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Abstract. We develop computational methods for the study of fluid-structure interactions
subject to thermal fluctuations when confined within a channel. Our methods take into account
the hydrodynamic coupling and diffusivity of microstructures when influenced by their proximity to
no-slip walls. We develop stochastic numerical methods subject to no-slip boundary conditions using
a staggered finite volume discretization. We show that by imposing an exact fluctuation-dissipation
condition to discretize the stochastic driving fields combined with using an exact projection method
to enforce incompressibility is sufficient to ensure results consistent with statistical mechanics. We
demonstrate our methods by investigating how the proximity of ellipsoidal colloids to the channel
wall effects their active hydrodynamic responses and passive diffusivity. We also study the collective
dynamics of a large number of particles by considering the intermediate scattering functions for the
relaxation of density fluctuations. We expect our introduced stochastic computational methods to
be applicable broadly to applications in which confinement effects play an important role in the
dynamics of microstructures subject to hydrodynamic coupling and thermal fluctuations.
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1. Introduction. Hydrodynamic coupling and collective diffusivity can be signifi-
cantly augmented by the proximity of microstructures to a surface. This is often relevant to
transport phenomena in many applications, such as the electrophoresis of macromolecules
and colloids in capillaries [17, 18, 33, 24], processing of emulsions and polymers in microflu-
idic devices [22, 34, 32, 31, 8], or the behaviors of active suspensions such as swimming
microorganisms near surfaces [14, 36]. We develop stochastic computational methods to
capture confinement effects of microstructures within channel geometries with no-slip walls.
Our approach is based on the Stochastic Eulerian-Lagrangian Method (SELM) which pro-
vides tractable ways to incorporate thermal fluctuations into approximate descriptions of
the hydrodynamic coupling between microstructures [4]. In SELM, fluctuating hydrody-
namic equations similar to those introduced by Landau and Lifshitz [21] are coupled and
exchange momentum with microstructure conservation equations. The SELM framework
provides criteria to ensure that the continuum stochastic description and related stochastic
discretizations yield results consistent with statistical mechanics [4]. Related computational
methods for fluctuating hydrodynamics have also been introduced in [5, 7, 6, 15, 12].

We present the SELM approach for the channel geometry in Section 2. We develop
stochastic numerical methods using a staggered finite volume discretization for the fluid
velocity and pressure in Section 3. To obtain a consistent discretization of the stochas-
tic driving fields as in [5, 4], we impose an exact fluctuation-dissipation balance on our
stochastic numerical methods taking into account the augmented dissipative properties of
the discrete operators relative to their continuum differential counterparts in Section 3.1.
We show that our numerical fluctuation-dissipation balance principle combined with using
an exact projection method for the incompressibility is sufficient to ensure results consistent
with statistical mechanics in Section 3.2. In practice, a significant challenge is to generate ef-
ficiently the stochastic driving fields with the required covariance structure obtained from the
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fluctuation-dissipation balance condition. We show how a method with cost O(N log(N))
can be developed for our discretization based on FFTs to generate efficiently the driving
fields in the presence of the no-slip walls in Section 3.3. We validate the computational
methods in Section 4 by performing studies for the stochastic field generation in Section 4.1
and for the Brownian motion of a particle diffusing in a harmonic potential in Section 4.2.
As a demonstration of our computational methods we consider ellipsoidal particles within a
channel and investigate the effects of confinement on both active hydrodynamic responses
and passive diffusivity in Section 5. We first compare our computational model of ellip-
soidal particles to those of analytic results for the translational and rotational mobility in
Section 5.1. We then investigate how the proximity of a particle to a wall within the chan-
nel effects the mobility of the ellipsoidal colloids in response to active forces or torques in
Section 5.2. We then demonstrate through stochastic simulations that our fluctuating hy-
drodynamic methods capture the role of proximity to the no-slip walls as manifested in the
empirical diffusivity of particles. We show our stochastic methods yield diffusivities in close
agreement in accordance with the Stokes-Einstein relations with the predictions from the
active mobility studies in Section 5.4. We then make comparisons to conventional Langevin
dynamics in Section 5.5. We study the collective dynamics of a large number of colloidal
particles within the channel and their density relaxations. We find our fluctuating hydrody-
namics approach yields results having significant differences with simulations performed with
conventional Langevin dynamics that neglects the hydrodynamic coupling. We conclude by
investigating these differences by considering the intermediate scattering functions of the
density relaxations. Overall, we expect our introduced stochastic computational methods to
be applicable broadly to problems involving confinement effects of microstructures subject
to hydrodynamic coupling and thermal fluctuations.

2. Fluid-Structure Interactions Subject to Thermal Fluctuations. Our
description of the fluid-structure interactions subject to thermal fluctuations is based on the
Stochastic Eulerian Lagrangian Method (SELM) [4]. In SELM the microstructures exchange
momentum with a fluctuating fluid to account simultaneously for hydrodynamic coupling and
thermal fluctuations. SELM provides a way to incorporate thermal fluctuations into widely
used approaches for approximating the fluid-structure interactions [4]. We extend the SELM
approach to account for no-slip walls when the microstructures and fluid are confined within
a channel geometry. For the microstructure dynamics, we use

dX

dt
= v (2.1)

m
dv

dt
= −Υ(v − Γu)−∇XΦ[X] + Fthm. (2.2)

These are coupled to the incompressible fluctuating hydrodynamic equations

ρ
∂u

∂t
= µ∆u + Λ[Υ(v − Γu)]−∇p+ fthm (2.3)

∇ · u = 0. (2.4)

We consider these on the domain Ω = [0, Lx]×[0, Ly]×[0, Lz] subject to the no-slip boundary
condition

u(x, t) = 0, x ∈ ∂Ω(z). (2.5)

The Ω(z) denotes the part of the boundary when z = 0 or z = Lz. The X denotes the collec-
tive vector of all of the degrees of freedom of the microstructure, the v the microstructure
velocity, and m the microstructure excess mass [4, 3]. The fluid velocity is denoted by u,
the fluid density by ρ, and the dynamic viscosity by µ. The pressure acts as a Lagrange
multiplier to enforce the incompressibility constraint given in equation 2.4.

