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W
e formulate theoretical modeling approaches and develop practical compu-
tational simulation methods for investigating the non-equilibrium statistical
mechanics of fluid interfaces with passive and active immersed particles. Our

approaches capture phenomena taking into account thermal and dissipative energy
exchanges, hydrodynamic coupling, and correlated spontaneous fluctuations. Our meth-
ods allow for modeling non-uniform time-varying temperature fields, fluid momentum
fields, and their impacts on particle drift-diffusion dynamics. We show how practical
stochastic numerical methods can be developed for these systems by performing anal-
ysis to factor operators analytically to obtain efficient algorithms for generating the
fluctuating fields. We demonstrate our methods in a few simulation studies showing
how they can be used to capture particle heating of the interface and the roles of
thermal gradients on hydrodynamic fluctuations. The methods developed provide
modeling and simulation approaches that can be used for further investigations of
non-equilibrium phenomena in active soft materials, complex fluids, and biophysical
systems.

Introduction

Many soft materials and biophysical systems exhibit phenomena involving passive and active energy
exchanges in regimes out of thermodynamic equilibrium. Examples include the viscoelastic responses
of soft materials and complex fluids [1–5], activity in biological cell transport and mechanics [6–14],
and experimental assays and processing techniques using thermal effects to manipulate colloids and
other small particles [15–19]. Investigating phenomena in these systems requires taking into account
energy exchanges arising from dissipative mechanisms in the mechanics, gradients in temperature,
and roles played by fluctuations. This includes exchanges from dissipation during coupling in
hydrodynamic flows and temperature gradients arising from particle chemical activity or external
heating [13, 14, 16, 17, 20].

Capturing these effects in a tractable and consistent manner poses significant challenges for
modeling and simulation. This requires stochastic spatial-temporal models accounting for both the
mechanical and thermodynamic exchanges along with appropriate fluctuations. Most coarse-grained
modeling and simulation approaches treat fluctuations in a limiting regime where temperatures
have equilibrated to a global constant value. For soft materials and complex fluids, this includes
simulation approaches such as Brownian-Stokesian Dynamics [21, 22], Coarse-grained approaches
with Langevin thermostats [3, 23, 24], and continuum mechanics formulations such as Stochastic
Immersed Boundary Methods (SIBMs) [14, 25, 26] and Stochastic Eulerian Lagrangian Methods
(SELMs) [27, 28]. These computational simulation methods are based on statistical mechanics
primarily in regimes in thermodynamic equilibrium.

Page 1 of 21

ar
X

iv
:2

41
0.

01
16

5v
1 

 [
co

nd
-m

at
.s

of
t]

  2
 O

ct
 2

02
4

http://atzberger.org/


For investigations of soft materials with active microstructural elements, biophysical systems,
or experimental assays having external sources of energy, such as laser heating of particles, requires
further theoretical modeling and simulation approaches to capture the relevant roles of thermal
effects and other energy exchanges. For this purpose, we develop here theoretical formulations and
practical computational methods for non-equilibrium thermodynamic regimes. We build on our
past work on equilibrium and non-equilibrium statistical mechanics and on Stochastic Eulerian
Lagrangian Methods (SELMs) [14, 26–30]. As a specific case to demonstrate these approaches,
we focus on the context of fluid interfaces / membranes having particle inclusions. We formulate
our models to account for non-uniform temperature fields, hydrodynamic coupling, heat exchanges
between the particles and fluid, and the roles of fluctuations in the hydrodynamics and particle
drift-diffusion dynamics. We develop SELM approaches for non-equilibrium regimes for investigating
fluid interfaces with active and passive particles. Part of the motivations for this work include
the roles of activity of proteins in cellular processes [12, 20, 31–35], active inclusions within lipid
bilayer membranes [14, 36–38], recent experimental systems that use lasers to thermally excite and
manipulate particles [15–19], and other modeling and simulation challenges for active processes in
soft materials and biophysical systems [6, 39–41].

Materials and methods

Stochastic Non-Equilibrium Model for Thermal Effects and Fluctuations

We first formulate our theoretical modeling approach for capturing the mechanics and thermal
effects within fluid-particle systems. We then discuss how practical stochastic numerical methods
can be developed for performing simulations. We then perform a few simulations of specific models
to demonstrate the approaches.

We model the system using the following stochastic fluctuating hydrodynamics description
coupled to a collection of thermodynamic energy exchange equations of the form

dX

dt
= V, m

dV

dt
= −γ (V − Γu)− ΞV −∇XΦ(X) +Gthm,pP (1)

ρ
∂u

∂t
= ∇ · σ + τ −∇p+ Λ [γ (V − Γu)] + gthm,pF , ∇ · u = 0

∂θP
∂t

= −κPI (θP − θI)

cP
+

q̇TPDP (Y )q̇P
cP

+Gthm,θP (2)

∂θF (x, t)

∂t
=

∇ · (κFF∇θF (x))

cF
− κFI(x;X) (θF − θI)

cF

+
q̇TFDF (Y )q̇F

cF
+ gthm,θF (x, t)

∂θI
∂t

=
κPI (θP − θI)

cI
+

∫
κFI(x;X) (θF − θI)

cI
dx+

q̇TP,FDI(Y )q̇P,F

cI
+Gthm,θI .

