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Abstract. We develop stochastic mixed finite element methods for spatially adaptive simula-
tions of fluid-structure interactions when subject to thermal fluctuations. To account for thermal
fluctuations, we introduce a discrete fluctuation-dissipation balance condition to develop compati-
ble stochastic driving fields for our discretization. We perform analysis that shows our condition is
sufficient to ensure results consistent with statistical mechanics. We show the Gibbs-Boltzmann dis-
tribution is invariant under the stochastic dynamics of the semi-discretization. To generate efficiently
the required stochastic driving fields, we develop a Gibbs sampler based on iterative methods and
multigrid to generate fields with O(N) computational complexity. Our stochastic methods provide
an alternative to uniform discretizations on periodic domains that rely on Fast Fourier Transforms.
To demonstrate in practice our stochastic computational methods, we investigate within channel
geometries having internal obstacles and no-slip walls how the mobility/diffusivity of particles de-
pends on location. Our methods extend the applicability of fluctuating hydrodynamic approaches
by allowing for spatially adaptive resolution of the mechanics and for domains that have complex
geometries relevant in many applications.
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Introduction. We develop general computational methods for applications in-
volving the microscopic mechanics of spatially extended elastic bodies within a fluid
that are subjected to thermal fluctuations. Motivating applications include the study
of the microstructures of complex fluids [17], lipid bilayer membranes [28, 33, 49], and
micro-mechanical devices [38, 29]. Even in the deterministic setting, the mechanics
of fluid-structure interactions pose a number of difficult and long-standing challenges
owing to the rich behaviors that can arise from the interplay of the fluid flow and
elastic stresses of the microstructures [19, 43]. To obtain descriptions tractable for
analysis and simulations, approximations are often introduced into the fluid-structure
coupling. For deterministic systems, many spatially adaptive numerical methods have
been developed for approximate fluid-structure interactions [25, 36, 26, 40, 2, 30]. In
the presence of thermal fluctuations, additional challenges arise from the need to cap-
ture in computational methods the appropriate propagation of fluctuations through-
out the discretized system to obtain results consistent with statistical mechanics. In
practice, challenges arise from the very different dissipative properties of the discrete
operators relative to their continuum differential counterparts. These issues have
important implications for how stochastic fluctuations should be handled in the dis-
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crete setting. Even when it is possible to formulate stochastic driving fields in a
well-founded manner consistent with statistical mechanics, these Gaussian random
fields have often many degrees of freedom and non-trivial spatial correlations that
can be difficult to sample without significant computational expense. Many finite
difference methods on uniform periodic meshes have been developed for fluctuating
hydrodynamics [9, 16, 42, 18, 7, 48, 6]. One of the main reasons that fluctuating hy-
drodynamics is treated on uniform periodic domains is so that stochastic driving fields
can be generated using Fast Fourier Transforms (FFTs) [7, 6]. Here, we take a dif-
ferent approach by developing stochastic methods based on Finite Element Methods
for fluctuating hydrodynamics and provide an alternative to Fast Fourier Transforms
for the generation of stochastic driving fields. Our approach allows for non-uniform
spatially adaptive discretizations on non-periodic domains with geometries more nat-
urally encountered in many applications.

We develop Finite Element Methods with properties that facilitate the introduc-
tion of stochastic driving fields and their efficient generation. We show our discretiza-
tion approach provides operators that satisfy certain symmetry and commutation
conditions that are important when subject to the incompressibility constraint for
how thermal fluctuations propagate throughout the discrete system. We formulate
the stochastic equations for our fluid-structure system subject to thermal fluctuations
in Section 1. We introduce for a given spatial discretization our general procedure for
deriving compatible stochastic driving fields that model the thermal fluctuations in a
manner consistent with statistical mechanics in Section 2. To obtain the stochastic
driving fields with the required spatial correlation structure, we develop stochastic
iterative methods based on multigrid to generate the Gaussian random fields with
computational complexity O(N) in Section 3. We present validation of our stochastic
numerical methods with respect to the hydrodynamic coupling and thermal fluctua-
tions in Section 5. To demonstrate our approach in practice, we present simulations
of a few example systems in Section 6.

Overall, our approach extends the range of problems that can be treated numer-
ically with fluctuating hydrodynamic methods by allowing for arbitrary geometries
with walls having no-slip boundary conditions and by allowing for spatially adaptive
resolution. Many of the central ideas used for our numerical approximation of the
fluctuating hydrodynamic equations should also be applicable in the approximation
of other parabolic Stochastic Partial Differential Equations (SPDEs). We expect our
stochastic numerical methods for fluctuating hydrodynamics to be useful in applica-
tions where the domain geometry plays an important role.

1. Fluid-Structure Hydrodynamics and Fluid-Structure Interactions.
We describe the mechanics of fluid-structure interactions subject to thermal fluctua-
tions using the Stochastic Eulerian Lagrangian Method (SELM) [6]. In the inertial
regime this is given by momentum equations for the fluid coupled to momentum
equations for the microstructures [6]. We consider here the regime in which the fluid-
structure coupling is strong and the microstructures are mass density matched with
the fluid [6, 4]. This regime is closely related to the Stochastic Immersed Boundary
Method [7, 4, 37, 14]. In this regime, we use the time-dependent Stokes equations for
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the fluid coupled to an equation of motion for the microstructures

ρ
∂u

∂t
= µ∆u−∇p+ fs + fthm in Ω

∇ · u = 0 in Ω

u|∂Ω = 0.

(1.1)

The elastic microstructures with configuration X are given by the following equation
of motion and coupling condition that models the bidirectional coupling between the
fluid and microstructures

dX

dt
= Γu (1.2)

fs = Λ [−∇Φ(X)] . (1.3)

The thermal fluctuations are taken into account by the Gaussian random field fthm
which when decomposed into a mean and fluctuating part fthm = f̄thm + f̃thm has
the form

f̄thm = 〈fthm〉 = kBT∇X · Λ (1.4)

〈f̃thm(x)f̃Tthm(y)〉 = 2µ∆C(x− y) (1.5)

C(x− y) = kBTρ
−1δ(x− y). (1.6)

These stochastic driving fields were derived for the mechanical system using the SELM
framework in [6]. A notable difference with the original formulation of the Stochas-
tic Immersed Boundary Method (SIBM) is the presence of the thermal drift term in
equation 1.4 which arises from the more systematic treatment through stochastc av-
eraging to obtain in this regime the stochastic fluid-structure equations which handles
the generalised configuration-momentum coordinates used in such descriptions [6, 4].

