains in our system are loosely entan-
gled relative to highly knotted systems yielding, as a conse-
quence, Periodic Linking Numbers and Writhe that are less
than one. While the quantities appear small relative to those
of highly knotted systems, they still provide a useful char-
acterization of the collective configurations of the polymeric
chains of the material and their rearrangements. As our results
indicate these are useful in understanding the connection be-
tween topology and mechanical responses even in systems of
low molecular weight (below that of the entanglement length).

We find a very different behavior of the Writhe for the
weave of type w0 between the open and infinite systems (the
situation is similar for wI and wII). In the case of the infi-
nite periodic systems, the mean absolute Writhe of the chains
shows a sinusoidal behavior. This is seen most clearly when
the frequency of oscillation is small. During the shearing cy-
cle of the unit cell in our simulations, the Writhe is maximum
when the shear deformation is the least and the Writhe reaches
a minimum when the shear deformation is at its greatest. This
behavior is indicative of the chains stretching at the maximum
deformation and relaxing to a more entangled state when the
shear deformation is relaxed.

Figure 5. Polymer configurations subject to oscillatory shear. Con-
figurations at the end of simulations for the closed chain and open
chain systems. In both cases, the chains tend to form bundles. By
forming tubes of larger radius the chains decrease their individual de-
formation. For weave0, the open chains can significantly rearrange
their conformations to those of random coils and the system becomes
inhomogeneous, disconnected accross the periodic boundary. As the
entanglement complexity and density increases, the open chains can-
not fully escape their original conformations, forming tubular con-
nected domains (weaveI), lamellar structures (weaveI) and even re-
tain entanglement percolation in three dimensions (weaveIII).

In the case of open systems, the mean absolute Writhe of
the chains also follows a sinusoidal behavior, but it changes
significantly in time. This happens because the chains are free
to attain any possible configuration and tend to disentangle
and relax to configurations similar to those of random coils.
Indeed, the final values are similar to those of a semiflexible
random coil of comperable length as reported in [43]. This
behavior becomes less pronounced as we increase the den-
sity and complexity of the weave because the disentanglement
time increases and the chains do not have sufficient time to re-
arrange.
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C. Topology and Mechanical Responses

We investigate both closed and open chain systems. The
closed chain systems were found to be less interesting since
the values of the Writhe and the Periodic Linking Number did
not change significantly as a function of the frequency of os-
cillation. This is as expected, since without breakage of bonds
the topology must remain close to that of the original configu-
ration. Similarly, the loss tangent of the infinite systems does
not change significantly throughout the experiment.

Here, we focus on the open chains systems where there is
the potential for significant rearrangements of polymer chain
configurations and topology. We show the mean absolute
Writhe of open chains as a function of the loss tangent for
small frequencies of oscillation in Figure 6.

We find a decay of the mean absolute Writhe with the loss
tangent and a clustering of the data for each system. It is
notable that the proposed Writhe measure groups together
the systems of similar material response. The clustering ob-
served for these systems indicates that the global entangle-
ment of the chains imposed by the original conformation af-
fects the response of the material significantly. These re-
sults show a relationship between Writhe and tan δ that scales
like 〈|Wr|〉 ∼ tan δ6/5. The responses at small frequen-
cies are clustered and ordered with their Writhe decreasing
as w0 > wI > wII > wIII .

We remark that as the frequency increases we found the
Writhe of the open systems tended to meet the values of their
corresponding closed (infinite) chain versions. This occurs
since the chains cannot escape their original configuration as
readily at large oscillation frequencies. For thewIII case, ap-
proximately the same values for open and closed chains were
found throughout.

Figure 6. Writhe and Loss Tangent of open chains for small frequen-
cies of oscillation (frequencies corresponding to periods T > 6τD).
We find a linear behavior of the Writhe as a function of the Loss
Tangent. The data points corresponding to the different weaves form
clusters. As the topological complexity of the weave decreases both
the Writhe and Loss Tangent increase.

Previous studies have shown that there is an almost linear
relationship between the number of kinks per chain and the
mean absolute Writhe of a chain in the case of a melt of linear
FENE chains [43]. The relationship emerges as a function of
the molecular weight in equilibrium conditions.