The first part of our model employs momentum equations for the particle drift-diffusion X(t), V (t)
coupled to fluctuating hydrodynamic [14, 25, 38] equations for u(x, t). For tractable computations,
we treat the fluid-structure interactions using a coarse-grained interaction model having similarities
to Immersed Boundary Methods (IBMs) [25, 42] and Stochastic Eulerian Lagrangian Methods
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(SELMs) [27, 28]. More details are discussed below. The second part of the equations accounts
for the irreversible dissipative energy exchanges within the system which generate heat and direct
heat exchanges that impact the temperature fields. We model our system with three types of heat
bodies (i) particles with temperature θP , (ii) fluid interface with temperature field θF (x), and (iii)
interfacial region involved in the fluid-structure interactions with temperature θI . The Gthm,∗,gthm,∗
are stochastic terms accounting for fluctuations. We denote the vector-valued terms as Gthm(t) and
the stochastic spatial fields as gthm(x, t). A schematic of the model can be found in Figure 1.

Figure 1: Stochastic Non-Equilibrium Model for the Particle-Fluid Interface. The model accounts
for energy exchanges and fluctuations in the particle-fluid system from reversible and irreversible processes.
This includes exchanges between the particle and fluid for non-uniform temperature fields, hydrodynamic flows,
and other dissipative mechanisms. The fluid-particle coupling is handled through tractable approximations
to the fluid-structure interactions based on the averaging operators Λ,Γ and for thermal exchanges through
a spatially varying thermal conductivity κF,I(x;X). The approaches allow for capturing phenomena in
non-equilibrium regimes arising from temperature gradients, heat exchanges, and fluctuations, see equation 1

We now give some more details. For this purpose, it is convenient to collect together all of the
degrees of freedom of the system by letting

Y =
[
X,ϕ,R,mV, ρu, m̃Ṙ, θP , θF , θI

]T
= [q,p,θ]T , (3)

where q = [qP , qF , qI ] = [X,ϕ,R] and p = [pP , pF , pI ] = [mV, ρu, m̃Ṙ], and θ = [θP , θF , θI ]. For
completeness and to allow for simplified common expressions within our derivations, we include
a few additional degrees of freedom. These are ϕ for the fluid displacement map, R the interface
state vector, m̃Ṙ the interface pseudo-momentum. In practice, these do not play a significant role
in our current model but are helpful to include so terms can be treated similarly in our derivations.

The fluid-structure interactions are treated by a drag force in the particle equations referencing
the local flow environment and an equal-and-opposite body-force term in the fluid equations. For
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this purpose, the Γ[u] =
∫
δa(x−X)u(x, t)dx operator is used to probe the local flow environment

to determine a reference velocity at the particle location X. The Λ operator is used to distribute
forces spatially to a region of the fluid nearby to X. For this purpose we use the adjoint operator
Λ = ΓT with Λ[F ] = Fδa(x−X). Many other choices can be made for the forms of Γ,Λ, we use
throughout the above with δa the Peskin δ-function with a = ∆x [14, 25, 42]. The γ provides the
strength of the drag coupling. The Ξ is a symmetric positive semi-definite operator accounting for
any friction effects treated as directly between the particles. The Φ(X) provide a potential energy
resulting in forces acting on the particles.

The in-plane hydrodynamic stress is denoted by σ and the traction stress with the surrounding
medium is denoted by τ . We use a Newtonian in-plane stress σ = µ

(
∇u+∇uT

)
with µ the fluid

viscosity and p the fluid pressure. In this initial work, we use for simplicity the traction stress
τ = −λu with the dissipative viscosity λ. In our model and numerical methods, alternative in-plane
and traction stresses also can be treated readily in the methods to use other hydrodynamic models
and theories arising for thin films and membranes [14, 38, 43, 44].

The temperatures θP , θF (x), θI account for energy exchanges from dissipation in the mechanics
and direct heat exchanges. Associated with these temperatures are three types of heat bodies.
These are related to different dissipative mechanisms reflecting the rates at which the system does
work in the form of friction. For the fluid-particle system these are

q̇TPDP (Y )q̇P = V TΞV (4)

q̇TFDF (Y )q̇F = µ∇u :
(
∇u+∇uT

)
(5)

q̇TP,FDI(Y )q̇P,F = V Tγ (V − Γu)− uTγΛ [V − Γu] . (6)

The q̇ gives the rates of change of the mechanical configuration. We distinguish the different parts
of the system using the notation q̇F = u, q̇P = V , and q̇P,F = [V, u]T . We remark for simplicity and
brevity in this initial work, we handle the −λu by treating the coupling and λ as small having a
negligible effect on the surrounding medium and the system.

In practice, depending on the system and regime this may require further consideration and
more detailed treatment of the surrounding medium.

We briefly discuss the thermodynamics of our system associated with these energy exchanges
and fluctuations. As a basic model we use the following internal energies and entropies. For
the particles and interfacial region we formulate entropies as S(1) = s1(θP ) = cP ln(θP ), S(2) =∫
s2(θF )dx =

∫
cF ln(θF (x))dx, S(3) = s3(θI) = cI ln(θI). The cP , cF , cI denote the specific heats.