The operators Γ and Λ serve to couple the microstructure and fluid dynamics. The
Γ operator serves to provide a local reference velocity from the fluid against which the
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microstructure velocity is compared. The term −Υ(v − Γu) acts as an effective drag force
on the microstructure when its velocity differs from that of the surrounding fluid. The Υ
is assumed to be a positive-definite operator. The Λ operator is introduced to account for
the drag of a moving particle’s force equal-and-opposite effect on the fluid. The Λ operator
converts a microstructure force into a corresponding force density in the fluid equations in
equation 2.3. A particularly important property to obtain consistent results in the mechanics
is that the coupling operators satisfy an adjoint condition Λ = ΓT , [4, 3, 27].

To account for thermal fluctuations, we let Fthm and fthm be Gaussian random fields
that are δ-correlated in time and have zero mean [16, 25]. We determine the spatial covariance
using the fluctuation-dissipation principle of statistical mechanics [29, 4]

〈fthm(s)fTthm(t)〉 = − (2kBT ) (∆− ΛΥΓ) δ(t− s) (2.6)

〈Fthm(s)FTthm(t)〉 = (2kBT ) Υδ(t− s) (2.7)

〈fthm(s)FTthm(t)〉 = − (2kBT ) ΛΥδ(t− s). (2.8)

The adjoint condition Λ = ΓT has been shown to play an important role when introducing the
stochastic driving fields [4]. Throughout our discussion, our stochastic differential equations
should be given the Ito interpretation in stochastic calculus [25, 16].

A widely used approximation to obtain a tractable description of the fluid-structure
interactions is the Immersed Boundary Method [27]. This corresponds to the specific choice
of coupling operators

Γu =

∫
Ω

η (y −X(t))u(y, t)dy (2.9)

ΛF = η (x−X(t))F. (2.10)

The kernel functions η(z) are chosen to be the Peskin δ-Function developed in [27]. The
Peskin δ-Function has important numerical properties that ensure to a good approximation
that there is translational invariance of the coupling despite the breaking of this symmetry
by the discretization lattice of the fluid [5, 27, 30]. A kernal with finite support is chosen
instead of a Dirac δ-Function to ensure a model in which the mobility of even individual point
particles have a finite effective hydrodynamic radius within the fluid [5]. Since other choices
for the fluid-structure coupling can also be useful, we only make use of the generic properties
of Γ, Λ throughout the mathematical discussions. For coupling the fluid and microstructure
we use the Stokes drag

Υ = 6πµR, (2.11)

where R is a length-scale which we take to be comparable to the support of the kernel
function η(x). Provided Υ is sufficiently large, the precise value does not play a particularly
central role in the dynamics [3, 4].

3. Semidiscretization : Staggered Finite Volume Method. We discretize
the system using a finite volume approximation on a staggered grid for the velocity and
pressure. The velocity components are represent at the cell faces and the pressure at the cell
centers, see Figure 3.1. A particular advantage of the staggered grid discretization is that the
mass transport can be modeled naturally between the cells using fluxes based on the velocity
at the cell faces. This is also useful in approximating the divergence-free incompressibility
constraint since it arises in the continuum fluid mechanics from the continuity equations and
the requirement that a uniform mass density remain constant under the fluid flow. Using
this interpretation in the finite volume setting yields a constraint on the discrete velocity
field expressed in terms of a discrete divergence operator which can be imposed exactly
using the cell centered pressure and its discrete gradient. The finite volume formulation
provides a finite difference method with a set of discrete operators playing roles very similar
to their continuum differential counterparts. We shall show in the stochastic setting these
features have important implications for the statistical mechanics of our stochastic numerical
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methods. Related finite volume schemes for fluctuating hydrodynamics have been introduced
in [6, 5, 12].

Fig. 3.1. Channel Geometry and Staggered Finite Volume Discretization. The fluctuating
hydrodynamic equations are approximated using a staggered finite volume discretization. The velocity
is represented on the cell faces and the pressure is represented at the cell centers. An important
feature of the discretization is the ability to approximate the incompressibility constraint using an
exact projection method.

We use for our discretization a computational domain decomposed intoNx×Ny×Nz cells
indexed by m = (i, j, k). We decompose the fluid velocity u = (u(1), u(2), u(3)) = (u, v, w)
into its Cartesian components at each cell face. We index the fluid velocity in the x-direction
by half indices ui±1/2,j,k, and similarly for the other directions. The pressure p is defined at
the cell centers and indexed by (i, j, k) as pi,j,k. The no-slip boundary conditions are imposed
by requiring in the z-direction wi,j,−1/2 = wi,j,Nz−1/2 = 0. The x-direction and y-direction
are treated as periodic with the condition ui,j,−1/2 = ui,j,Nz+1/2, vi,j,−1/2 = vi,j,Ny+1/2. To
simplify the notation, we shall often use the vector-index notation uI, pI with I = (i, j, k).
We let Ωc denote the collection of cell indices within the interior of the domain and let ∂Ωc
denote the cell indices on the boundary. Similarly, we let Ωf denote the collection of face
indices within the interior of the domain and let ∂Ωf denote the indices on the boundary.

We use the finite volume interpretation to define the discrete divergence operator D by

(D · u)m =
1

∆x

3∑
d=1

(
u

(d)

m+ 1
2
ed
− u(d)

m− 1
2
ed

)
(3.1)

where ed is the standard basis vector in the d-direction. We define the discrete gradient
operator G using the negative adjoint of the discrete divergence operator G = −DT which
yields

(Gp)m± 1
2
ed

= ± 1

∆x
(pm±ed − pm) . (3.2)

We define the face centered Laplacian Lf as

(Lfu)m± 1
2
ed

=
1

∆x2

3∑
a=1

(
um± 1

2
ed+ea

− 2um± 1
2
ed

+ um± 1
2
ed−ea

)
. (3.3)

We define a cell centered Laplacian Lc using the discrete divergence and gradient operators

(Lcp)m = (D · Gp)m =
1

∆x2

3∑
d=1

(
pm+ 1

2
ed
− 2pm + pm− 1

2
ed

)
. (3.4)
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We use our discrete operators to approximate the equations 2.1– 2.4 to obtain the semidis-
cretization

ρ
∂u

∂t
= µLfu + Λ[Υ(v − Γu)]− Gp+ fthm (3.5)

D · u = 0 (3.6)

m
dv

dt
= −Υ(v − Γu)−∇XΦ[X] + Fthm (3.7)

dX

dt
= v. (3.8)

These are subject to the boundary conditions

um = 0, m ∈ ∂Ωf (3.9)

(Gp)m · n = 0, m ∈ ∂Ωf . (3.10)

Using the finite volume interpretation of our discretized system we associate the energy

E [u,v,X] =
∑
m

1

2
ρ|um|2∆x3

m +
1

2
m|v|2 + Φ [X] . (3.11)

The ∆x3
m denotes the volume of the cell with index m. We integrate numerically in time

the equations 3.5– 3.8 using the Euler-Maruyama method [20].