In the notation, the u is the fluid velocity field, X is the collective microstructure
configuration, p the pressure, and µ the dynamic shear viscosity. The hydrodynamic
equations 1.1 account for the microstructure interaction through fs. For short, we
let f = fs + fthm. In the motion of the microstructures in response to the fluid
flow is given by equation 1.2. Similar to the Immersed Boundary Method [37, 14],
the operator Γ provides a model for how the microstructure locally responds to the
fluid flow. The influence that the microstructure has on the nearby fluid is given by
equation 1.3. The Λ operator models the neighborhood of surrounding fluid that is
affected by forces acting on the microstructure. These operators can be chosen quite
generally provided they satisfy the adjoint condition [37, 14, 6]

〈ΛV,u〉Ω = 〈V,Γu〉M (1.7)

where u has the same form as the fluid velocity field and V the same form as the
microstructure velocity. The 〈f ,g〉Ω =

∫
Ω

f(x) · g(x)dx denotes integration over the
spatial domain of the fluid and 〈F,G〉M =

∑
Fj ·Gj denotes the dot-product over the

microstructure degrees of freedom. With these assumptions, the equations 1.1– 1.3
describe the mechanics of the fluid-structure interactions subject to thermal fluctua-
tions in the physical regime where the microstructure is strongly coupled to the fluid
and mass density-matched with the fluid [6, 4].

In the regime where the hydrodynamics relaxes rapidly relative to the time-scale
of microstructure motions, the fluid-structure dynamics can be further reduced [6, 4]
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to obtain

dX

dt
= H [−∇Φ((X))] + kBT∇ ·H + h (1.8)

〈hhT 〉 = 2kBTH. (1.9)

We refer to this as the overdamped Stokes regime which is similar to Brownian-
Stokesian dynamics [10, 21]. The effective hydrodynamic coupling tensor of the mi-
crostructure is given by H = Γ℘L℘TΛ with L = µ−1∆−1 and ℘ = I − ∇∆−1∇· is
the solenoidal projection operator imposing the hydrodynamic incompressibility [15].
The thermal fluctuations are taken into account through the stochastic driving term h
and the thermal drift-divergence term kBT∇ ·H. The above equations can be shown
to have the Gibbs-Boltzmann distribution invariant with detailed-balance under the
stochastic dynamics [6, 4].

2. Finite Element Semi-Discretization : Mixed-Method. We develop
mixed finite element methods for semi-discretization of the fluid-structure system
where the fluid is governed by the time-dependent Stokes equations. We perform a
stochastic reduction of the semi-discretized equations in the limit where the hydrody-
namics is assumed to relax rapidly on the time-scale of the motions of the microstruc-
tures. This reduction provides a numerical discretization of the fluid-structure system
in the overdamped regime.

In the weak formulation of the fluid equations, we consider the fluid velocity u
in the space H1

0 (Ω)3 and the pressure p in the space L2(Ω). The H1
0 (Ω)3 denotes the

triple product of the Sobolev space under the L2-norm with weak derivatives up to
order one and zero trace on the domain boundary [11]. The weak formulation of the
fluid equations is

ρ〈∂tu,ϕ〉 = −µa(u,ϕ) + b(ϕ, p) + 〈f ,ϕ〉, for all ϕ ∈ H1
0 (Ω),

b(u, ψ) = 0, for all ψ ∈ L2(Ω).
(2.1)

The 〈·, ·〉 denotes the L2-inner product. The a : H1
0 (Ω)3 × H1

0 (Ω)3 → R and b :
H1

0 (Ω)3 × L2(Ω)→ R are the continuous bilinear forms

a(u,v) = 〈∇u,∇v〉 =

∫
Ω

∇u : ∇v dx,

b(u, q) = 〈q,∇ · u〉 =

∫
Ω

q∇ · u dx.

We use the Ritz-Galerkin approximation of the variational problem corresponding to
restriction to the finite dimensional subspaces Vh ⊂ H1

0 (Ω)3 and Ph ⊂ L2(Ω). Our
specific choice of spaces Vh,Ph will be discussed in Section 2.1. The exact solution
to the variational problem in equation 2.1 is approximated by uh ∈ Vh and ph ∈ Ph
satisfying the finite-dimensional problem

ρ〈∂tuh,ϕi〉 = −µa(uh,∇ϕi) + b(ϕi, ph) + 〈f ,ϕi〉, for all ϕi ∈ Vh
b(uh, ψi) = 0, for all ψi ∈ Ph.

(2.2)

This can be expressed in matrix form as

ρMU̇ = −µLU +GP + F

DU = 0.
(2.3)
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We represent functions using a basis Vh = span{ϕi} and a basis Ph = span{ψi} with

uh =
∑
i

Uiϕi and ph =
∑
i

Piψi.

The matrices have entries

Mij = 〈ϕi,ϕj〉, Lij = a(ϕi,ϕj), (2.4)

Gij = −b(ϕj , ψi), Dij = b(ϕi, ψj). (2.5)

The forcing term F can be decomposed into a contribution from the microstructure
coupling and thermal fluctuations F = F str +F thm. The microstructure coupling term
F str is given by F str

i = 〈fs,ϕi〉 = 〈Λ [−∇Φ] ,ϕi〉 which by linearity of Λ we can express
as

F str

i = BTX(−∇Φ).

In the weak formulation, the operator BTX now plays the analogous role as Λ in
equation 1.3.

In summary, for the full fluid-structure system, the finite element semi-discretization
can be expressed as

ρMU̇ = −µLU +GP +BTX(−∇Φ) + Fthm

DU = 0

Ẋ = BXU

F̄thm = 〈Fthm〉 = kBT∇X ·BTX〈
F̃thm

(
F̃thm

)T〉
= G = µ

(
LC + (LC)T

)
C = kBTρ

−1M−1.

(2.6)

As in the continuum formulation, the thermal fluctuations are decomposed into the
mean and fluctuating parts Fthm = F̄thm + F̃thm. The operator BX now plays the
analogous role as Γ and BTX the analogous role as Λ in equations 1.1– 1.3. This
ensures that the important adjoint condition between the force-spreading and velocity-
averaging operators hold [37, 6, 7]. We caution that the stochastic term Fthm was not
derived by simply projecting the full stochastic field fthm. Following the approach
in [6, 7], we took into account the particular properties of the discrete operators of
the system to ensure fluctuations propagate throughout the discretized fluid-structure
system in a manner consistent with statistical mechanics. We establish in more detail
the statistical mechanics of our finite element discretization in Section 2.2.