The fluid body is spatially extended and we emphasize that this is formulated using the local entropy
densities s2(x, θF (x)) = cF ln(θF (x)). This gives the system total entropy S = S(1) + S(2) + S(3).
Similarly, we have for the particles and interfacial region internal energies U (1) = u1(θP ) = cP θP ,
U (3) = u3(θI) = cIθI . Since the fluid body is spatially extended, we formulate using the local internal
energies u2(x, θF (x)) = cF θF (x) giving the global energy U (2) =

∫
u2(x, θF (x))dx =

∫
cF θF (x)dx.

This gives for the system the total energy

E =
1

2m
p2P +Φ(qP ) +

∫
1

2ρ
pF (x)dx+

1

2m̃
p2I + U (1) + U (2) + U (3). (7)

The terms involving the momentum pP , pF , pI give the kinetic energy of the system. The Φ(qP ) is
the energy associated with the particle potential energy in equation 1.
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In the context of soft materials and biophysical systems, we are often interested in phenomena
in regimes having spatial-temporal scales where diffusive effects play an important role. This
requires a non-trivial extension of the above formulation to account for the entropy production from
dissipation and spontaneous energy exchanges from thermal fluctuations. As part of this modeling,
we will use as a guideline the abstract framework of non-equilibrium statistical mechanics referred
to as GENERIC [45, 46]. This framework generalizes Ginzsburg-Landau theory [45, 47–51] and
requires that the reversible and irreversible processes be formulated in terms of an anti-symmetric
operator L and a positive semi-definite symmetric operator K [45–47, 50, 52]. These act respectively
on the energy gradient ∇E and entropy gradient ∇S to obtain dynamics that have the abstract form
dYt = L∇Edt+K∇Sdt+ kB(∇ ·K)dt+BdWt. The fluctuations satisfy BBT = 2kBK, where kB
is the Boltzmann constant. We will also build on our prior work for equilibrium and non-equilibrium
fluctuations for SELMs and other systems with uniform and non-uniform stochastic fields [25, 27,
28, 30, 53].

Given the three types of heat-bodies involved in the energy exchanges, our prior derivations
shows it is convenient to treat the system using a collection of operators K(j) each corresponding to
one of the heat bodies. This gives dynamics of the general abstract form

dYt = L∇Edt+
∑
j

K(j)∇S(j)dt+ kB(∇ ·K(j))dt+B(j)dW
(j)
t . (8)

In this formulation, the fluctuations satisfy B(j)B(j),T = 2kBK
(j). The S(j) denotes the entropy

of the jth heat body. For the particle-fluid interface system this yields the stochastic dynamics
incorporating both the temperature fluctuations and momentum fluctuations of the particle-fluid
system.

To obtain more specific forms for the stochastic fluctuations Gthm,gthm, we perform derivations
below in the context of development of our stochastic numerical methods. We remark that to
obtain practical simulation methods for equation 1 requires we develop numerical approaches for
approximating both the differential operators and stochastic terms Gthm,gthm. This can be done
most conveniently by reformulating our model in equation 1 in terms of the above more abstract
framework in equation 8. This requires we identify the operators L, K(j) corresponding to equation 1
and perform some additional analysis. In numerical methods for the stochastic terms, we need to
be able compute the stochastic terms having statistics equivalent to ζ =

√
2kBB

(j)ξ where ξ are
Gaussians with ⟨ξξT ⟩ = I, and ⟨ζζT ⟩ = 2kBB

(j)B(j),T = 2kBK
(j). While in principle, Choleksy

factorizations could be used for this purpose [54, 55], given that B(j)(Y ) depends on the state of
the system this computation would be required each time-step incurring a cost of O(n3). The n is
the number of rows of K(j), which can be large especially for the discretized fluid fields. For this
purpose, we will derive analytically factorizations B(j) for K(j) allowing for more efficient generation
of the stochastic driving fields for performing simulations.

Stochastic Numerical Methods

We now discuss briefly the stochastic numerical methods and fluctuations in our model in equation 1.
To provide a unified approach to deriving the fluctuations and our numerical discretizations, we
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reformulate our system in terms of stochastic dynamics of the general form

dYt = L∇Edt+
∑
j

K(j)∇S(j)dt+ kB(∇ ·K(j))dt+B(j)dW
(j)
t , (9)

where B(j)B(j),T = 2kBK
(j). This stochastic differential equation is to be given an Ito interpreta-

tion [56]. The Y denotes the state of our fluid-particle system with components

Y =
[
X,ϕ,R,mV, ρu, m̃Ṙ, θP , θF , θI

]T
= [q,p,θ]T . (10)

This can be expressed as q = [qP , qF , qI ] = [X,ϕ,R] and p = [pP , pF , pI ] = [mV, ρu, m̃Ṙ], and
θ = [θP , θF , θI ]. For completeness and for allowing for simplified common expressions within our
derivations, we include a few additional degrees of freedom. These are ϕ for the fluid displacement
map, R the interface state vector, m̃Ṙ the interface pseudo-momentum. In practice, these do not
play a significant role in the current stochastic dynamics allowing us to avoid tracking them in our
implementations, but they do provide convenience for making a common treatment of expressions
in our derivations.

We start in this initial work with the basic stochastic time-step integrator

Y n+1 = Y n + L(Y n)∇E(Y n)∆t+
∑
j

K(j)(Y n)∇S(j)(Y n)∆t (11)

+
∑
j

(
∇ ·K(j)(Y n)

)
∆t+ gn.