An important consideration for the semidiscretized system is that the discrete opera-
tors have different dissipative properties than their continuum differential counterparts. It
becomes important in the discrete stochastic setting to take this into account in the choice
of the stochastic driving fields Fthm and fthm to ensure appropriate thermal fluctuations
consistent with statistical mechanics [4, 5].

3.1. Stochastic Driving Fields for the Discretization. To account for the
thermal fluctuations in the discrete setting we must approximate the stochastic driving fields
in equations 2.1– 2.3. We must also take into account in the discrete setting the role of
the incompressibility constraint. Another important consideration is that the dissipative
properties of the discrete operators are often significantly different than their continuum
differential counterparts. The properties of the specific discretization and how constraints
are handled have important implications for how fluctuations propagate through the degrees
of freedom of the discretized system [4, 5].

We treat the incompressibility constraint by imposing exactly the discrete divergence-
free condition 3.6 and using the projection method [9]. This approach allows for the semidis-
cretization in equations 3.5– 3.8 to be expressed as

ρ
∂u

∂t
= ℘ (µLfu + Λ[Υ(v − Γu)] + fthm) (3.12)

m
dv

dt
= −Υ(v − Γu)−∇XΦ[X] + Fthm (3.13)

dX

dt
= v. (3.14)

The projection operator ℘ is

℘ = I − GL−1
c D· (3.15)

We approximate the stochastic driving fields by imposing on the discretization the following
fluctuation-dissipation condition [29, 5, 4]

〈FFT 〉 = G = −LC − (LC)T . (3.16)
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The F = [fthm,Fthm] represents the stochastic terms in the system of equations 3.5– 3.8.
The L is the grand dissipative operator given by

L =

[
ρ−1µLf − ρ−1ΛΥΓ ρ−1ΛΥ
m−1ΥΓ −m−1Υ

]
. (3.17)

An important part of our discretization method for the stochastic fields is the choice of
covariance C we impose for the equilibrium fluctuations of the discrete system. We in-
troduced an energy based on our finite volume interpretation in equation 3.11. Using the
Gibbs-Boltzmann statistics associated with our discrete energy, we impose the covariance

C = kBT

[
ρ−1∆x−3

n 0
0 m−1

]
. (3.18)

Now that L and C are specified, our discrete fluctuation-dissipation condition given in equa-
tion 3.16 provides our approximation of the stochastic driving fields F through the covariance

G = −2kBT

[
ρ−2∆x−3

n µLf − ρ−2∆x−3
n ΛΥΓ m−1ρ−1ΛΥ

m−1ρ−1∆x−3
n ΥΓ m−2Υ

]
. (3.19)

By using the fluctuation-dissipation condition 3.16 to discretize the stochastic driving fields,
we have taken into account the properties of the specific choice of discretization and how
this influences the propagation of fluctuations throughout the system [4, 5]. This approach
drawing on insights from statistical mechanics also circumvents a number of potentially subtle
issues in how directly to interpret and approximate the stochastic fluid equations which have
solutions only in the generalized sense of distributions [4, 5].

We remark for the sake of our subsequent presentation and calculations that the precise
form of the adjoint condition for Λ, Γ depends on the utilized representation of the operators
and the inner-product. When representing the operators as standard matrices and using the
standard matrix-vector inner product, the adjoint condition takes on the form ΛT = ∆x−3

n Γ,
hence the apparent asymmetric factor of ∆x−3

n appearing in equations 3.19. Because of this
interpretation, this in fact does not pose an issue in practice.

3.2. Statistical Mechanics of the Discretization subject to the Incom-
pressibility Constraint. The stochastic driving fields were discretized without explicit
consideration of the incompressibility constraint. We perform analysis to explore the im-
plications of this constraint on the statistical mechanics of the stochastic dynamics. In our
approach, the incompressibility is imposed each time-step using the Lagrange multiplier Gp
which is obtained from the discrete pressure p solving

Lcp = D · [Λ[Υ(vn − Γun)] + fnthm] (3.20)

(Gp)m · n = 0, m ∈ ∂Ωf . (3.21)

In practice to solve efficiently these equations, use Fast Fourier Transforms (FFTs) adapted
to the channel geometry. We use standard FFTs in the periodic x and y-directions [11, 28].
To account for the Neumann boundary conditions in the z-direction, we use a Fast Cosine
Transform (FCT) [28]. By substituting for the solution Gpn into equation 3.5 we obtain
the same result as applying the projection operator given in equation 3.12. In this manner
the fluctuating hydrodynamics satisfies exactly in the discrete setting the divergence-free
incompressibility condition D · u = 0.

Under the projected stochastic dynamics, we show invariance of the Gibbs-Boltzmann
distribution

Ψ(u,v,X) =
1

Z
exp

[
−E [u,v,X]

kBT

]
. (3.22)

The Z denotes the partition function. The Gibbs-Boltzmann distribution under the projected
stochastic dynamics satisfies

∂Ψ

∂t
= −∇ · J (3.23)
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with probability flux on phase-space

J =

 ρ−1µ℘Lf − ρ−1℘ΛΥΓ + ρ−1℘ΛΥ
−m−1Υ +m−1ΥΓ−m−1∇XΦ
v

Ψ− 1

2
(∇ ·G)Ψ− 1

2
G∇Ψ. (3.24)

The stochastic driving field when subjected to the projection operator yields the term F =
℘F. Hence the covariance for the stochastic driving field when subjected to the projection
operator is given by G = ℘G℘T . The divergence of the flux can be expressed as

∇ · J = A1 +A2 +∇ ·A3 +∇ ·A4 (3.25)

with

(3.26)

A1 =
[
(−m−1∇XΦ) · ∇vE + (v) · ∇XE

]
(−kBT )−1ΨGB

A2 =
[
∇v · (−m−1∇XΦ) +∇X · (v)

]
ΨGB

A3 = −1

2
(∇ ·G)ΨGB

A4 = A
(1)
4 + A

(2)
4

A
(1)
4 =

 ρ−1µ℘Lf − ρ−1℘ΛΥΓ + ρ−1℘ΛΥ
−m−1Υ−m−1ΥΓ
0

ΨGB

A
(2)
4 = (2kBT )−1

 Guu∇uE + Guv∇vE + GuX∇XE

Gvu∇uE + Gvv∇vE + GvX∇XE

GXu∇uE + GXv∇vE + GXX∇XE

ΨGB.