For the overdamped regime, we follow an approach similar to [4, 6] to reduce the
semi-discretized equations 2.6 in the limit of rapid hydrodynamic relaxation to obtain
a stochastic semi-discretization of the overdamped equations 1.8. This yields

Ẋ = H(−∇Φ) + kBT∇X ·H + R (2.7)

〈RRT 〉 = 2kBTH. (2.8)

The effective hydrodynamic coupling tensor is H = BXSB
T
X. The operator S repre-

sents solving for the fluid velocity U in the following discretized Stokes equations

A
[
U
P

]
=

[
BTX(−∇Φ)

0

]
, where A =

[
µL −G
D 0

]
. (2.9)
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This can be expressed more explicitly as S = [I 0]A−1[I 0]T which gives U = SBTX(−∇Φ).
For general finite elements a semi-discretization of the stochastic fluid-structure

system in the regimes of inertial dynamics and overdamped dynamics is given by equa-
tions 2.6 and 2.7. For use in practice, this semi-discretization requires a specific choice
of appropriate approximating function spaces and corresponding finite elements.

2.1. Choice of Finite Elements and the Approximating Function Spaces
Vh and Ph. The Stokes problem given by equation 2.9 for our mixed finite element
discretization is well-known to be a saddle problem. To ensure numerical stability and
a well-posed variational problem requires a careful choice for the two function spaces
Vh and Ph [11]. The Stokes problem can be split into two sub-problems. In the first,
one attempts to find the fluid velocity uh within the subspace Z ⊂ Vh of vector fields
satisfying exactly the incompressibility constraint, Z = {v ∈ Vh|b(v, q) = 0,∀q ∈ Ph}.
This is done by considering the variational problem [11]

a(uh,ϕ) = −〈f ,ϕ〉, ∀ϕ ∈ Z ⊂ Vh. (2.10)

In the second, one attempts to solve for the pressure p in Ph by considering the
variation problem [11]

b(ϕ, p) = −a(uh,ϕ)− 〈f ,ϕ〉, ∀ϕ ∈ Vh. (2.11)

Provided both of these two sub-problems can be solved, we have a consistent solution
to the Stokes problem. A central issue is that for mixed problems the bilinear form b
is often not coercive. This prevents a direct application of the Lax-Milgram Theorem
to ensure well-posedness [11]. As an alternative, Babuška and Brezzi [8, 27, 12] found
for the two bilinear forms a, b on the function spaces Vh and Ph a set of conditions
that are weaker than coercitivity but still sufficient to ensure well-posedness. The first
condition concerns the bilinear form a and amounts to a form of coercitivity but now
weaker only requiring this property when restricting to the subspace Z as suggested
by the sub-problem in equation 2.10

α‖v‖2 ≤ a(v,v), ∀v ∈ Z ⊂ Vh. (2.12)

The second condition requires the bilinear form b satisfy for the two function spaces

inf
qh∈Ph

sup
vh∈Vh

b(vh, qh)

‖vh‖Vh‖qh‖Ph

≥ β > 0. (2.13)

This is referred to as the Babuška-Brezzi condition or the inf-sup condition. Babuška
and Brezzi showed for mixed methods these conditions are sufficient to ensure well-
posedness of the variational problems and desirable numerical properties [8, 27, 12].

The Babuška-Brezzi condition provides important guidance on which finite el-
ements should be used for the fluid and pressure in the Stokes problem. For the
Stokes problem, many of the most obvious choices of function spaces do not work
very well in practice and in fact violate the Babuška-Brezzi condition given by equa-
tion 2.13 [3, 11]. For instance using Vh = (Pk)3, Ph = Pk where Pk is the space
of piecewise-polynomials of degree k does not satisfy the Babuška-Brezzi condition
for any choice of k > 1. Even the choice Vh = (P1)3,Ph = P0 does not satisfy the
conditions to provide a stable method.

To satisfy the Babuška-Brezzi conditions, we use finite elements for the velocity
field that are enriched by an additional bubble mode Vh = (P1-bubble)

3
and for
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the pressure Ph = P1, as introduced in [3]. The P1-bubble consists of the usual
piecewise linear functions but enriched with a quartic “bubble element” located at
the barycenter of each tetrahedral element but vanishing at the faces, see Figure 2.1.
The enrichment by bubble-elements provides enough stabilisation that the Babuška-

Fig. 2.1. P1-MINI Elements [3]. To obtain a discretization of the Stokes equations satisfying
the Babuška-Brezzi condition we use a combination of piecewise linear elements (P1-elements) for
the pressure and quartic Bubble-elements for the velocity. The mesh degrees of freedom (DOF)
consist of the usual nodal variables for P1-elements (labeled in red) and nodal variables at the center
of each element to determine the bubble mode (labeled in blue). While the bubble-elements contribute
a large number of degrees of freedom, they have the convenient property that their support is only
within the interior of an element and are decoupled from one another [3].

Brezzi conditions are satisfied and yield for the Stokes equations a convergent method
which has order h [11]. Given that the bubble-elements do not overlap since they are
contained within the interoir of each element, the overhead associated with the bubble
enrichment is marginal since they contribute in a manner to the overall linear system
that is decoupled. This also has desirable properties in the stochastic setting when
generating fluctuations as we shall discuss. The combination (P1-bubble)

3
/P1 has a

minimal footprint. We shall refer throughout to this pair as the P1-MINI Elements,
as in [3].

2.2. Statistical Mechanics of the Semi-Discretization. We show that our
stochastic semi-discretization provides an approximation yielding fluctuations consis-
tent with statistical mechanics. We show that the Gibbs-Boltzmann distribution is
invariant under the stochastic dynamics. The Gibbs-Boltzmann distribution is given
by

ΨGB(z) =
1

Z
exp [−E(z)/kBT ] . (2.14)

The z = (u,X) is the state of the system, E is the energy, kB is Boltzmann’s con-
stant, T is the system temperature, and Z is a normalization constant for the distri-
bution [39]. The energy of the fluid-structure system is given by the kinetic energy of
the fluid and the potential energy of the microstructures

E[z] =
ρ

2

∫
|u|2dx+ Φ(X). (2.15)

For the discrete system we consider the energy

E[z] =
ρ

2
UTMU + Φ(X). (2.16)

The M is the mass matrix defined in equation 2.4. For this energy, we have at
equilibrium that the fluid velocity U has fluctuations with mean zero and covariance

C = kBTρ
−1M−1. (2.17)
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For the stochastic fluid-structure equations 2.6, the Fokker-Planck equation for ΨGB

is given by

∂ΨGB

∂t
= −∇ · J (2.18)

J =

[
ρ−1M−1

(
µL+BTX + kBT∇X ·BTX

)
BX

]
ΨGB −

1

2
(∇ · G)ΨGB −

1

2
G∇ΨGB.

The G denotes the covariance operator for the stochastic driving fields given by equa-
tion 2.6. The Gibbs-Boltzmann distribution is invariant provided that

∇ · J = A1 +A2 +∇ ·A3 +∇ ·A4 = 0 (2.19)

where

A1 =
[
ρ−1M−1

(
BTX + kBT∇X ·BTX

)
· ∇UE +BX · ∇XE

]
(−kBT )−1ΨGB

A2 =
[
∇U ·

(
ρ−1M−1

(
BTX + kBT∇X ·BTX

))
+∇X ·BX

]
ΨGB

A3 = −1

2
(∇ · G)ΨGB

A4 =

[
µL+ [GUU∇UE + GUX∇XE] (2kBT )−1

[GXU∇UE + GXX∇XE] (2kBT )−1

]
ΨGB.