This is based on the Euler-Maruyama approach [57]. The Y n = Y (tn), ∆t is the time-step, and gn

denotes the stochastic forcing with ⟨gn1gn2⟩ = δn1,n22kB
∑

j K
(j)∆t. Other time-step integrators

preserving additional structures also can be developed readily based on stochastic Verlet, Runge-
Kutta, or Multistep schemes [57]. This inital work focuses primarily on the spatial discretizations,
generation of fluctuations, and related numerical considerations.

For brevity, and to help make clear the structures that need to be preserved in our discretizations,
we present at the same time our derivations for the stochastic driving fields for the fluctuations
and for our numerical methods. An important underlying structure in these derivations arises from
the properties of the gradient operator ∇ and divergence operator ∇· = div, and their negative
adjoint relationship ∇· = div = −∇T . As such, we retain the notation ∇ and ∇· for our operators
in our derivations and in our numerical methods replace these with numerical discrete operators
with G ∼ ∇ and D ∼ div = ∇·, while imposing that D = −GT . We give below a finite volume
discretizations for D and G satisfying these conditions after we present the general derivations. We
then use these derivations to generate our numerical methods by replacing ∇ and ∇· = div with G
and D throughout in our analytic expressions. This approach provides a systematic way to obtain
discretizations and stochastic numerical methods preserving important structures of the dynamics
helping to ensure they yield reliable physical results.

Operators of the Reversible and Irreversible Processes

This formulation of our dynamics uses operators that act on the energy gradient ∇E and entropy
gradient ∇S. Relative to the continuum formulation there is a subtle but important distinction in
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our numerical discretizations. We discretize our system using a finite volume perspective, where we
replace spatial integrals

∫
(·)dx by the corresponding finite sum

∑
m(·)xmδV . We treat continuum

bodies as divided into a discrete finite collection of boxes each having volume δV . The xm denotes
the location of the mth finite volume box. We use for our total entropy gradient and energy gradients

∇S = [∂qS, ∂pS, ∂θS]T = [0, . . . 0, cP /θP , cF δV/θF , cI/θI ]
T (12)

∇E = [∂qE , ∂pE , ∂θE ]T =
[
∇XΦ(X), 0, 0,V,uδV, Ṙ, cP , cF δV, cI

]T
. (13)

We further distinguish entropy gradient components depending on which irreversible process is
being considered. For this purpose, we use the notation

∇S(1) = ∇Y S
(1)(θP ) = [0, . . . 0, cP /θP , 0, 0]

T (14)

∇S(2) = ∇Y S
(2)(θF ) = [0, . . . 0, 0, cF δV/θF , 0]

T (15)

∇S(3) = ∇Y S
(3)(θP , θF , θI) = [0, . . . 0, cP /θP , cF δV/θF , cI/θI ]

T . (16)

The extra factor of δV arises in these gradients from the energy and entropy density contributions.
In the energy setting the kinetic energy density now contributes in the finite volume discretization

for each box as 1
2
p2F
ρ δV = 1

2
(ρu)2

ρ δV . Since our degrees of freedom are pF (xm) = ρu(xm) for the mth

box, we now also have an additional factor of δV . This similarly holds for the entropy gradients.
This will also contribute to our discretizations for the operators.

Using these gradients, we next reformulate our model in terms of the operators L and K(j).
The reversible parts of the dynamics can be reformulated similar to Hamiltonian mechanics to use
the anti-symmetric operator

L =


0 0 I 0 qP

0 0 0 I/δV qF

−I 0 0 0 pP

0 −I/δV 0 0 pF

qP qF pP pF

 . (17)

For brevity in our notation for the operators, we show just the non-zero subset of the rows and
columns of the operators. For L this corresponds to the degrees of freedom qP , qF , pP , pF for the
fluid and particles, as defined above. The matrix representation for the operator acting for the full
system ∇Y E can be obtained straight-forwardly by padding the other rows and columns with zeros.

We can reformulate the irreversible parts of our dynamics in terms of the operators K(j). For
the dissipation in the mechanics of the particles we have

K(1) =

[
θPDP (Y ) − θPDP (Y )q̇P

cP
pP

− q̇TP θPDP (Y )
cP

q̇TP θPDP (Y )q̇P
cP cP

θP

pP θP

]
. (18)

where DP is given in equation 4. This can be verified by considering the action of this operator on
the gradient of the entropy K(1)∇S(1) giving the contributions to the dynamics in equation 1, and
by considering the net energy exchanges in the system which from our accounting of both mechanical
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and internal energy requires K(1)∇Y (1)E = 0. Similarly, we can reformulate our dynamics for the
dissipation in the hydrodynamics to obtain the operator

K(2) =

−℘div(µθF (∇+∇T )℘T )
δV

℘div(□µθF (∇u+∇uT ))
cF δV pF

−∇u:(µθF (∇+∇T )℘T )
cF δV

∇u:(□µθF (∇u+∇uT ))
cF cF δV + −∇·(κ̃0∇)

cF cF δV θF

pF θF

 . (19)

We take here κ̃(θF ) = κ0θ
2
F . The □ in this notation indicates the location in the expression where

to insert the terms on which this operator acts. The ℘ denotes the projection operator associated
with the incompressibility constraint on the fluid [25, 28]. We further use its adjoint ℘T and that
the operator is self-adjoint ℘T = ℘. We also use that from the dynamics that ℘u = u throughout.
We remark that in the discrete case, we would replace the integrals

∫
(·)dx by the finite volume

sums of the form
∑

m(·)xmδV . For clarity and to avoid clutter in expressions, we retain the integral
notation throughout our derivations.