The energy of the discretized system we introduced in equation 3.11 has gradients

∇unE = ρu(xn)∆x3
n (3.27)

∇vqE = mvq (3.28)

∇XqE = ∇XqΦ. (3.29)

In our notation to simplify the expressions, we have suppressed explicitly denoting the fields
on which the operators act with this information easily inferred from equation 3.12.

To show the invariance of ΨGB under the stochastic dynamics, we show that each of the
terms A1, A2,A3,A4 is zero. The expression A1 is closely related to the time derivative of
the energy under the non-dissipative dynamics of the microstructures. We find after direct
substitution of the energy gradients and cancellations that A1 = 0. The term A2 has impor-
tant implications for the transport of probability mass on the phase-space of (u,v,X). It
can be interpreted as the phase-space compressibility associated with transport by the vector
field of the non-dissipative dynamics of the system (0,−m−1∇XΦ,v). The A2 = 0 is zero
since each term depends on distinct degrees of freedom from those appearing in the gradi-
ent being taken. This is closely related to the Hamiltonian structure of our non-dissipative
dynamics which have conjugate configuration and momentum degrees of freedom [4]. The
term A3 arises from fluxes driven by multiplicative noise in the stochastic driving fields of
the system [16]. In the present setting, the multiplicative noise has a rather special form in
which only the particle configuration X plays a role in modulating the noise covariance G.
This enters through the terms Γ,Λ which appear only in Gu,u and Gu,v, see equation 3.19.
Since each term depends on distinct degrees of freedom from those appearing in the gradient
being taken, we have the term A3 = 0.

This leaves A4, which accounts for the balance between the dissipation and stochastic
fluctuations of the system. An important issue is how the projection operator enforcing
incompressibility impacts this fluctuation-dissipation balance. The first covariance term in
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A4 in equation 3.26 can be expanded using properties of our projection operator and discrete
energy to obtain

(Guu∇uE)(2kBT )−1 = ρ−1µ℘Lf℘Tu− ρ−1℘ΛΥΓ℘Tu (3.30)

= ρ−1µ℘Lfu− ρ−1℘ΛΥΓu.

We have used the property that our discrete ℘ defined in equation 3.15 is an exact projection
operator so that ℘T = ℘. We have also used that the incompressibility constraint is imposed
exactly so that the fluid velocity field at any given time satisfies u = ℘u. By a similar
argument, we have

(Gvu∇uE)(2kBT )−1 = m−1℘ΥΓ℘Tu = m−1℘ΥΓu (3.31)

(Guv∇vE)(2kBT )−1 = ρ−1℘ΛΥ℘Tv = ρ−1℘ΛΥv. (3.32)

We have used throughout that the projection operator ℘ when extended to all of the degrees
of freedom of the system does not effect directly the microstructure configuration or velocity
so in fact v = ℘v and X = ℘X. The components of G associated with X are all zero
GX,(·) = G(·),X = 0. Using these results in equation 3.26 and canceling common terms yields
that A4 = 0. This shows that ∇ · J = 0.

We have shown that the Gibbs-Boltzmann distribution is invariant under the projected
stochastic dynamics given in equations 3.12– 3.14. These results show that it is sufficient
to ensure thermal fluctuations consistent with statistical mechanics by using our combined
approach of (i) imposing exactly a fluctuation-dissipation condition to obtain a discretiza-
tion of the stochastic driving fields [5, 4, 1], along with, (ii) imposing the incompressibility
constraint with an exact projection ℘, [5, 3, 4]. The first condition ensures the discretization
properly balances the stochastic driving fields with the dissipative properties of the discrete
operators. The second condition using an exact projection ensures that the incompress-
ibility constraint does not introduce new discretization artifacts which adversely effect the
propagation of thermal fluctuations through the discretized system. The general principles
we have presented here, and in the prior works [4, 5, 1], can be applied broadly to obtain
discretizations for incompressible fluctuating hydrodynamics and other spatially extended
stochastic systems.

An interesting point to remark is that the no-slip boundary conditions did not require
any explicit consideration in our analysis above. However, they were tacitly included through
the precise definition of the discrete dissipative operators and the particular form taken
by the projection operator ℘. The effective action of these operators on the degrees of
freedom representing the state of the system in the interior of the domain is influenced by the
boundary conditions. For instance, the stencil of the discrete operators change at locations
adjacent to the no-slip boundary. An important feature of our discretization approach for the
stochastic driving fields, is that our fluctuation-dissipation condition naturally handles the
augmented behaviors of the dissipative operators near the boundaries caused by the no-slip
conditions. These features highlight the utility of our approach of using statistical mechanics
principles to approximate the stochastic driving fields to obtain practical numerical methods
for spatially extended stochastic equations [4, 5, 1].

3.3. Efficient Generation of the Stochastic Driving Fields. We have shown
that imposing an exact fluctuation-dissipation balance on the semidiscretized stochastic dy-
namics provides a derivation of effective stochastic driving fields in the discrete setting that
yield thermal fluctuations consistent with statistical mechanics. An important challenge in
practice is to generate efficiently these discrete stochastic driving fields having the specific
spatial covariance G given in equation 3.19. A natural approach for generating multivariate
Gaussians ξ with a specified covariance structure 〈ξξT 〉 = G is to perform a factorization
G = HHT and use standard Gaussian variates η with 〈ηηT 〉 = I to generate ξ = Hη.
This follows since 〈ξξT 〉 = 〈HηηTHT 〉 = HHT = G. For this to be effective, a key issue is
to have a factor H whose action on a vector can be computed efficiently and to determine
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efficiently the factor H itself from G. Unfortunately, the most straight-forward method of
using Cholesky factorization to obtain H from G has a computational cost of O(N3) and
typically yields a dense factor which would incur a cost of O(N2) each time we generate the
stochastic driving fields. Here N is the total number of mesh degrees of freedom which for
problems in three spatial dimensions would be rather large.

