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Summary
MLMOD is a software package for incorporating machine learning approaches and models into
simulations of microscale mechanics and molecular dynamics in LAMMPS. Recent machine
learning approaches provide promising data-driven approaches for learning representations for
system behaviors from experimental data and high fidelity simulations. The package faciliates
learning and using data-driven models for (i) dynamics of the system at larger spatial-temporal
scales (ii) interactions between system components, (iii) features yielding coarser degrees
of freedom, and (iv) features for new quantities of interest characterizing system behaviors.
MLMOD provides hooks in LAMMPS for (i) modeling dynamics and time-step integration, (ii)
modeling interactions, and (iii) computing quantities of interest characterizing system states.
The package allows for use of machine learning methods with general model classes including
Neural Networks, Gaussian Process Regression, Kernel Models, and other approaches. Here
we discuss our prototype C++/Python package, aims, and example usage. The package is
integrated currently with the mesocale and molecular dynamics simulation package LAMMPS
and PyTorch. The source code for this initial version 1.0 of MLMOD has been archived to Zenodo
(P. J. Atzberger, 2023). For related papers, examples, updates, and additional information see
https://github.com/atzberg/mlmod and http://atzberger.org/.

Statement of Need
A practical challenge in using machine learning methods for simulations is the efforts required
to incorporate learned system features to augment existing models and simulation methods.
Our package MLMOD aims to address this aspect of data-driven modeling by providing a general
interface for incorporating ML models using standardized representations and by leveraging
existing simulation frameworks such as LAMMPS (Thompson et al., 2022). Our MLMOD package
provides hooks which are triggered during key parts of simulation calculations. In this way
standard machine learning frameworks can be used to train ML models, such as PyTorch
(Paszke et al., 2019) and TensorFlow (Abadi et al., 2015), with the resulting models more
amenable to being translated into practical simulations. The models obtained from learning
can be accommodated in many forms, including Deep Neural Networks (DNNs) (Goodfellow
et al., 2016), Kernel Regression Models (KRM) (Scholkopf & Smola, 2001), Gaussian Process
Regression (GPR) (Rasmussen, 2004), and others (Hastie et al., 2001).

Data-Driven Modeling
Recent advances in machine learning, optimization, and available computational resources are
presenting new opportunities for data-driven modeling and simulation in the natural sciences
and engineering. Empirical successes in deep learning suggest promising non-linear techniques
for learning representations for system behaviors and other underlying features (Goodfellow
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et al., 2016; Hinton & Salakhutdinov, 2006). Many previous deep learning methods have
been developed for problems motivated by image analysis and natural language processing.
However, scientific computations and associated dynamical systems present a unique set of
challenges for developing and employing recent machine learning approaches (P. J. Atzberger,
2018; Brunton et al., 2016; Schmidt & Lipson, 2009).

In scientific and engineering applications there are often important constraints arising from
physical principles required to obtain plausible models and there is a need for results to be more
interpretable. In large-scale scientific computations, bottom-up modeling efforts aim to start as
close as possible to first principles and perform computations to obtain insights into larger-scale
emergent behaviors. Examples include the rheological responses of soft materials and complex
fluids from microstructure interactions (Paul J. Atzberger, 2013; Bird, 1987; Kimura, 2009;
Lubensky, 1997), molecular dynamics modeling of protein structures and functional domains
from atomic level interactions (Brooks et al., 1983; Karplus & McCammon, 2002; McCammon
& Harvey, 1988; Thompson et al., 2022), and prediction of weather and climate phenomena
from detailed physical models, sensor data, and other measurements (Bauer et al., 2015;
Richardson, 2007). Obtaining observables and quantities of interest (QoI) from simulations
of such high fidelity detailed models can involve significant computational resources (Giessen
et al., 2020; Lusk & Mattsson, 2011; Murr, 2016; Pan, 2021; Sanbonmatsu & Tung, 2007;
Washington et al., 2009). Data-driven learning methods present opportunities to formulate
more simplified models, provide model flexibility to accommodate subtle effects, or make
predictions which are less computationally expensive.