To simplify the notation we have suppressed explicitly denoting the functions on which
the operators act, which can be inferred from equation 2.6. We have also suppressed
the incompressibility constraint since this can be handled readily by considering the
dynamics decomposed into a component on the space of solenoidal fields and its
orthogonal complement as was done in [4]. To compare terms, we use the gradients
obtained from the energy in equation 2.16 given by

∇UE = ρMU (2.20)

∇XE = ∇XΦ. (2.21)

By direct substitution of the gradients into A1 given by equation 2.20– 2.21, we find
after cancellation A1 = −(ρ−1M−1(∇X · BTX) · ∇UE)ΨGB = −(UT (∇X · BTX))ΨGB.
Since BTX only depends on X, we have A2 = (∇X · BXU)ΨGB. This gives that
A1 + A2 = 0. We remark that this is a direct consequence of requiring the coupling
operators to be linear and adjoints Γ = Λ† in the sense of equation 1.7 where Γ =
BX [6, 4]. The term A3 accounts for probability fluxes driven by state dependent
changes in the covariance of the stochastic driving fields. In this case the covariance
G does not depend on the system state, so the divergence gives A3 = 0. The term
A4 arises from the interplay between dissipation and fluctuations in the dynamics.
By looking at the dependence of the differentiated expressions most of the terms
are seen to be zero. By our choice of the covariance Gu,u given by equation 2.6
which was motivated by the form of the discrete energy in equation 2.16 and the
target equilibrium covariance for fluctuations given in equation 2.17, we have that
the non-zero terms balance to yield A4 = 0. The choice of G and its relation to
C can be thought of as imposing a discrete fluctuation-dissipation balance for our
semi-discretization [7, 6]. These results establish that ∇ · J = 0 and that the Gibbs-
Boltzmann distribution is invariant under our semi-discretized stochastic dynamics.

In the overdamped limit, the fluid-structure system is governed only by the mi-
crostructure potential energy

E[X] = Φ(X). (2.22)
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For the stochastic fluid-structure equations 2.7, the Fokker-Planck equations for ΨGB

are given by

∂ΨGB

∂t
= −∇ · J (2.23)

J = (H(−∇XΦ(X)) + kBT∇ ·H) ΨGB −
1

2
(∇ · 2kBTH)ΨGB −

1

2
(2kBTH)∇XΨGB.

From the form of ΨGB, we have − 1
2 (2kBTH)∇XΨGB = H(∇XΦ(X))ΨGB which gives

that J = 0. This shows that the Gibbs-Boltzmann distribution is invariant with
detailed-balance under the stochastic dynamics of our semi-discretization given in
equation 2.7.

These results establish that our semi-discretizations both in the inertial and over-
damped regimes yield stochastic dynamics consistent with statistical mechanics. An
important issue in practice is to generate efficiently the stochastic driving fields Fthm

and h with the required covariances.

3. Generation of the Stochastic Driving Fields. The thermal fluctuations
in the overdamped regime require generating a Gaussian random field R with mean
zero and covariance

〈RRT 〉 = 2kBTH = 2kBTBXSB
T
X. (3.1)

In general, this is difficult since S is a dense matrix and calculating the square root
using methods such as Cholesky yields a dense factor making field generation com-
putationally expensive. The issue is further complicated by the fact that the action
of S involves taking the inverse of A which is not a sign definite matrix. We take an
alternative approach for the efficient generation of the stochastic field R by factoring
the Stokes operator S to reduce the problem to generating variates with a covariance
related only to the discrete Laplacian stiffness matrix L.

3.1. Splitting the Covariance using Properties of the Stokes Operator
and Laplacian. A useful identity for the discrete Stokes operator is

S(µL)S = S. (3.2)

This follows since for an arbitrary choice of F 1 in equation 2.7 we have the solution
U0 = SF 1 so that S(µL)SF 1 = SF 1 + SGP0 from substitution of U0 back into the
Stokes equation 2.7. The SG = 0 since for an arbitrary P1 if we set F 1 = GP1 then
the solution is clearly U1 = SF 1 = SGP1 = 0 by uniqueness the Stokes problem for
U .

This identity is useful since it reduces generating the stochastic driving field
R with covariance 2kBTH to that of generating variates ξ with covariance C =
−(µL). More specifically, we can generate the stochastic driving field by using
R =

√
2kBTBXSξ which yields the required statistics through

〈RRT 〉 = 2kBTBXS〈ξξT 〉STBTX = 2kBTBXS(µL)SBTX = 2kBTBXSB
T
X = 2kBTH.

To generate efficiently the variates ξ with covariance −L, we develop stochastic iter-
ative methods.

We remark that for this factorization there are some further advantages when
using the P1-MINI elements. For the Laplacian stiffness matrix L, the collection
of entries corresponding to the bubble elements is diagonal. This allows for trivial
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generation of variates at the bubble elements by using independent Gaussians and
weighting by the square root of the diagonal entry of the stiffness matrix. This means
that stochastic field generation can be reduced to the problem of generating variates
with covariance −L restricted to the non-bubble nodal degrees of freedom which are
far fewer in number than the bubble nodes, see Figure 2.1. This provides in the
stochastic setting a particular advantage of the P1-MINI elements over higher order
methods such as the Taylor-Hood elements [3, 11].