For the particle-fluid interface dissipation and direct heat exchanges we have

K
(3)

=



θIDI (Y ) 0 0
−θIDI (Y )q̇P,F

cI
pP,F

0
κPIθIθP

cP,P
0 −κPIθP θI

cP,I
θP

0 0
diag(κFIδV θF θI )

cF,F δV δV
−κFIδV θIθF

cF,IδV
θF

−q̇T θIDI (Y )
cI

−κPIθIθP
cI,P

− (κFIδV θIθF )T

cI,F δV
q̇T θIDI (Y )q̇

cI,I
+

κPIθP θI+θI
∫

κFIθF dx
cI,I

θI
pP,F θP θF θI


. (20)

We use notation cij = ci · cj for brevity. We now give the divergence ∇ ·K(j) for each of these
terms. For the particle dissipation we have

∇Y (1) ·K(1) =

[
−DP (Y )q̇P

cP
pP

−m−1θP tr(DP (Y ))
cP

+
q̇TPDP (Y )q̇P

cP cP
θP .

]
(21)

where Y (1) = [pP , θP ]
T . In the notation to help keep expressions compact, we only show the non-zero

rows of the divergence vector. Similarly, we highlight this through Y (1) showing the only non-zero
terms we need to consider when taking the derivatives. This vector can then be expanded to the
full set of degrees of freedom by padding with zeros in the stochastic dynamics in equation 9. For
the fluid dissipation, we have the divergence

∇Y (2) ·K(2) =


℘div

(
∂µθF (∇u+∇uT )

∂θF

)
cF

pF

−ρ−1∇:(µθF (∇+∇T )℘T )
cF

+
∇u:

∂µθF (∇u+∇uT )℘T

∂θF
cF cF

+
∂−∇·(κ̃(θF )∇)

∂θF
cF cF

θF

 . (22)

The Y (2) = [pF (x), θF (x)]
T . For the divergence for the dissipation from the interfacial fluid-particle

coupling and the direct heat exchanges between particles, fluid, and interface we have

∇Y (3) ·K(3) =


−DI(Y )q̇P,F

cI
pP,F

κPIθI
cP,P

− κPIθP
cP,I

θP

κFIδV θI
cF,F δV δV − κFIδV θF

cF,IδV
θF

−θItr(DI(Y )M−1
P,F )

cI
+ q̇TDI(Y )q̇

cIcI
− κPIθI

cI,P
−
∫
κFIdx θI
cI,F δV +

κPIθP+
∫
κFIθF dx

cI,I
θI

 (23)
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The Y (3) = [pP,F , θP , θF , θI ]
T with pP,F = [pP , pF ]

T and M−1
P,F =

dq̇P,F

dpP,F
.

To obtain practical stochastic numerical methods requires we are able to generate the thermal
fluctuations for each time-step. We now present some methods avoiding Cholesky factorizations by
performing analysis to obtain directly factorizations B(j)(Y ) for each of the K(j)(Y ).

Methods for Generating the Thermal Fluctuations

We now briefly discuss our approach for generating the needed stochastic fields for the thermal
fluctuations with correlations B(j). We will perform analysis that yields direct factorizations of
K(j). We establish a few identities useful in obtaining factors. As one identity, we will use that for
operators that can be decomposed into a sum of positive semi-definite operators C = C1+C2 can be
factored using C1 = R1R

T
1 and C2 = R2R

T
2 to generate the needed noise ζ. To obtain the covariance

⟨ζζT ⟩ = C we use for our generation procedure ζ = ζ1 + ζ2 with ζ1 = R1ξ1 and ζ2 = R2ξ2 generated
independently with ξ1 ∼ η(0, I) and ξ2 ∼ η(0, I). The η(0, I) denotes the distribution of vectors
having standard Gaussian components yielding mean zero and covariance the identity matrix I. This
gives the needed stochastic variates, since ⟨ζζT ⟩ = ⟨ζ1ζT1 ⟩+ ⟨ζ2ζT2 ⟩ = R1R

T
1 +R2R

T
2 = C1+C2 = C,

using ⟨ζ1ζT2 ⟩ = 0. We show how this and other factorization techniques can be employed to obtain
practical algorithms for generating the needed fluctuations for the spatial hydrodynamic fields,
particles, and thermal fields.

We generate fluctuations for the particles X(t), V (t) and their temperature θP by decomposing
the operator as K(1) = RRT . For this purpose, we use the factor

R =

[ √
θPRD(Y ) pP

−
√
θP q̇T

PRD(Y )
cP

θP

pP

]
. (24)

This requires we use RD so that RDR
T
D = DP (Y ), where DP is from equation 4. For the particles,

this depends on the form of the operator DP (Y ) = Ξ. In the present work, we take Ξ = 0, making
this trivial. More generally in the worst case a Cholesky factorization of just Ξ can be utilized, if a
factorization is not readily available. The expression above gives a general procedure for leveraging
knowledge of a factorization of Ξ for use in our modeling and simulation framework. We further
remark that fluctuations in this case only require random variates of the same dimension as pP
and do not require independent terms for the temperature. Intuitively, this can be explained since
the temperature fluctuations are from the same spontaneous mechanism of energy exchange that
impacts the particle momentum fluctuations. This requires the specified correlations to ensure the
energy balances.