Data-driven modeling can take many forms. As a specific motivation for the package and
our initial implementations, we discuss a specific case in detail, but our package also can be
used more broadly. In particular, we consider detailed molecular dynamics simulations of large
spherical colloidal particles within a bath of much smaller solvent particles. A common problem
is to infer interaction laws between the colloidal particles given the surrounding environment
arising from the type of solution, charge, and other physical conditions. There is extensive
theoretical literature on colloidal interactions and approximate models (Derjaguin, 1941; Doi,
2013; Jones et al., 2002). While analytic approaches have had success, there are many settings
where challenges remain which limit the accuracy (Jones et al., 2002; Sidhu et al., 2018).
Computational modeling and simulation provides opportunities for capturing phenomena in
more physical detail and with better understanding of contributing effects.

While simulations of colloids including the solvent and other environmental factors can be
used for making predictions, such computations can be expensive given the many degrees of
freedom and small time-scales of solvent-solvent interactions. Colloid coarse-grained models
are sought which utilize separation in scales, such as the contrast in size with the solvent
and dynamical time-scales. In these circumstances, coarse-grained models aim to capture the
effective colloidal interactions and their dynamics.
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Figure 1: Data-driven modeling from detailed molecular simulations can be used to train machine learning
(ML) models for performing simulations at larger spatial-temporal scales. This can include models for the
dynamics, interactions, or for computing quantities of interest (QoI) characterizing the system state. The
colloidal system for example could be modeled by dynamics at a larger scale with a mobility 𝑀 obtained
from training. In the MLMOD package, the ML models can be represented by Deep Neural Networks,
Kernel Regression Models, or other model classes.

Relative to detailed molecular dynamics simulations, this motivates a simplified model for the
effective colloid dynamics

𝑑X
𝑑𝑡

= M(X)F + 𝑘𝐵𝑇∇𝑋 ⋅ M(X) + g

< g(𝑠)g(𝑡)𝑇 >= 2𝑘𝐵𝑇M(X)𝛿(𝑡 − 𝑠).

The X ∈ ℝ3𝑛 refers to the collective configuration of all 𝑛 colloids in these Smoluchowski
dynamics (Smoluchowski, 1906). The g(𝑡) gives the thermal fluctuations for the temperature
corresponding to 𝑘𝐵𝑇. Here, the main objectives in this model are to determine (i) the mobility
tensor 𝑀 = 𝑀(X) which captures the effective dynamic coupling between the colloidal
particles, and (ii) the interaction laws F for configurations X.

Machine learning methods provide data-driven approaches for learning representations and
features for such modeling. Optimization using appropriate loss functions and training protocols
can be used to identify system features underlying interactions, symmetries, and other structures.
In machine learning methods this is accomplished by using a class of representations and by
training with data to identify models from this class. For making predictions in unobserved
cases, this allows for interpolation, and in some cases even extrapolation, especially when
using explicit low dimensional latent spaces or when imposing other inductive biases (Lopez
& Atzberger, 2022; Stinis et al., 2023). For example, consider the colloidal example in the
simplified case when we assume the interactions can be approximated as pairwise. The problem
reduces to a model 𝑀 = 𝑀(X1,X2) depending on six dimensions. This can be further
constrained to learn only symmetric positive semi-definite tensors, for example by learning
𝐿 = 𝐿(X1,X2) to generate 𝑀 = 𝐿𝐿𝑇.