In non-equilibrium conditions, the relation becomes more
complex [42]. The viscosity can be obtained as the limit
η = limω→0G2(ω)/ω. Because the frequencies studied here
are relatively large, however, we can examine how the ra-
tio G2/ω depends on topology as a reference. Our results
for the smallest frequencies indicate that the Writhe of the
open chains decreases with G2/ω, suggesting a decrease of
the Writhe with viscosity, see Figure 7. The number of kinks
has been shown to increase with viscosity [2, 26]. A simi-
lar inverse behavior between the Writhe of the chains and the
number of kinks was observed in the initial time of an elonga-
tion of the chains [42].

Figure 7. Above: Writhe and G2/ω for open weaves at small fre-
quencies (log-log plot). The viscosity can be obtained as the limit
η = limω→0G2(ω)/ω. We find an indication that the Writhe de-
creases with viscosity, while Z shows the opposite relation to vis-
cosity [2]. Below: Periodic Linking Number as a function of G1

for open chains for small frequencies (log-log plot). The equilibrium
modulus can be obtained as the limit Geq = limω→0G1(ω). We
find an indication that Geq increases with increasing linking, similar
to what was reported for rings in [16].

We show the mean absolute Periodic Linking Number of
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the open systems at small frequencies as a function of the
loss tangent in Figure 8. We find that the mean absolute Pe-
riodic Linking Number decreases with the loss tangent for
tan δ > 1. We find significant clustering of the data corre-
sponding to the different systems. The clustering of the re-
sponses indicates that the imposed global topology of the ini-
tial configuration significantly affects the response of the ma-
terial. We remark that with increasing frequency we found the
open systems tended to the values of the corresponding infi-
nite systems. This occurs because, at large frequencies, the
open chains cannot escape their original configurations.

We see for tan δ > 1 the responses of the open systems
can be fit to the form 〈|LKP |〉 ∼ tan δ−5/4. The increase of
the linking number implies the presence of persistent entan-
glements. Persistent entanglements are tight contacts between
chains that significantly restrict their motion [1]. Such con-
tacts are likely to cause significant bond stretching under de-
formation that is followed by a decrease of the Loss Tangent.
These results indicate that interactions underlying mechanical
responses can be effectively captured by the Periodic Linking
Number.

Figure 8. Periodic Linking Number and Loss Tangent of open sys-
tems for small frequencies of oscillation (corresponding to periods
T > 6τD). We find that the responses corresponding to the different
weaves form clusters. The Periodic Linking Number increases with
weave complexity and decreases with loss tangent.

From our results we obtain information about the equilib-
rium modulus. The equilibrium modulus is defined as the
limit Geq = limω→0G1(ω). We show the storage modulus
for the smallest frequencies in Figure 7. Our results suggest
that the equilibrium modulus increases with the linking of the
chains. Interestingly, a similar linear relation between the en-
tanglement density as obtained from the Gauss linking inte-
gral and the shear modulus for ring polymers was reported in
[16].

Our results on the Writhe and Periodic Linking Number
show a competing relation between these two with respect to
the Loss Tangent. We provide a brief explanation for this ef-
fect. If the Writhe is large and the Periodic Linking Num-

ber is small, this can be interpreted as meaning the chains
attain random conformations with no significant topological
constraints. This would result in a behavior that is primar-
ily dissipative. This suggests that inter-chain contributions to
stress dominate through collisions of molecules induced by
the Brownian motion.

In contrast when the Writhe is small and the Periodic Link-
ing Number is large, we expect that the chains get stretched by
the presence of persistent entanglements. In this case, intra-
chain contributions to stress would dominate. As the ratio
〈|LKP |〉/〈|Wr|〉 increases, the persistence of entanglements
increases. This implies that the bond stretching increases,
which decreases the Loss Tangent. Therefore, we expect the
loss tangent to increase with the decreasing ratio of Periodic
Linking Number versus Writhe. In fact, this is confirmed in
our results as seen in Figure 9.

Our results show, for the open systems at small frequencies,
such a trend of the ratio of the Periodic Linking Number over
the Writhe as a function of the Loss Tangent. This indicates
that one can control the viscoelastic properties of a material
by controlling the ratio of the Writhe and Periodic Linking
Numbers of the constituent chains. This also suggests that
〈|LKP |〉/〈|Wr|〉 is a measure of the inter-chain contribution
versus the intra-chain contribution to the stress. This finding
may contribute to our understanding of the interplay between
these two contributions [56].