3.2. Stochastic Iterative Methods. We develop stochastic iterative methods
to obtain Gaussian random variates with a target mean and covariance structure. A
general one-step linear iterative method can be developed into a Gibbs sampler by
introducing a stochastic term ηn into the iteration step as

ξn+1 = Mξn +Nb + ηn. (3.3)

We assume throughout that ηn is a Gaussian variate with mean zero and covariance
G = 〈ηnηn,T 〉. The stochastic iterations can be expressed in terms of the probability
density ρn(ξ) and transitions at iteration n as

ρn+1(ξ) =

∫
π(ξ,w)ρn(w)dw (3.4)

π(ξ,w) =
1√

2πdetG
exp

[
(ξ −Mw −Nb)

T
G−1 (ξ −Mw −Nb)

]
. (3.5)

This yields a set of Gaussians ξn having mean value µn and covariance Cn sat-
isfying

µn+1 = Mµn +Nb (3.6)

Cn+1 = MCnMT +Nbµn,TMT +MµnbTNT +NbbTNT +G. (3.7)

In the case that the target mean µ = 0, we can choose b = 0 and this simplifies
to

Cn+1 = MCnMT +G. (3.8)

The autocorrelation Φm = 〈ξn(ξn+m)T 〉 for how the random variates ξn decorrelate
over m iterations satisfies

Φm+1 = MΦm. (3.9)

This relation has the consequence that in the stochastic setting the decay in corre-
lation has the same behavior as the decay in error in the deterministic setting when
iteratively solving the problem Lx = b. To obtain random variates with a target
covariance C, we have from equation 3.8 that the covariance of η must satisfy

G = C −MCMT = −AC − CAT +ACAT (3.10)

where A is defined by M = I−A. For generating general Gaussian random variates ξ,
the stochastic iterative method 3.3 provides a useful approach provided the iterative
method converges efficiently and the random variates η have a covariance G that is
easier to generate than C. For traditional iterative methods, such as SOR, Gauss-
Seidel, and Jacobi iterations, stochastic iterative counterparts have been introduced
in [24, 23, 1, 50]. The convergence of such stochastic iterative methods can be further
improved by using preconditioning strategies such as multigrid [24, 23]. For stochastic
field generation in our semi-discretized fluctuating hydrodynamic equations, we show
how the multigrid preconditioner can be adopted to sample the stochastic driving
fields. We base our sampler on Gauss-Seidel iterations.
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3.3. Modified Gauss-Seidel Iterations for Gibbs Sampling. The Gauss-
Seidel iterative method for solving the system Av = b in the deterministic setting is
given by

vn+1 = (D − L)−1Uvn + (D − L)−1b. (3.11)

We use the splitting A = D − L − U . The D denotes the diagonal elements of the
matrix A, L the lower triangular elements, and U the upper triangular elements.
This corresponds to the general iterative method of equation 3.3 with the choice
M = (D − L)−1U and N = (D − L)−1. To obtain Gaussian random variates with
mean µ = 0 and covariance C = A−1, we must generate for each iteration a stochastic
variate ηn having covariance G satisfying equation 3.10. For Gauss-Seidel iterations,
this requires covariance

G = (D − L− U)−1 − (D − L)−1U(D − L− U)−1L(D − L)−T . (3.12)

It has been shown in [24] that this can be expressed as

G = (D − L)−1
[
(D − L− U)(D − L− U)−1(D − U)

+ U(D − L− U)−1(D − L− U)
]

(D − U)−1 (3.13)

= (D − L)−1D(D − U)−1.

This gives the factorization G = QQT with

Q = (D − L)−1D1/2. (3.14)

We have used that A is symmetric positive definite with U = LT and that the trans-
pose of the inverse is the inverse of the transpose. This provides a way to generate the
random variates through η = Qζ where ζ is a standard multi-variate Gaussian with
mean zero and unit covariance. This is an efficient procedure, especially for sparse
matrices A, since the action of (D−L)−1 can be obtained through back-substitution
in the same manner as in deterministic Gauss-Seidel iterations [13]. This provides our
stochastic Gauss-Seidel iterative method for the generation of random variates.

3.4. Stochastic Multigrid. In the deterministic setting multigrid is often used
to improve the convergence of iterative methods [13, 35]. Multigrid makes use of
different levels of refinement ` to perform iterations. In the multigrid iterations three
fundamental operators are utilized. The first is the smoother operator S` which is
used to iteratively approximate the linear system of equations on a given level `.
For transmission of information between different levels of resolution, a restriction
operator I`−1

` and prolongation operator I``−1 are defined. The restriction operator

I`−1
` maps data from a more refined level ` to data on a less refined level `− 1. The

prolongation operator I``−1 maps data from a less refined level `−1 to data on a more
refined level `, see Figure 3.1. Multigrid provides improvements in the convergence
in the deterministic setting by the different rates that the smoother relaxes modes
on different levels. This same feature that relaxes errors translates to the stochastic
setting by improving the rate at which the generated random variates decorrelate in
the number of iterations.

To ensure a viable stochastic multigrid method it is useful to have a few additional
properties that are not strictly required in the deterministic setting. We take the linear



12 P. PLUNKETT, P.J. ATZBERGER

Fig. 3.1. Multigrid uses subproblems on different levels of refinement to iteratively solve the
system of equations. Three operators are utilized: (i) smoother operator, (ii) restriction operator,
and (iii) prolongation operator. The smoother operator serves on each level to iteratively relax
values toward the solution. The restriction operator and prolongation operator serve to transfer data
between levels (left). Multigrid iterations are performed by a protocol combining these operations
(right) [13].

equations A(`)v = b(`) at refinement level ` to be related to those at the most refined
level `∗ by

A(`) = I``∗AI`
∗

` , b(`) = I``∗b. (3.15)

An important property when adopting the multigrid method to the stochastic setting
is to ensure a consistent variational principle for the linear equations at different re-
finement levels. The variational principle at the most refined level is that the solution
is a minimizer of the energy

E(v) =
1

2
vTAv − vTb. (3.16)

Consistency requires that the energy defined by E`(v(`)) := E(I`∗` v(`)) provide the
variational principle at level `. This is satisfied when the prolongation and restriction

operators are adjoints I``∗ =
(
I`∗`
)T

, which yields

E`(w) =
1

2
wT

(
I`

∗

`

)T
A
(
I`

∗

`

)
w −wT

(
I`

∗

`

)T
b (3.17)

=
1

2
wTA(`)w −wTb(`). (3.18)

The variational property has some important consequences. For the target Gaussian
distribution ρ(v), the stochastic smoother samples at level ` the marginal probability
distribution ρ(`)(w) =

∫
{v=I`∗` w} ρ(v)dv, which is given by

ρ(`)(w) =
1√

2πdetA(`)
exp

[
−1

2
wTA(`)w + wTb(`)

]
. (3.19)

This variational property can be shown to be sufficient to ensure the probability
distribution of the target multi-variate Gaussian is the invariant distribution of the
stochastic multigrid iterations [24].
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There are at least two common approaches taken when developing multigrid meth-
ods. The first is geometric multigrid in which the restriction and prolongation op-
erators are constructed by considering geometric correspondences between different
levels of the discretization such as spatial averages or interpolations [13]. The second
is algebraic multigrid in which the restriction and prolongation operators are con-
structed by considering the algebriac structure of the linear system such as grouping
clusters of entries of the matrix A [20, 44, 46, 45, 47]. We use an algebraic multigrid
method with smoothed aggregation following an approach similar to [20].
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4. Algorithm : Summary of SELM based on FEM Stokes.