There are many ways we can obtain the model 𝑀. For example, a common way to estimate
mobility in fluid mechanics is to apply active forces F and compute the velocity response
< V >=< 𝑑X/𝑑𝑡 >≈ 𝜏−1 < Δ𝜏X(𝑡) >≈ MF. The Δ𝜏X(𝑡) = X(𝑡 + 𝜏) − X(𝑡) for
𝜏 chosen carefully. For large enough forces F, the thermal fluctuations can be averaged
away readily by repeating this measurement and taking the mean. In statistical mechanics,
another estimator is obtained when F = 0 by using the passive fluctuations of system. A
moment-based estimator commonly used is 𝑀(X) ≈ (2𝑘𝐵𝑇𝜏)−1 < Δ𝜏X(𝑡)Δ𝜏X(𝑡)𝑇 > for
𝜏 chosen carefully. While theoretically each of these estimators give information on 𝑀, in
practice there can be subtleties such as a good choice for 𝜏, magnitude for F, and role of
fluctuations. Even for these more traditional estimators, it could still be useful for storage
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efficiency and convenience to train an ML model to provide a compressed representation and
for interpolation for evaluating 𝑀(X).

Machine learning methods also could be used to train more directly from simulation data for
sampled colloid trajectories X(𝑡) (Nielsen et al., 2000; Stinis et al., 2023). The training would
select an ML model 𝑀𝜃 over some class of models 𝐻 parameterized by 𝜃, such as the weights
and biases of a Deep Neural Network. For instance, this could be done by Maximum Likelihood
Estimation (MLE) or other losses from the trajectory data X(𝑡). The MLE optimizes the
objective

𝑀𝜃 = arg min
𝑀𝜃∈𝐻

− log 𝜌𝜃(X(𝑡1),X(𝑡2),… ,X(𝑡𝑚)).

The 𝜌𝜃 denotes the likelihood probability density for the model with 𝑀 = 𝑀𝜃 and observing
the trajectory data {X(𝑡𝑖)}. To obtain tractable and robust training algorithms, further
approximations and regularizations may be required to the MLE problem or alternatives
used. This could include using variational inference approaches, further restrictions on the
model architectures, priors, or other information (Blei et al., 2017; Kingma & Welling, 2014;
Lopez & Atzberger, 2020; Stinis et al., 2023). Combining such approximations with further
regularizations also could help facilitate learning, including of possible symmetries and other
features of trained models 𝑀(X) = 𝑀𝜃.

The MLMOD package provides ways for transferring such learned models into practical simulations
within LAMMPS. We discussed here one example of a basic data-driven modeling approach for
colloids. The MLMOD package can be used more generally and supports broad classes of models
for incorporating machine learning results into simulation components. Components can include
the dynamics, interactions, or computing quantities of interest. The initial implementations we
present supports the basic mobility modeling framework as a proof-of-concept, with longer-term
aims to support more general classes of reduced dynamics and interactions in future releases.

Structure of the Package Components
The package is organized as a module within LAMMPS that is called each time-step and
has the potential to serve multiple roles within simulations. This includes (i) serving as a
time-step integrator updating the configuration of the system based on a specified learned
model, (ii) evaluating interactions between system components to compute energy and forces,
and (iii) computing quantities of interest (QoI) that can be used as state information during
simulations or in statistics. The package is controlled by external XML files that specify the
mode of operation and source for pre-trained models and other information, see the schematic
in Figure 2.
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Figure 2: The MLMOD Package is structured modularly with subcomponents for providing ML models
in simulations for the dynamics, interactions, and computing quantities of interest (QoI) characterizing
the system state. The package makes use of standardized data formats such as XML for inputs and
export ML model formats from machine learning frameworks.

The MLMOD Package is incorporated into a simulation by either using the LAMMPS scripting
language or the python interface. This is done using the “fix” command in LAMMPS
(Thompson et al., 2022), with this terminology historically motivated by algorithms for “fixing”
molecular bonds as rigid each time-step. For our package the command to set up the triggers
for our algorithms is fix m1 mlmod all filename.mlmod_params. This specifies the tag “m1”
for this fix, particle groups controlled by the package as “all”, and the XML file of parameters.
The XML file filename.mlmod_params specifies the MLMOD simulation mode and where to find
the associated exported ML models. An example and more details are discussed below in the
section on package usage. The MLMOD Package can evaluate machine learning models using
frameworks such as C++ PyTorch API. This allows both for the possibility of doing on-the-fly
learning and for using trained models to augment simulations.