We shall take another approach to generate the random variates with O(N log(N))
computational cost by using special properties of the stochastic dynamics and the discrete
operators. We first factor G into a form that decouples the microstructure and fluid degrees
of freedom. This is accomplished by expressing the stochastic driving fields fthm,Fthm in
terms of gthm = fthm + ΛFthm as in [4]. This has the convenient property that the spatial
covariances becomes

〈gthmgTthm〉 = G = −2kBTµLf (3.33)

〈FthmFTthm〉 = 2kBTΥ (3.34)

〈gthmFTthm〉 = 0. (3.35)

A particularly important property is that Fthm and gthm are now decorrelated Gaussian
variates that can be generated independently. The original stochastic driving fields can
be recovered by using that fthm = gthm − ΛFthm. In the case that Υ is a scalar as is
assumed in our current presentation the variate Fthm can be generated trivially having
O(N) computational cost. This reduces the problem to that of generating efficiently the
variates gthm.

To generate gthm we shall use that its covariance structure G given in equation 3.33 can
be diagonalized into the form D = PGPT where D is diagonal and P provides a unitary
change of basis. We generate the random field using gthm = PT

√
Dη, where η is a complex-

valued Gaussian random variate with 〈ηηT 〉 = I. This requires we determine the diagonal
factor D and the necessary transforms to compute the action of PT . Since η is complex-
valued, to fully determine its statistics also requires that we determine the covariance between
the real and imaginary components and also impose conditions that ensure a real-valued
stochastic field gthm.

For the specific spatial discretization introduced for the channel geometry in Section 3,
we have that the discrete Laplacian Lf subject to the no-slip boundary conditions is di-
agonalized by the transform P = SzFyFx, where Sz denotes for the z-direction the Fast
Sine Transform (FST) and Fx,Fy denotes for the xy-direction the standard Fast Fourier
Transform (FFT) [11, 28]. The Fourier symbols yielding D for our discrete Laplacian can
be computed with computational cost O(N log(N)), which needs to be performed only once
for the discretization mesh. We use in our algorithms the complex exponential form of the
Fast Fourier Transforms. The generation of the stochastic driving fields is accomplished by
computing gthm = FTx F

T
y S

T
z

√
Dη, where the complex-valued η satisfies 〈ηηT 〉 = I.

To make this generation procedure work in practice there are some important additional
considerations. Since complex values are used in Fourier-space, there are multiple ways to
satisfy the condition 〈ηηT 〉 = I. In fact, to determine fully the statistics of the Gaussian
variate η also requires specification of the other covariance components between the various
real and imaginary components of η. A related issue is that the generated stochastic field
gthm must be real-valued. This latter requirement provides additional important conditions
on η. We now discuss in more detail for the discretization our procedure for generating such
a complex-valued Gaussian.

Corresponding to the transforms Fx, Fy, Sz we index the Fourier modes using the
wave-vector notation k = (`,m, n). We define the conjugate mode to k as the mode with
index k = σk = (−`,−m,n). We define the Hermitian transpose as ηHk = ηTk which we
also refer to as the conjugate transpose. For the Fourier modes under the inverse transform
PT = FTx F

T
y S

T
z to yield a real-valued field requires the conjugacy condition ηk = ησk. From

these considerations we have for Fourier modes corresponding to a real-valued field that
ηHk = ηTk = ηTσk. The condition 〈ηηT 〉 = I takes on the form for the individual modes
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〈ηkη
T
k 〉 = I, where I for the modes denotes the three by three identity matrix. The real-

valued conjugacy condition gives that ηk = ησk. By letting k′′ = σk′ we have the two
conditions

〈ηkη
T
k′〉 = Iδk,k′ (3.36)

〈ηkη
T
k′′〉 = Iδk,σk′′ . (3.37)

The δm,n denotes the Kronecker δ-function. We now show for η these two conditions fully
determine the statistics of the real and imaginary components η = α + iβ. The conditions
take the form

〈ηkη
T
k′〉 =

(
〈αkα

T
k′〉+ 〈βkβ

T
k′〉
)

+ i
(
〈βkα

T
k′〉 − 〈αkβ

T
k′〉
)

= Iδk,k′ (3.38)

〈ηkη
T
k′′〉 =

(
〈αkα

T
k′′〉 − 〈βkβ

T
k′′〉
)

+ i
(
〈αkβ

T
k′′〉+ 〈βkα

T
k′′〉
)

= Iδk,σk′′ . (3.39)

By equating the real and imaginary parts in each expression gives the conditions

〈αkα
T
k′〉+ 〈βkβ

T
k′〉 = Iδk,k′ (3.40)

〈αkα
T
k′′〉 − 〈βkβ

T
k′′〉 = Iδk,σk′′ (3.41)

〈βkα
T
k′〉 − 〈αkβ

T
k′〉 = 0 (3.42)

〈αkβ
T
k′′〉+ 〈βkα

T
k′′〉 = 0. (3.43)

By linearly combining the equations this yields the conditions

〈αkα
T
k′〉 =

1

2
I (δk,k′ + δk,σk′) (3.44)

〈βkβ
T
k′〉 =

1

2
I (δk,k′ − δk,σk′) (3.45)

〈αkβ
T
k′〉 = 0. (3.46)

The last condition shows that real and imaginary components of the modes of the Gaussian
η should be generated to be statistically independent. The condition that the generated
stochastic field be real-valued has the important consequence that the random Gaussian
variate for the real part αk must always be exactly the same as the value ασk and the
random Gaussian variate for the imaginary part βk must always be exactly the negative of
the value βσk. In the special case of self-conjugate modes k = σk, the conditions require
that the imaginary part is zero βk = 0 and the contributions to the random field are only
made by the real part 〈αkα

T
k 〉 = I. This provides the details of how to generate the

modes ηk in Fourier space to obtain the required complex-valued Gaussian random variates
η. This can be accomplished in Fourier space with a computational cost of O(N). By
performing the inverse transforms this provides an efficient method with computational cost
O(N log(N)) to generate the stochastic driving field gthm. We remark that the effects of the
no-slip boundary conditions were tacitly taken into account in our stochastic field generation
through the specific form taken by the Fourier symbols in the diagonal operator D and the
form of the inverse transforms used.