We generate fluctuations for the hydrodynamics u(x, t) and their temperature fields θF (x) by
using the following factor

R =

[−div (Rvisco) 0 pF
−∇u:Rvisco

cF
Rheat
cF

θF

pF θF

]
. (25)

TheRviscoR
T
visco = Kvisco andRheatR

T
heat = Kheat. We define the operatorKviscoA = µθF (x)

δV

(
A+AT

)
,

which acts on a tensor to take the symmetric part and multiply by the local temperature θF (x) and
viscosity µ. We define Kheat = −div (κ̃∇).
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For factorization of Rvisco, it is convenient to express the operator as Kvisco = µθ
δV T with

T A = A+AT . To obtain Rvisco we use the following properties of T . The operator is self-adjoint,
since T A = A+AT gives ⟨T A,B⟩ = ⟨A+AT , B⟩ = A : B +AT : B and ⟨A, T B⟩ = ⟨A,B +BT ⟩ =
A : B +A : BT = A : B +AT : B = ⟨T A,B⟩. Hence the operator T = T T is self-adjoint and has a
symmetric matrix representation. We further have that T 2A = T (A+AT ) = (A+AT )+(AT +A) =
2(A + AT ) = 2T A. If we let R = 1√

2
T then RRT = 1

2T T T = 2
2T = T . This gives the needed

factorization. The RviscoA =
√

1
2
µθ
δV (A+ AT ) =

√
1
2
µθ
δV T A. This gives Rvisco =

(√
1
2
µθ
δV

)
T . We

can readily verify that RviscoR
T
visco =

1
2
µθ
δV T 2 = µθ

δV T = Kvisco.

For the Rheat, we have Kheat = −div (κ̃∇). This yields factorization Rheat = −div
(√

κ̃
)
=

(−∇·)
√
κ̃I, where we use (−∇·)T = ∇ and RheatR

T
heat = Kheat. We see with these terms that

RRT = K(2) and we can generate the fluctuating hydrodynamic contributions to the stochastic
driving fields by using ζ =

√
2kBRξ.

For the fluid-particle interface, we split the matrix K(3) into two decoupled parts as

K(3) = K
(3)
1 +K

(3)
2 .

The K
(3)
1 correspond to the dissipation from the mechanics and the K

(3)
2 to the direct heat exchanges.

We let

(26)

K
(3)
1 =


θIDI(Y ) 0 0 −θIDI(Y )q̇

cI
pP,F

0 0 0 0 θP

0 0 0 0 θF
−q̇TP,FΘ(Y )D(Y )

cI
0 0

q̇TP,FΘ(Y )D(Y )q̇P,F

cI,I
θI

pP,F θP θF θI

 .

For consistency between the cases, we also show here some of the zero rows and columns. Similar to
the particle case, we can decompose this into a factor of the form

R1 =


√
θIRD(Y ) pP,F

0 θP

0 θF

−
√
θI q̇

T
P,FRD(Y )

cI
θI

pP,F

 . (27)

We need to derive RD so that RDR
T
D = DI(Y ). This would yield R1R

T
1 = K

(3)
1 . In the interface

case, we have the dissipative tensor DI given by equation 4. For this purpose, we factor using

RD =
√
γ

[
I pP

−Λ pF

pP

]
. (28)

We remark that this only requires generating a random value that is the size of the particle de-
grees of freedom pF . This arises from the strong correlations required to ensure the energy balance
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between the fluctuations that inter-convert between the fluid temperature fields and momentum fields.

For the second factor corresponding to the heat exchanges, we have

(29)

K
(3)
2 =


0 0 0 0 pP,F

0 κPIθIθP
cP,P

0 −κPIθP θI
cP,I

θP

0 0 diag(κFIδV θF θI)
cF,F δV δV −κFIδV θIθF

cF,IδV
θF

0 −κPIθIθP
cI,P

− (κFIδV θIθF )T

cI,F δV
κPIθP θI+θI

∫
κFIθF dx

cI,I
θI

pP,F θP θF θI

 .

We again retained some of the zero rows and columns for comparison with the other parts of the
decomposition. For the continuum fluid fields, we split this further into a decomposition of the form

K
(3)
2 = K

(3)
21 +

∫
K

(3)
22 (x)dx. In the discrete case, we would replace the integrals by the finite volume

sums of the form
∑

mK
(3)
22 (xm)δV . For clarity and to avoid clutter in expressions, we retain the

integral notation. We can factor these terms as

(30)

K
(3)
21 =

[
κPIθIθP

cP,P
−κPIθP θI

cP,I
θP

−κPIθIθP
cI,P

κPIθP θIdx
cI,I

θI

θP θI (eP , eI)

]

= κPIθP θI

[
1

cP,P
ePe

T
P − 1

cP,I
ePe

T
I − 1

cI,P
eIe

T
P +

1

cI,I
eIe

T
I

]
= R21R

T
21.