A common approach would be to learn ML models by training on trajectory data from detailed
high fidelity simulations using a machine learning framework, such as PyTorch (Paszke et al.,
2019). Once the model is trained, it can be exported to a portable format such as Torch
(Collobert et al., 2011). The MLMOD package would import these pre-trained models from Torch
files such as trained_model.pt. This allows for these models to then be invoked by MLMOD to
provide elements for (i) performing time-step integration to model dynamics, (ii) computing
interactions between system components, and (iii) computing quantities of interest (QoI) for
further computations or as statistics. This provides a modular and general way for data-driven
models obtained from training with machine learning methods to be used to govern LAMMPS
simulations.

Example Usage of the Package
We give one basic example usage of the package in the case for modeling colloids using a
mobility tensor 𝑀. To set up the triggers for the MLMOD package during LAMMPS simulations
a typical command would look like

fix m1 c_group mlmod model.mlmod_params

The m1 gives the tag for the fix, c_group specifies the label for the group of particles controlled
by this instance of the MLMOD package. The mlmod specifies to use the MLMOD package with XML
parameter file model.mlmod_params. The XML parameter file controls the package modes and
the use of associated exported ML models.
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Multiple instances of MLMOD package are permitted and can be used to control different groups
of particles by adjusting the c_group. The package is designed with modularity so a mode is
first defined in a parameter file and then different sets of algorithms and parameters can be
used within the same simulation. For the mobility example, an implementation is given by the
MLMOD simulation mode dX_MF_ML1. For this modeling mode, a typical parameter file would
look like the following.

<?xml version="1.0" encoding="UTF-8"?>

<MLMOD>

<model_data type="dX_MF_ML1">

<M_ii_filename value="M_ii_torch.pt"/>

<M_ij_filename value="M_ij_torch.pt"/>

</model_data>

</MLMOD>

This specifies for an assumed mobility tensor of pairwise interactions the models for the
self-mobility responses 𝑀𝑖𝑖(X) and the pairwise mobility response 𝑀𝑖𝑗(X) = 𝑀𝑗𝑖(X), where
X = (X1,X2). For example, a hydrodynamic model for interactions when the two colloids
of radius 𝑎 are not too close together is to use the Oseen Tensors 𝑀𝑖𝑖 = (6𝜋𝜂𝑎)−1𝐼 and
𝑀𝑖𝑗 = (8𝜋𝜂𝑟)−1 (𝐼 + 𝑟−2rr𝑇). The 𝜂 is the fluid viscosity, r = X𝑖(𝑡) − X𝑗(𝑡) with 𝑟 = ‖r‖
give the particle separation. The responses are Vℓ = 𝑀ℓ𝑚F𝑚 with ℓ,𝑚 ∈ {1, 2} and
summation notation. For different environments surrounding the colloids, these interactions
would be learned from simulation data.

The dX_MF_ML1 mode indicates this type of mobility model has interactions from learned ML
models. The ML models are given by the files M_ii_torch.pt and M_ij_torch.pt. Related
modes can also be implemented to extend models to capture more complicated interactions or
near-field effects. For example, to allow for localized many-body interactions with ML models
giving contributions to mobility 𝑀(X). In this way MLMOD can be used for hybrid modeling
combining ML models with more traditional modeling approaches within a unified framework.

This gives one example, the ML interactions and integrators can be more general using any
exported model from the machine learning framework. Currently, the implementation uses
PyTorch and the export format based on torch script with .pt files. This allows for a variety
of models to be used ranging from those based on Deep Neural Networks, Kernel Regression
Models, and others.

Conclusion
The package MLMOD provides capabilities in LAMMPS for incorporating into simulations data-
driven models for dynamics and interactions obtained from training with machine learning
methods. We describe here our initial implementation. For updates, examples, and additional
information please see https://github.com/atzberg/mlmod and http://atzberger.org/.
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