Input: Polyhedral domain Ω, initial body configuration X0, body potential Φ, termi-
nal time tend, timestep size ∆t, Peskin δ-function length-scale h, kinematic viscosity
µ, temperature T .

Output: Body configuration Xt at each t = ∆t, 2∆t, 3∆t, . . .

1. Construct the adapted tetrahedralization:
{T , V } = AdaptedMesh(Ω,X0, h).

2. Construct the linear operators: {L,D} = FluidOperators({T , V }).

3. Set A =

[
µL DT

D 0

]
.

4. Set t, tremesh = 0.
5. Begin computing the body trajectory. While t < tend, do steps (a)-(g):

(a) Construct the velocity interpolator/force spreading operator:
B = VelocityInterpolator({T , V },Xt).

(b) Generate the N(0, (µL)−1) sample: ξ = GaussianSample(µL).
(c) Generate the body forces: f = BT (−∇Φ(Xt)).
(d) Perform the fluid solve: U = FluidSolve(A, f∆t+

√
2kBT∆tµLξ)

(e) Interpolate fluid velocity to particles: Xt+∆t = Xt +BU
(f) Test for remeshing. If |Xi

t+∆t −Xi
tremesh

| > 3h for any i, do steps i-iv:
i. Reconstruct the (adapted) tetrahedralization:
{T , V } = AdaptedMesh(Ω,Xt+∆t, h).

ii. Reconstruct the linear operators:
{L,D} = FluidOperators({T , V }).

iii. Set A =

[
µL DT

D 0

]
.

iv. Set tremesh = t+ ∆t.
(g) Update the current time using Euler-Maruyama [31]: set t = t+ ∆t.
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5. Validation Studies. We perform several studies to establish the validity of
the computational methods. We first investigate the empirical covariance structure
obtained from our iterative Gibbs samplers to make comparisons with the target co-
variance structure. We then consider the decorrelation rates exhibited by the direct
stochastic Gauss-Seidel iterations in comparison to the stochastic multigrid itera-
tions. We next explore the effective hydrodynamic coupling tensors corresponding to
the case when the fluid and structures are coupled based on the Immersed Boundary
Method [37, 14]. We then investigate the equilibrium fluctuations of the fluid-structure
system by computing the statistics of diffusing particles subject to a harmonic po-
tential. To validate our overall method we compare these results with the predicted
Gibbs-Boltzmann distribution.

5.1. Covariance Structure. A key component of our computational methods
for fluctuating hydrodynamics is to generate efficiently the stochastic fields driving
fields. As discuss in Section 3, this requires methods to generate Gaussian variates
with target covariance −L−1. We consider the fluctuating hydrodynamics when con-
fined within a spherical domain with Dirichlet no-slip boundary conditions. For both
direct stochastic Gauss-Seidel iterations and stochastic multigrid iterations we gen-
erated 10,000 samples, shown in Figure 5.1. The covariance matrix is shown for all
of the finite element degrees of freedom of the discrete system including the bubble
modes. The magnitude of the covariance is shown on a logarithmic scale. We find
that the empirical covariance structure from both of our stochastic iterative methods
is in very good agreement with the target covariance structure with an average error
of less than 4%. An important consideration is how efficiently the stochastic iterative
methods can sample nearly independent Gaussian random variates.
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Exact Covariance

Fig. 5.1. Covariance Structure. The matrix of covariance for all finite element degrees of
freedom are shown on a logarithmic scale for 10,000 samples from our stochastic Gauss-Seidel
iterations (GS) and stochastic multigrid iterations (AMG) (top row). These are compared to the
target covariance −L−1 which is the negative inverse Laplacian. The diagonal entries show the
self-correlation while the off-diagonal entries show correlations between distinct degrees of freedom.
The lower right entries of the correlation matrix is shown in more detail on the bottom. Both
stochastic iterative methods yield results with good agreement with the target covariance structure
with an average error of 4%.
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5.2. Decorrelation Rates. The stochastic driving fields appearing in the fluc-
tuating hydrodynamic equations 1.1 and 1.8 are treated as uncorrelated in time. In
stochastic numerical methods this requires on successive time steps the generation
of independent Gaussian random variates to account for the thermal fluctuations.
When using stochastic iterative methods to sample random variates there are always
correlations between generated variates but these diminish over successive iterations.
This means the quality of the random variates for fluctuating hydrodynamic simu-
lations requires taking a sufficient number of iterations. The efficiency depends on
how rapidly these correlations decay on successive iterations. We investigate this
by computing empirically a random variate its autocorrelation statistics as given in
equation 3.9. We consider the fluid within a spherical domain with no-slip Dirich-
let boundary conditions with a finite element discretization having 460,904 degrees
of freedom. The autocorrelation is considered for direct stochastic Gauss-Seidel it-
erations and stochastic multigrid iterations counting both the number of iterations
and the number of Gauss-Seidel visitations to individual finite element nodes. The
visitations count more closely reflects the computational expense in acheiving a given
level of decorrelation with a given method. We find for the stochastic Gauss-Seidel
iterations that many more iterations are required to acheive decorrelated variates, see
Figure 5.2. In fact, to achieve a correlation between the random variates of less than
1% requires on the order of 100 Gauss-Seidel iterations. In contrast, the stochastic
multigrid method achieves a correlation less than 1% in less than 10 iterations. To fur-
ther characterise the performance of the stochastic iterative methods, we considered
how the random variates decorrelate as the Gauss-Seidel smoother visits individual
finite element nodes. We find that standard Gauss-Seidel iterations achieve correla-
tions between the random variates less than 1% after 108 vistiations. In contrast,
the stochastic multigrid method makes better use of Gauss-Seidel visitations through
coarsening of the system and acheives correlations between the random variates less
than 1% after 106 visitations (two orders of magnitude less). These results show
the significant improvement provided by using stochastic multigrid to sample random
variates. The differences between the stochastic sampling methods are expected to
become even more significant when increasing the system size.