4. Validation Studies.

4.1. Covariance obtained from the Stochastic Field Generator. To vali-
date our methods for generating the stochastic driving field gthm in Section 3.3, we consider
the discretization of the channel domain with 20× 20× 20 cells in each direction introduced
in Section 3. We estimate empirically from generated samples of the stochastic driving fields
the spatial covariance structure in real-space G̃m,m0 = 〈gm0g

T
m〉. This is predicted to have

the entries of the covariance matrix Gm,m0 = [2kBTLf ]m,m0
. These entries correspond pro-

portionally to our face-centered approximation of the Laplacian by central differences. The
correlation structure is sparse and involves a positive entry when m = m0 and a negative
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Fig. 4.1. Spatial Covariance Structure of gthm. We consider the covariance of the stochastic
fields generation by the method introduced in Section 3.3 for the staggered mesh discretization of
the channel geometry with 20 × 20 × 20 mesh cells in each direction. We empirically estimate the
covariance using 〈gm0g

T
m〉 where m0 denotes the index of a grid cell near the center of the channel.

The estimated covariance structure in each direction agrees well with the prediction based on the
face-centered discrete Laplacian operator Lf and equation 3.33.

entry for each m corresponding to the nearest neighbors in each of the Cartesian directions.
We show the spatial correlation estimated empirically for a cross-section of the mesh for
each of the velocity components in Figure 4.1. We find good agreement between the pre-
dicted covariance structure and those obtained from our stochastic field generation method
introduced in Section 3.3.

4.2. Brownian Motion of a Particle Diffusing in a Harmonic Poten-
tial. We validate our computational methods for the microstructure dynamics coupled us-
ing fluctuating hydrodynamics by considering the Brownian motion of a particle diffusing
in the harmonic potential Φ(X) = 1

2
KX2. We use for the spring stiffness K = kBT , par-

ticle mass m = 19200 amu, and temperature T = 298.15 Kelvin (kBT = 2.479 nm2 · amu ·
ps−2). The computational domain is taken to be 30nm× 30nm× 30nm resolved with a grid
having cells with mesh-width 1 nm. For this choice of parameters, the Gibbs-Boltzmann
distribution ρ(X) = (1/Z) exp(−Φ(X)/kBT ) predicts a standard deviation in position of√
kBT/K = 1 nm. The Maxwellian for the velocity fluctuations predicts a standard devia-

tion
√
kBT/m = 11.36 nm/ns [29]. We performed simulations with ∆t = 0.15ns for 50, 000

time-steps and estimated the position and velocity distributions. We find that our stochastic
numerical methods yield an appropriate effective temperature for the microstructure and
that the fluctuations in configuration agree well with the Gibbs-Boltzmann distribution, see
Figure 4.2.
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Fig. 4.2. Brownian Motion of a Particle Diffusing in a Harmonic Potential. The probability
distribution for the particle location and velocity are estimated from a single trajectory simulated
with our stochastic numerical methods. The velocity distribution is found to be in good agreement
with the predicted Maxwellian. The position distribution is found to be in good agreement with the
Gibbs-Boltzmann distribution.
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Fig. 4.3. Particle Model. We model the geometry and hydrodynamic responses of spherical and
ellipsoidal colloids by using a collection of control nodes distributed on the particle surface that are
coupled through harmonic springs with a specified rest-length. The control node distribution is ob-
tained by starting with a scaled icosahedron and bisecting the edges recursively. The restoring forces
of the harmonic bonds act to enforce an approximate rigid-body no-slip response to the surrounding
fluid.

5. Simulations of Ellipsoidal Colloids and Confinement Effects. To sim-
ulate the diffusion and hydrodynamic responses of ellipsoidal colloids subject to confinement
effects within a channel, we develop a model based on control nodes connected by harmonic
bonds with a specified rest-length as shown in Figure 4.3. The control node distribution is
obtained by starting with a scaled icosahedron and bisecting the edges recursively. Similar
types of models have been developed in [23, 2, 19]. We choose the strength of the bonds
sufficiently strong that a rigid-body no-slip response is obtained for the hydrodynamics. We
consider how this model behaves in practice as a model for ellipsoids of different aspect ratios
by making comparisons with the classical analytic results of Perrin [13, 26].

5.1. Translational and Rotational Mobility. We consider prolate ellipsoidal
colloids with semi-major axis a and semi-minor axes b = c. For such colloidal particles in
a bulk Newtonian fluid, the translational mobility has been analytically predicted by Perrin
as [13, 26]

Mtrans =
ln
(
p−1[1 + (1− p2)1/2]

)
6πµa(1− p2)1/2

, where p =
c

a
. (5.1)

In this expression we take into account the correction to the typo that was found in the
original paper by Perrin in the statement of equation (41) [26, 13]. For the rotational mobility
of prolate ellipsoids in response to an applied torque Chwang and Wu[10] analytically predict

Mrot =
1

8πµab2CM
, CM =

4q3

3(2q − (1− q2) ln
(

1+q
1−q

)
)

(5.2)

where q =
√

1− (b/a)2.
We compare the hydrodynamic responses of our colloidal model to these results. To

use our computational methods but to minimize the effects of the wall in these studies,
we consider computational domains where the channel has a width of about 10 times the
particle radius. To probe the translational mobility of our model, we applied a unit force
over the surface of our particle and measured from our simulations the resulting steady-
state velocity of the ellipsoidal particle. To probe the rotational mobility of our model, we
applied a unit torque as an averaged force distribution over the surface of our particle and
measured the angular velocities by averaging moments over the particle surface. We found
that the translational and rotational hydrodynamic responses of our particle model agree
quite well with the analytic when using an effective radius for our particle of a = 5.45, see
Figure 5.1. The translational mobilities showed very good agreement for all of the aspect
ratios considered. The primary discrepancies occurred for the rotational mobilities as the
aspect ratio became small.
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Fig. 5.1. Comparison of the Translational and Rotational Mobilities of our Colloid Model with
Theory. We find that our colloidal model yields hydrodynamic responses in good agreement with the
analytic predictions for the translational and rotational mobilities of ellipsoidal particles given in
equation 5.1 and equation 5.2. The primary discrepancy occurs for the rotational mobilities when
the ellipsoidal particles have small aspect ratio.
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Fig. 5.2. Confinement of Spherical and Ellipsoidal Particles in a Channel and Effects on
Hydrodynamic Responses. Confinement is expected to effect significantly the mobility and hydrody-
namic interactions between particles when confined with a channel. The hydrodynamic responses
and coupling is expected to change depending on the distance of particles to the channel walls.