Figure 9. The ratio of the Periodic Linking Number over the Writhe
as a function of the loss tangent for open systems at low frequen-
cies. We see that the ratio 〈|LKP |〉/〈|Wr|〉 decreases with the loss
tangent. We also find the data can be fit to a relation of the form
〈|LKP |〉/〈|Wr|〉 ∼ (tan δ)−2.6.

VI. CONCLUSIONS

We have introduced topological measures for polymeric
materials allowing for quantifying the relationship between
polymer chain entanglement and viscoelastic responses. We
demonstrated how our topological approaches can be utilized
in practice by performing non-equilibrium molecular dynam-
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ics simulations of a few polymeric systems. We found that our
topological approaches provide a measure of the molecular-
level polymer chain entanglements that contributes to aggre-
gate mechanical responses in the storage modulus and loss
modulus. Our results indicate some of the ways topological
tools can be used for characterization of the interplay between
entanglement and mechanics. We expect our methods could
be useful in further studies of polymeric materials, such as
polymer melts or polydisperse systems with solutions of ring
and/or linear chains.
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[29] M. Kröger. Shortest multiple disconnected path for the analy-
sis of entanglements in two- and three-dimensional polymeric
systems. Comput. Phys. Commun., 168:209–232, 2005.
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[53] Z. Shen, M. Röding, M. Kröger, and Y. Li. Carbon nanotube
length governs the viscoelasticity and permeability of buckypa-
per. Polymers, 9:9040115, 2017.

[54] F. Snijkers, R. Pasquino, P. D. Olmsted, and D. Vlassopoulos.
Perspectives on the viscoelasticity and flow behavior of entan-
gled linear and branched polymers. J. Phys: Cpndens. Matter,
27:473002, 2015.

[55] P. S. Stephanou, C. Baig, G. Tsolou, V. G. Mavrantzas, and
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[57] L. Szántó, R. Vogt, J. Meier, D. Auhl, E. Van Ruymbeke, and
C. Friedrich. Entanglement relaxation time of polyethylene
melts from high-frequency rheometry in the mega-hertz range.
J. Rheol., 61:1023, 2017.

[58] V. Trappe and D. A. Weitz. Scaling of the viscoelasticity of
weakly attractive particles. Phys. Rev. Lett., 85:449–452, 2000.

[59] C. Tzoumanekas and D. N. Theodorou. Topological analysis of
linear polymer melts: a statistical approach. Macromolecules,
39:4592–4604, 2006.

[60] H. J. Unidad, M. A. Goad, A. R. Bras, M. Zamponi, R. Faust,
J. Allgaier, W. Pyckhout-Hintzen, A. Wischnewski, D. Richter,
and L. J. Fetters. Consequences of increasing packing length
of the dynamics of polymer melts. Macromolecules, 48:6638–
6645, 2015.

[61] M. Vladkov and J. Barrat. Linear and nonlinear viscoelasticity
of a model unentangled polymer melt: molecular dynamics and
rouse modes analysis. Macromol. Theory and Simul., 15:252–
262, 2006.

[62] Y. Wang, J. K. Sigurdsson, and P. J. Atzberger. Fluctuating
hydrodynamics methods for dynamic coarse-grained implicit-
solvent simulations in lammps. SIAM Journal on Scientific
Computing, 38(5):S62–S77, 2016.

[63] M. Wilson, A. Rabinovitch, and A. R. C. Baljon. Compu-
tational study of the structure and rheological properties of
self-associating polymer networks. Macromolecules, 48:6313–
6320, 2015.


	Topological Methods for Polymeric Materials: Characterizing the Relationship Between  Polymer Entanglement and Viscoelasticity.
	Abstract
	I Introduction
	II Characterizing Polymer Entanglement
	III Polymeric Materials with Weave-like Entanglements
	IV Simulation of the Polymers
	V Bulk Mechanical Responses
	A Complex modulus
	B Conformational analysis
	C Topology and Mechanical Responses

	VI Conclusions
	VII Acknowledgments
	 References