18 P. PLUNKETT, P.J. ATZBERGER

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
or

r(
X

0,
X

n)

Iterations n

Correlation over Iterations

Slope: -3.1e-03 Slope: -1.4e-01

Gauss-Seidel
AMG

0.001

0.01

0.1

0 200 400 0 5 10 15

0

0.2

0.4

0.6

0.8

1

0 2e6 4e6 6e6 8e6 1e7

C
or

r(
X

0,
X

n)

Visitations n

Correlation over Visitations

Slope: -2.8e-09 Slope: -5.7e-07

Gauss-Seidel
AMG

0.001

0.01

0.1

0 2e8 4e8 0 2e6 4e6

Fig. 5.2. Decorrelation of random variates. Sampling was perform for the stochastic driving
fields on a spherical domain with Dirichlet boundary conditions for the target covariance of the
discrete inverse Laplacian −L−1. We used both the stochastic Gauss-Seidel and stochastic multigrid
methods. The decorrelation in the number of iterations is shown on the left. The decorrelation in
the number of Gauss-Seidel visitations to the individual nodes of the finite element are shown on
the right. We find that the stochastic multigrid method greatly improves performance. To achieve a
correlation of less than 1% between random variates, direct stochastic Gauss-Seidel requires on the
order of 100 iterations. In contrast, stochastic multigrid requires less than 10 iterations. For the
number of visitations, the stochastic Gauss-Seidel requires on the order of 108 steps. In contrast, the
stochastic multigrid iterations only require 106 steps. The rate of exponential decay for stochastic
Gauss-Seidel is estimated to be −3.1 × 10−3 and the rate for the stochastic multigrid iterations
−1.4 × 10−1.
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5.3. Hydrodynamic Coupling. Many approaches can be used to couple the
microstructure to the fluid including the Force Coupling Method [34], Discontinous
Galerkin Finite Element Methods [22, 32], or the Immersed Boundary Method [37, 14].
The simplest of these is to couple the microstructure and fluid using the Immersed
Boundary Method [37, 14]. This corresponds to the specific choice of coupling oper-
ators

ΛX(F ) = F (x)δa(x−X) (5.1)

Γu =

∫
Ω

u(x)δa(x−X) dx. (5.2)

The δa is the Peskin-δ function which is non-zero over the distance a [37]. To adopt
this approach in the current finite element setting the operators are discretized by
approximating the integral for Λ using the finite element basis to obtain the numerical
coupling operator BX(·). The other coupling operator Γ is approximated by using
the adjoint condition in equation 2.6 which yields the numerical operator BTX, see
Appendix A.
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Fig. 5.3. Hydrodynamic Coupling. We find the Immersed Boundary Coupling results
in hydrodynamic coupling that closely resembles the Rotne-Prager-Yamakowa Tensor, see right
panel [5, 41, 51]. Both tensors in the near-field provide a regularization of the hydrodynamic cou-
pling. In the far-field both tensors give the same results as the Oseen tensor. The hydrodynamic flow
generated under the Immersed Boundary Coupling in response to forces acting on the two particles
is shown on the right.

For this approximate approach to the physics of fluid-structure interaction, we
investigate the hydrodynamic response when forces are applied to a pair of particles
and their velocities. This corresponds to averaging the fluid using Γ and solving the
steady-state Stokes equations when forces are spread to the fluid using Λ. This re-
sponse is characterized by the effective hydrodynamic coupling tensor HSELM . We
find that the effective hydrodynamic coupling tensor HSELM very closely agrees with
the Rotne-Prager-Yamakawa tensor HRPY [41, 51], see Figure 5.3. This is in agree-
ment with our prior work in the context of finite volume methods reported in [5].
These results establish the approximate way in which fluid-structure interactions are
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handled give the expected results in the far-field and in the near-field exhibit a well-
characterized regularization.



STOCHASTIC MULTIGRID FOR BROWNIAN-STOKESIAN DYNAMICS 21

Fig. 5.4. Spherical domain discretized by a tetrahedralization with non-uniform spatial resolu-
tion. The full spherical domain is shown on the left, a cross-section revealing the interior elements
is shown in the middle, a wireframe representation of the elements is shown on the right. This spe-
cific discretization was used in the validation studies of a Brownian particle diffusing in a harmonic
potential. Given how the harmonic potential is expected to confine particles toward the middle, a
greater level of spatial refinement is used near the domain center.
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Fig. 5.5. Probability density of a particle’s location when diffusing in a harmonic potential.
The probability distribution is shown for the particle location when expressed in spherical coordinates
(r, ϕ, θ) (top) and Cartesian coordinates (x, y, z) (bottom). The simulations results (red) show good
agreement with the Gibbs-Boltzmann distribution (green).

5.4. Diffusion of a Particle in Harmonic Potential. To investigate the
fluctuations of the discretized fluid-structure system, we consider the simulation of
diffusing particles that are subjected to forces from a harmonic potential that tether
each particle to the origin. From equilibrium statistical mechanics the probability
distribution of the particle positions is predicted to be the Gibbs-Boltzmann distri-
bution

Ψ(X) =
1

Z
exp

(
−E[X]

kBT

)
, E[X] =

K

2
X2. (5.3)

The E denotes the energy of a configuration, K = 7.455504×10−1ag/ns2 the Hookean
spring stiffness, T = 300K the temperature, and Z denotes the partition function and
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normalizes the probability density [39]. The physical units we use are attograms (ag),
nanoseconds (ns), nanometers (nm), and Kelvin (K). The particles are taken to diffuse
with an effective radius of 10nm on a spherical domain of radius 1000nm, see figure
5.4. Samples were collected from 18 separate trajectories each of which has at least
1000 timesteps each. The first 10 timesteps were discarded in each case. We find that
the computational simulations show very good agreement with the predictions of sta-
tistical mechanics, see Figure 5.5. These results show that the stochastic driving fields
we have introduced and the stochastic iterative sampling methods provide appropriate
fluctuations in the discrete system to account for the thermal fluctuations.

Fig. 6.1. Diffusion of particles in a domain with geometry motivated by microfluidic device
(left). The domain consists of a long channel with cylindrical posts obstructing flow near the center
(right). The channel side walls and cylindrical posts are treated as having no-slip boundary condi-
tions. The long-axis of the channel has periodic boundary conditions at the ends. The domain is
discretized using a tetrahedralization and the P1-MINI finite elements.