The eI and eP give the standard basis vectors with all zero entries except for the components
corresponding to the θI and θP degrees of freedom of the system. This gives the factor

(31)

R21 =
√

κPIθIθP

[
1
cP

eP
− 1

cI
eI

]
=

√
κPIθIθP

[
1
cP

θP

− 1
cI

θI

]
.

We also expressed this factor using our notation for non-zero entries. As we will see in our derivations
below, it is useful to have flexibility between these ways of describing the system.
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The second factor is similar for each spatial location since κFI = κFI(x) with

(32)

K
(3)
22 =

∫  κFIθIθF (x)

cF,F δV δV −κFIθF (x)θI
cF,IδV

θF (x)

−κFIθIθF (x)

cI,F δV

κFIθF (x)θI
cI,I

θI

θF (x) θI (eθF (x), eθI )

 dx

=

∫
κFIθF (x)θI

[
1

cF δV eθF (x)

− 1
cI
eθI

][
1

cF δV eθF (x)

− 1
cI
eθI

]T

dx

=

∫
R22(x)R

T
22(x)dx,

where

R22(x) =
√
κFI(x)θIθF (x)δV

[
1

cF δV eθF (x)

− 1
cI
eθI

]
(33)

=
√
κFI(x)θIθF (x)δV

[
1

cF δV θF (x)

− 1
cI

θI

]
. (34)

The fluctuations are generated using

(35)

g2 = g21 +

∫
g22(x)dx, g21 =

√
kB∆tR21ξ21, g22(x) =

√
kB∆tR22(x)ξ22(x).

As mentioned above, for brevity we express things in terms of integrals, but in practice, we
replace these expressions by the finite volume sums

∫
(·)dx ∼

∑
m(·)xmδV . This yields the needed

correlations in the fluctuations for K(3). Since the ξij(x1), ξij(x2) have zero correlation when x1 ̸= x2.
We further have

(36)

⟨g2gT
2 ⟩ = ⟨g21gT

21⟩+
∫
⟨g22gT

22⟩dx

= 2kBR21R
T
21∆t+

∫
2kBR22(x)R22(x)

Tdx∆t

= 2kBK
(j)
21 ∆t+ 2kB

∫
K

(j)
22 (x)dx∆t = 2kBK

(3)
2 ∆t.

This provides stochastic driving fields with the required statistics. We can combine these factors into
one large B matrix as follows. If g =

√
2kB∆tR1ξ1+

√
2kB∆tR2ξ2 then g =

√
2kB∆t[R1|R2][ξ1|ξ2]T .

We similarly use this with g1 =
√
2kB∆tR1ξ1 to obtain the thermal force g = g1 + g2.

We have now derived analytically factors B(j) for each K(j). This provides our algorithms
for generating the stochastic driving fields Gthm(t) and gthm(x, t) in equation 1. This allows for
simulating thermal effects and fluctuations arising from the temperature gradients, hydrodynamics,
and particle drift-diffusion taking into account the correlations from the fluid-structure coupling
and thermal exchanges of heat.
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Spatial Discretizations for the Operators

We briefly discuss how we obtain numerical approximations that preserve needed structure in the
operators. For the gradient ∇ and divergence ∇·, we use discretizations based on finite volume

methods with G(d)
m u = (um+ed − um−ed) /2∆x. The m = (m1,m2) gives the lattice index, ∆x

the mesh spacing, and ed is the standard basis vector in direction d. For the divergence we use
D· = −GT . For the thermal exchanges in the fluid we discretize using directly Fourier’s law for
the finite volumes. In this initial work, we used for simplicity the most basic methods based on a
uniform lattice and central differences. Given some of the limitations of these types of discretizations,
alternatives also can be developed using finite volume methods on staggered meshes, or other spatial
discretizations based on spectral or finite element methods [53, 55, 58–61]. A key property we use in
our discretizations is to preserve the adjoint relations between the gradient and divergence operators.
To obtain discretizations for our stochastic numerical methods, we replace in our derivations the
terms ∇ with G and ∇· = div with D. We also replace the spatial integrals

∫
(·)dx by the finite

volume sums
∑

m(·)xmδV . This provides spatial discretizations that preserve key properties of the
operators. This approach provides viable stochastic numerical methods for performing simulations
of the particle-fluid system incorporating fluctuations.

Results

Simulation Studies

As a demonstration of the approaches, we perform a few basic simulations showing some of the
thermal effects and related phenomena that can be captured by the methods. We consider first a
particle that has been externally heated, such as excitation from exposure to a laser, which then
cools by transferring heat to the interface. We then consider an interface that has a spatially varying
temperature gradient and simulate its impact on hydrodynamic fluctuations.

Particle Heating of the Interface

In recent experiments, particles within fluid interfaces are manipulated using lasers and other
external driving fields inducing thermal effects [15–19]. As a basic model, we consider the energy
exchanges of an initially heated particle that then cools by transferring heat to the surrounding
regions of the interface. This heat is further dispersed from Fourier’s law laterally within the
interface. We show simulation results for the temperature fields and fluctuations in Figure 2.