5.2. Effects of Confinement on the Mobility and Hydrodynamic Inter-
actions of Particles. We explore the role that confinement effects play on mobility and
hydrodynamic interactions between the particles. We investigate responses for (i) a spherical
particle having radius r = 5 nm and an ellipsoidal particle having a = 5 nm, b = c = 2.5 nm.
We consider a channel with walls separated by 30nm in the z-direction and a span of 120nm
in the periodic xy-directions. We resolve this channel geometry using a discretization having
mesh-width 1nm in each direction.

We investigate how the translational and rotational mobilities change as the colloidal
particle occupies distances to one of the walls ranging from 10nm to 2nm. We consider for
the ellipsoidal particle the two cases when (i) the semi-major axis is parallel to the channel
wall and (ii) the semi-major axis is perpendicular to the channel wall. As a consequence
of the symmetry of the channel system under rotation around the z-axis, we only need to
consider the responses in the x and z directions.

We find that the translational mobility is impacted significantly by the particles prox-
imity to a channel wall, see Figure 5.3. In contrast, the rotational mobility is only effected
significantly by the channel wall when the particle is in close proximity to the wall. These
changes in the active responses to force and torque captured by the mobility M have impor-
tant implications also for the rotational and translational diffusivities D of particles within
the channel through the Stokes-Einstein relation D = 2kBTM , [29]. These results indicate
that the stochastic methods will also capture how the diffusivity of a particle is augmented
by its proximity to the wall.
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Fig. 5.3. Effect of Confinement on the Translational and Rotational Mobilities of Spherical and
Ellipsoidal Particles. We use our colloid model and computational methods to study the hydrody-
namic responses of particles as they approach one of the channel walls. We consider the translational
and rotational mobilities obtained from the active responses of particles to an applied force or torque.
We find that the translational mobility is impacted most significantly by the particles proximity to
a channel wall. In contrast the rotational mobility is only effected by the channel wall when the
particle is rather close. The active responses as characterized by the mobility M have important
implications also for the passive rotational and translational diffusivities D of particles within the
channel through the Stokes-Einstein relation D = 2kBTM , [29]. These results indicate that the
stochastic methods will also capture how the diffusivity of a particle is augmented by its proximity
to the wall.
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5.3. Reduced Model of Ellipsoidal Particles as Trimers. In our studies we
expect that many of the hydrodynamic responses of the colloidal particles can be captured
to a good approximation by a less detailed geometric description by using only a few control
nodes, [23, 2, 19]. To improve the computational efficiency in simulations we use a reduced
description that replaces the full geometric approach introduced in Section 5 by instead a
trimer of three control nodes linked by harmonic springs of non-zero rest-length. While this
reflects the approximate responses of an ellipsoid for one particular aspect ratio, this can also
be augmented by adding control nodes arranged either linearly or in a cluster to obtain the
approximate responses for other aspect ratios. When comparing the responses of our trimer
model with three control nodes that span about 2 mesh-widths of the discretization mesh
with the results of Perrin’s equation 5.1, we find the trimer approximates a prolate ellipsoid
having aspect ratio of c/a = 0.6. We use this choice in our subsequent studies.

Fig. 5.4. Confinement Effects on Pair Mobility and Diffusivity for our Reduced Model of
Ellipsoidal Particles as Trimers. We use a reduced model to approximate the ellipsoidal particles
as a trimer of particles. We find from our mobility results that when the three trimer control nodes
span 2 mesh-widths this approximates the response of an ellipsoidal particle with aspects ratio 0.6.
We probe the effects of confinement both on the active pair interactions mediated by hydrodynamics
between the ellipsoidal particles and on the passive diffusive responses through correlations in the
Brownian motions.

5.4. Hydrodynamic Interactions and Pair Diffusivity : Translational
and Rotational Pair Mobility. We probe the effects of confinement on both the active
responses mediated by hydrodynamics between a pair of particles and the passive diffusive
correlations in the joint Brownian motions of a pair of particles. We investigate the pair
mobility M by studying for a force applied to one particle the hydrodynamic response of the
other particle. By the Stokes-Einstein relations the pair diffusivity of particle D is predicted
to be

D = 2kBTM. (5.3)

The grand-mobility tensor comprising both the translational and rotational responses for the
collective particle degrees of freedom X = (X1, X2) can be expressed as

d

dt

[
X1

X2

]
=

[
M11 M12

M12 M22

] [
F1

F2

]
. (5.4)

In the current setting we are most interested in the diagonal entries of the M11 and M12

components which characterize how a force acting on one particle effects the motion of the
other in the same direction. We determine these responses empirically by applying such a
force and measuring the resulting velocity in our computational simulations.

To estimate empirically the pair diffusivity D of our particles we use

D =
1

δt
〈∆X∆XT 〉 (5.5)
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where ∆X = X(δt)−X(0). The components in which we are most interested are the diagonal
terms of D11 and D12 which correspond to how the diffusive motion of one of the particles
is correlated with the other in the same direction.

To investigate the role of confinement in particle interactions, we consider both the active
force responses and the passive diffusivities and how they depend on both the proximity of
the particles to one of the channel walls and the distance of separation between the particles.
For the wall proximity, we consider the two specific cases when the particle is located at
position z = 2nm and z = 10nm.

We find that confinement plays a significant role both in the active hydrodynamic inter-
actions between particles and in the passive diffusivity of their correlated Brownian motions.
We find that our stochastic numerical methods yield results in close agreement with the
Stokes-Einstein relations given in equation 5.3, see Figure 5.5. We think the slight discrep-
ancy in our results comes from the inherent errors in our different estimators to obtain the
mobility and diffusivity of a particle from the computational simulations.

Fig. 5.5. Confinement Effects on the Pair Mobility and Diffusivity of Particles. We consider the
role of proximity to the channel wall both on the active hydrodynamic responses in the interactions
between a pair of ellipsoidal particles and on the passive diffusivities in the correlated Brownian
motions of the two particles. We find confinement significantly impacts both the active responses
and passive diffusivity. We also find that our stochastic computational methods agree to a good
approximation with the predictions of the Stokes-Einstein relations D = 2kBTM , [29].