6. Application.

6.1. Diffusion of Particles within a Microfluidic Device Geometry. We
show how our methods can be used to capture effects on particle diffusion/mobility
when confined within a microfluidic channel having a complex geometry. We show
how our methods can be used for hydrodynamic flows through post-like obstacles to
capture the particle-wall hydrodynamic interactions and related correlation effects in
the thermal fluctuations of diffusing particles. The specific device geometry and our
finite element discretization using the P1-MINI elements of Section 2.1 is shown in
Figure 6.1.

We consider the diffusion of particles in a regime of moderate flow through the
device. In this case, the main role of diffusion is in the directions lateral to the flow
serving to change over time the effective streamline followed by a particle. Given the
geometry and small dimensions of the device relative to the particle size, significant
hydrodynamic coupling can occur between the particle and walls. The diffusivity may
change significantly depending on the particular particle location within the channel.
To investigate this effect, we performed simulations by starting particles at several
locations within the microfluidic channel. These included (i) placing particles near the
channel wall, (ii) placing particles near the cylindrical posts, and (iii) placing particles
near the channel center. Simulation trajectories of particles in these locations are
shown in Figure 6.2. The finite element discretization of the microchannel geometry
resulted in a system with 123, 133 velocity degrees of freedom, and 20, 682 pressure
degrees of freedom. The equation 2.7 was discretized and integrated in time using
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Euler-Maruyama [31] with the thermal fluctuations generated using our stochastic
multigrid sampler from Section 3.4. The specific simulation parameters used are
given in Table 6.1. The trajectories starting near the wall and cylindrical posts seem
to exhibit smaller fluctuations than when started near the channel center away from
such boundaries. To investigate this further, we consider in the absence of flow the
particle mobility, which is closely related to the location dependent particle diffusivity
by

D = 2kBTM. (6.1)

The particle mobility M gives the velocity response V of a particle to an applied force
F

V = MF. (6.2)

Parameter Value
Driving force density 0.0003 ag·nm−2·ns−2

Fluid viscosity 0.85 ag·ns−1·nm−1

Temperature 300 K
Time step 100 ns
Particle radius 10 nm
Channel width/height 1000 nm

Table 6.1
Parameters for the microchannel simulations.

We consider how the mobility changes based on the particle location along a line
of positions passing across the channel near to the cylindrical posts, shown in Figure
6.3. As the particles become close to one of the cylindrical posts we expect a drop
in the mobility. This was found to be significant over the positions considered with
a drop in mobility of around 30% relative to locations away from the post. While
the most significant drop in mobility occurs in the direction for the particle to move
toward the cylindrical post, we find the other directions also exhibit a non-negligible
drop. We also found cross-terms in the mobility which indicate that the cylindrical
post geometry induces correlations between the particle motions in different direc-
tions, shown in Figure 6.3 on the right. In particular, we find that the components
in the direction from the particle to the post and in the lateral direction give non-
negligible correlations. This is in agreement with the streamlines that are found when
there is fluid flow through the device, see inset in Figure 6.3. These results indicate
that the diffusivity of particles can exhibit significantly different qualitative behaviors
depending on the particle location within the device. The results show the overall
potential of our computational methods to capture both the thermal fluctuations and
hydrodynamic coupling in a consistent manner within non-trivial device geometries.
While we demonstrated the methods for particles, our approach can also be used to
simulate the elastic responses to flow of more complex spatially extended microstruc-
tures such as polymeric filaments or flexible membranes. Overall, we expect our
computational methods to be applicable quite broadly to the simulation of systems
involving hydrodynamically coupled microstructures confined within domains with
complex geometries and subject to thermal fluctuations.
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Fig. 6.2. Diffusivity of particles started at select locations along a cross-section of the chan-
nel. Particles are subject to hydrodynamic flow through the device channel from left to right. The
streamlines show the influence of the channel walls / cylindrical posts and traceout how passive par-
ticles would be transported by the flow. For particles subject to thermal fluctuations the diffusivity
can causes particles to change streamlines. For instance, the bottom magenta trajectory starts on
a streamline going below the post but the diffusivity moves the particle to a streamline carrying it
on the other side of the post. In another example, the trajectory in black (bottom panel) shows a
particle which migrates very little when it comes into close proximity to the leftmost channel post
which reduces both the fluid flow and particle diffusivity.
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Fig. 6.3. Mobility dependence on the particle location within the channel. The mobility is shown
for a line intersecting the channel near the cylindrical posts (inset). The mobility significantly drops
to around 50% near the channel walls then recovers but drops again by about 30% when encountering
the cylindrical posts. The region near the cylindrical posts is also found to induce some cross-coupling
in the mobility components, particularly M12. These results show the potential for our computational
methods to capture in the particle motions the effects of walls and related confinement effects. The
full three dimensional geometry is shown in Figure 6.1
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7. Conclusions. We have developed finite element discretizations for fluctuat-
ing hydrodynamic simulations of fluid-structure interactions subject to thermal fluc-
tuations. We introduced a discrete fluctuation-dissipation principle to obtain semi-
discretizations of the stochastic equations. Our approach accounts explicitly for the
role of discretization errors on the thermal fluctuations so that the Gibbs-Boltzmann
distribution is invariant exactly under the stochastic dynamics of the semi-discretized
system. To compute efficiently these required stochastic driving fields, we developed a
Gibbs sampler based on stochastic iterations of multigrid. The computational meth-
ods are expected to extend significantly the applications that can be treated with
fluctuating hydrodynamic approaches. The computational methods allow for spa-
tially adaptive resolution of the mechanics and the treatment of complex geometries
often relevant in applications.
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Appendix A. Constructing BX for Immersed Boundary Method Cou-
pling. To approximate the coupling operator Γ[X]u =

∫
Ω

u(x)δa(x −X)dx, we use
in the finite element method the semi-discrete operator

BXU =
∑
j

Uj

∫
Ω

ϕj(x)δa(x−X) dx. (A.1)

We use for δa the Peskin δ-function approximated by the cosine described in [37]:

δa(x1, x2, x3) =
1

a3
ϕ
(x1

a

)
ϕ
(x2

a

)
ϕ
(x3

a

)
,

where

ϕ(r) =

{
1
4

(
1 + cos

(
πr
2

))
, |r| ≤ 2,

0, otherwise
.

We assume an immersed body X(q) parameterized by q is discretized into a finite
number of control points Xi. Thus, the semi -discrete operator BX can be written as
the fully discrete operator with entries

(BX)ij =

∫
Ω

ϕj(x)δa(x−Xi) dx.

We approximate these entries using on each tetrahedron of the finite element mesh
the degree three Gaussian quadrature (M = 4) described in [52]. Other choices of
operators can also be used to couple the fluid and microstructures [6].