When the particle is hottest there is initially a rapid transfer of energy from the particle to the
interface region. Heat accumulates in the interfacial region in the vicinity of the particle making the
temperatures comparable. This then decreases the rate of energy transfer from the particle with
the heat transferred laterally within the interface. Over time the particle and interface equilibrate
toward a common spatially uniform temperature. As the fluid heats up this also results in increased
fluctuations in the temperature fields. We show quantitative results for the fluid-particle system for
the temperature and energy exchanges over time in Figure 3.
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Figure 2: Particle Heating of the Interface. We show the simulation results for a particle that is
externally driven to be at an initially higher temperature and then cools to heat the surrounding regions. The
heat transfer operators are based on Λ operator which give the thermal exchanges near the particle location X
through a spatially varying thermal conductivity κF,I(x;X). The heat disperses according to Fourier’s law
with stochastic fluxes associated with spontaneous fluctuations.

Parameter Value Parameter Value Parameter Value

ρ 0.9 µ 0.08 m 1.1

γ 5 kB 10−5 θP (0) 1.5

κ0 4.2× 106 κP,I 130 κF,I 102

cP 1.2 cF 130 cI 1.4

nx 20 ny 20 ∆x 10−1

∆t 10−3 nt 8000 δV 10−2

Table 1: Parameters. For simulations of the case when the particle heats the interface. The nx, ny give the
number of mesh sites in each direction, ∆x the spatial discretization, ∆t the time-step, nt the total number of
time-steps. The other parameters are discussed in the context of the model equations 1.

Figure 3: Particle Heating of the Interface. We show the results of the fluid-particle system where a
hot particle heats the fluid interface. The temperature of the particle and the average temperature of the fluid
is shown on the (left). We also show the individual entropies of the particle, fluid, and the total entropy in
the inset. The energy exchanges between the particle and the fluid are shown on the (right).

Page 14 of 21



Temperature Gradients and Hydrodynamic Fluctuations

As another basic demonstration indicating some of the phenomena that can be captured with the
methods, we perform simulations when the interface initially has a significant temperature gradient.
We show these results in Figure 4.

Figure 4: Hydrodynamic Fluctuations in a Temperature Gradient. The simulation results show the
coupling where regions having larger temperature exhibit larger spontaneous hydrodynamic fluctuations. These
spatial variations in fluctuations drive inhomogeneous diffusivity of the particles and other statistical effects.
As the temperatures equilibrate and the gradient diminishes, the spontaneous hydrodynamic fluctuations exhibit
more spatial uniformity.

Parameter Value Parameter Value Parameter Value

ρ 0.9 µ 0.08 m 1.1

γ 5 kB 10−5 θP (0) 3.0

κ0 4.2× 106 κP,I 130 κF,I 102

cP 1.2 cF 130 cI 1.4

nx 20 ny 20 ∆x 10−1

∆t 10−3 nt 16, 000 δV 10−2

Table 2: Parameters. For simulations of the case of the temperature gradient and hydrodynamic fluctuations.
The nx, ny give the number of mesh sites in each direction, ∆x the spatial discretization, ∆t the time-step, nt

the total number of time-steps. The other parameters are discussed in the context of the model equations 1.

We see that the regions having the larger temperature exhibit hydrodynamic fluctuations
having larger variance as one may expect. This results in the temperature gradient creating a
hydrodynamic environment for the particles that results in larger fluctuations and diffusivities in
the larger temperature regions. These asymmetries can cause statistical effects in the drift-diffusion
of particles, which are related to the local hydrodynamic fluctuations [25, 28]. We show quantitative
results for the temperature fields and the variance σ2(x) of the hydrodynamic fluctuations in
Figure 5.

These simulation results demonstrate how the methods can be used simultaneously for thermal
effects taking into account non-uniform temperature fields, fluctuations in the hydrodynamics, and
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Figure 5: Hydrodynamic Fluctuations in a Temperature Gradient. We show the temperature
distribution as a function of x1 and how it changes over time on the (left). From the lateral transfer of heat
the temperature distribution becomes more uniform over time. We show estimates of the average variance
σ2(x1) of the hydrodynamic fluctuations over the first 8, 000 simulation steps as a function of x1 on the
(right). The variance of the fluctuations is seen to be smaller in the regions of lower temperature.

the particle drift-diffusion dynamics. The methods can be used for further investigations in active
soft materials, complex fluids, and biophysical systems.
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Conclusions

We developed theory and modeling approaches for investigating the non-equilibrium statistical
mechanics of particle inclusions within fluid interfaces. Our approaches allow for taking into
account the energy exchanges, hydrodynamic coupling, and correlated spontaneous fluctuations
of the non-uniform temperature fields, fluid momentum fields, and the particle drift-diffusion
dynamics. We developed practical numerical methods for spatially discretizing the system and
for efficiently generating the stochastic driving fields yielding the correlated fluctuations. We
performed analysis to obtain stochastic algorithms based on analytic factorizations of the operators.
In this initial work, we presented some basic demonstrations for how the methods can be used to
capture thermal effects for particles heating the interface and for how hydrodynamic fluctuations are
impacted by temperature gradients. The approaches provide methods for modeling and simulation
of non-equilibrium statistical mechanics of thermal effects and fluctuations in active and passive
fluid-particle systems. The simulation methods can be used for further investigations in active soft
materials, complex fluids, and biophysical systems.
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