5.5. Particle Collective Dynamics : Relaxation of Density Fluctuations.
We investigate the collective dynamics of ellipsoidal particles captured by our stochastic
numerical methods by considering for a dilute and dense suspension the relaxations observed
in the spontaneous density fluctuations. To help enforce sterics between the particles, we
introduce a Weeks-Chandler-Andersen interaction between the particles [35]. We study these
effects in a channel having a geometry of 60nm × 30nm × 20nm resolved with mesh-width
1nm.

We perform simulations to investigate the collective stochastic dynamics of the hydro-
dynamically coupled particles in the different density regimes. We perform simulations of
(i) a dilute suspension of 100 particles and (ii) and dense suspension of 840 particles, see
Figure 5.6. To investigate the role of the hydrodynamic coupling, we perform simulations
(i) with our SELM stochastic numerical methods and (ii) with standard Langevin dynamics
without hydrodynamic coupling.

To characterize how the density effects the motions of particles we consider for the
SELM simulations the translational Mean-Squared Displacement (MSD) and the rotational
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Channel Simulations

Dilute Regime Dense Regime

Fig. 5.6. Ellipsoidal Particles in a Channel. We simulate both a dilute regime consisting of
100 particles interacting within a channel and a dense regime with 840 particles interacting within
a channel. The ellipsoidal particles are represented using our trimer model. Shown are typical
configurations of the particles in each of these regimes.
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Fig. 5.7. Mean-Squared Displacement. We consider the translational mean-squared displace-
ment (MSD) and the rotational mean-squared angular displacements (MSA). We find the transla-
tional MSD is most effected by the increase in particle density and exhibits a noticeable decrease for
the more dense regime. We find the MSA is rather insensitive to the density of particles.

Mean-Squared Angular Displacement (MSA), see Figure 5.7. We find a noticeable decrease
in the MSD as the density increases. This indicates that in the dense case the particle
interactions significantly restrict the diffusive motions of the particles. We find that the
rotational diffusivity of particles was largely unaffected. This lack of sensitivity is somewhat
expected given the more local nature of angular diffusion which only requires rotation locally
at a relatively fixed location requiring less collective rearrangements of the particles.

To give a sense of how particles arrange within the channel we show the position distri-
bution and angular distribution in Figure 5.8. We find that the particles distribute almost
uniformly throughout the channel but do have a small depletion layer near the channel wall
on a length-scale comparable to the radius of the particles. We also find that the angular
distribution for pairs of particles exhibits a sinusoidal shape ρ(θ) = π

2
sin(θ) that is consistent

with an isotropic orientation of the ellipsoidal particles within the channel. This distribution
follows from the three dimensional geometry associated with the angle between a pair of par-
ticles. If one places the director of one particle at the north-pole of the sphere and chooses
the other uniformly over the sphere the distribution ρ(θ) is easily obtained by integrating
the spherical coordinates for three dimensional systems. These results indicate there is no
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Fig. 5.8. Distribution of Particles within the Channel. We find the particles distribute uni-
formly across the channel diameter with the density decreasing in a layer near the boundary on a
length-scale comparable to the particle size. We find the angular distribution for pairs of ellipsoidal
particles is well-approximated by ρ(θ) = π

2
sin(θ). This is consistent with isotropic arrangements of

the particles corresponding to the angle distribution of directors uniformly distributed on the surface
of a sphere.

noticeable biasing of the distribution in our simulations as a consequence of the symmetry
broken by the presence of the channel walls.

To investigate the density relaxations of the system, we consider for the SELM stochastic
numerical methods and standard Langevin dynamics the Intermediate Scattering Functions
(ISFs) of the particles. The ISF for a given wave-vector k is defined by

F (k, t) =
1

N
〈ρ(k, t)ρ(−k, 0)〉 (5.6)

where the particle density is represented in terms of Fourier modes as

ρ(k, t) =

N∑
j=1

e−ik·rj(t). (5.7)

For the SELM and Langevin simulations, we find that each ISF are well-approximated by
the decay of a single exponential exp (−tΓ(k)). To characterize the rate on which the density
fluctuations relax we consider Γ(k) over a range of wave-vectors.

We find for the SELM approach the dispersion relation Γ(k) have a quadratic trend
k2. In contrast, for the Langevin simulations that neglect hydrodynamic effects, we find
that the dispersion relations have a linear trend k. These results show that our stochastic
computational methods capture significant collective effects mediated by hydrodynamics that
are not found in simulations performed with conventional Langevin dynamics. The role of
the density of the particles is also found to play some role in modulating these rates. We find
that the rate at which density fluctuations relax for the dense system is noticeably slower
than for the dilute system. This is consistent with the additional steric and hydrodynamic
interactions which couple the motions of particles more strongly in the dense system. These
preliminary results show the ability of our stochastic computational methods to capture for
a large number of interacting particles both the roles played by hydrodynamic coupling and
thermal fluctuations in the collective dynamics. We plan to pursue more detailed studies in
future work.

6. Conclusions. We have developed stochastic computational methods to take into
account confinement effects within channel geometries. Our approach is based on fluctuating
hydrodynamics and the Stochastic Eulerian Lagrangian Method (SELM) for incorporating
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Fig. 5.9. Relaxation of the Density Fluctuations. The decay of the Intermediate Scattering
Functions (ISFs) are fit well by a single exponential exp (−tΓ(k)) for both the SELM and Langevin
simulations. The dispersion relation Γ(k) exhibits a quadratic trend k2 for the SELM dynamics
incorporating hydrodynamic coupling. The dispersion relation Γ(k) exhibits a linear trend k for the
Langevin dynamics that neglect hydrodynamic effects. The relations are normalized for SELM by
Γ0 = 0.25 and for Langevin by Γ0 = 0.005.

thermal fluctuations into approximate descriptions of the fluid-structure interactions. We
have shown our approach of imposing an exact fluctuation-dissipation condition to obtain
a discretization of the stochastic driving fields combined with our using an exact projection
method to enforce incompressibility is sufficient to ensure results consistent with statistical
mechanics. We have shown our stochastic discretization approach also handles naturally
fluctuations in the context of the no-slip boundary conditions. We found that the stochastic
computational methods work well to capture both on the active hydrodynamic responses
and the passive diffusive responses when particles are effected by their proximity to the
channel walls. We expect our introduced stochastic computational methods to be applicable
broadly to applications in which confinement effects play an important role in the dynamics
of microstructures subject to hydrodynamic coupling and thermal fluctuations.
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