
Biophysical Journal

Spectral Analysis Methods for the Robust Measurement of the Flexural Rigid-
ity of Biopolymers

David Valdman*, Paul J. Atzberger*‡, Dezhi Yu†, and Megan T. Valentine‡
*Department of Mathematics, †Department of Materials, ‡Department of Mechanical Engineering, University of California, Santa Barbara CA
93117, USA

ABSTRACT The mechanical properties of biopolymers can be determined from a statistical analysis of the ensemble of
shapes they exhibit when subjected to thermal forces. In practice, extracting information from fluorescent microscopy images
can be challenging due to low signal-to-noise ratios and other artifacts. To address these issues, we develop a suite of robust
tools for image processing and spectral data analysis. These are validated through a systematic benchmarking approach to
assess robustness and accuracy. Our methods are based on a biopolymer contour representation expressed in a spectral
basis of orthogonal polynomials. We extract information about the biopolymer using global fitting routines that optimize a utility
function measuring the amount of fluorescence intensity overlapped by such contours. This approach allows for filtering of
high-frequency noise and interpolation over sporadic gaps in fluorescence. To demonstrate the validity of our methods, we
analyze an ensemble of simulated images, having realistic types of noise and artifacts, which is generated from the fluctuations
of a simulated biopolymer with known stiffness. To demonstrate our methods in practice, we perform analysis of experiments
of fluctuating microtubules. Overall, we expect these new approaches to be useful in the study of biopolymer mechanics and
the effects of associated regulatory molecules.
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1. INTRODUCTION AND BACKGROUND

Cytoskeletal polymers, including actin and microtubules, are
stiff, multi-stranded filaments that are essential to cell orga-
nization, motility, and division; to the transport of intracellu-
lar cargos by motor proteins; and to the generation and trans-
mission of forces within and across cells. Because of their
important role in establishing and regulating cellular me-
chanics, the elasticity of filaments and entangled cytoskele-
tal networks has been studied extensively. However, many
important questions remain about the relationships between
structure and mechanics [1].

In particular, although in vitro measurements of single fil-
ament elasticity have consistently shown significant varia-
tions in stiffness over roughly an order of magnitude, the
molecular origins of these variations are incompletely under-
stood [2, 3, 4, 5, 6, 7]. This is largely a result of an inability
to distinguish real heterogeneity in elasticity from variations
that arise from sources of experimental and statistical uncer-
tainty. For microtubules (MTs), the stiffest cytoskeletal fila-
ments, distinguishing between signals and noise is particu-
larly challenging since the exhibited bending amplitudes are
small and often of a comparable magnitude to experimental
noise.

Microtubules play essential and diverse roles in cellular
systems, and inherent mechanical variations in microtubule
stiffness may play an influential part in processes regulating
cellular behavior [8, 9, 10, 11, 12]. Microtubules are formed
from the head-to-tail polymerization of tubulin dimers in
long protofilaments that interact laterally to form a closed

tubular structure [13, 14, 15, 16]. In general, the lattice
formed by the lateral association of dimers has a continu-
ous dislocation called a seam, the mechanical implications of
which are not fully understood [17]. Structural studies have
demonstrated that the number of MT protofilaments varies
within in vitro and in vivo systems, and can even change
along the length of a single MT [18, 19, 20]. According to
elastic beam theory, the bending stiffness of a biopolymer
scales as the fourth power of its radius. This suggests that
even small changes in the effective radius of the microtubule
could have a large mechanical effect.

For in vitro systems, MT stiffnesses also appear to depend
on both the length and the polymerization velocity, suggest-
ing that lattice shear and structural defects may play an im-
portant role [5, 21, 22, 23]. Other studies have shown that
the binding of microtubule associated proteins (MAPs) can
influence the stiffness of the composite material [4, 6]. MAP
proteins play an important role in many cellular processes,
such as neurogenesis, axonal transport, and mitosis, and a
number of MAP-specific mutations have been linked to hu-
man diseases [10, 24, 25, 26].

Unfortunately, the large variation in experimental esti-
mates of MT stiffness values has severely compromised
our ability to compare various polymerization conditions or
the differential effects of the various classes and isoforms
of essential MAPs. This has prevented correlation between
changes in mechanical response and filament composition,
and has led to an incomplete understanding of how micro-
tubule mechanics are regulated in cellular systems.

To help address these issues, we have developed new

Running Title: New Methods to Measure Polymer Rigidity L01



Biophysical Journal

methods to determine and analyze the motions of thermally
fluctuating biopolymers visualized using fluorescence mi-
croscopy. Using approaches from statistical mechanics, we
then infer mechanical properties from a spectral analysis of
the ensemble of biopolymer configurations at thermal equi-
librium. A central challenge in estimating mechanical prop-
erties using this approach is the sensitivity of the spectral
analysis methods to experimental noise [4, 27]. Existing
methods require (i) determination of the biopolymer con-
figurations from the fluorescence images, (ii) calculation of
spectral components from the inferred biopolymer config-
urations, and (iii) analysis of the spectral components us-
ing statistical mechanics to ascertain mechanical properties
[4, 27, 5].

In this work, we develop new methods for spectral anal-
ysis that combine steps (i) and (ii) above into a single pro-
cedure, thus minimizing the introduction of errors. This is
achieved by representing the biopolymer shape in terms of
a contour expanded in an orthogonal polynomial basis. We
use this representation to fit the coefficients of the expan-
sion directly to the fluorescence image by optimizing a util-
ity function that measures the overlap of the contour with
fluorescence intensity. Our new methods allow for the robust
determination of biopolymer shape even in the presence of
significant noise and artifacts in the images. To estimate the
flexural rigidity of the biopolymer, we develop a statistical
mechanics theory based on an energy formulated directly in
terms of the coefficients of our spectral biopolymer repre-
sentation.

Our approach has a number of distinct advantages over
previous methods. The description of the biopolymer by a
smooth contour that is fit to the entire image at once natu-
rally handles sporatic gaps in fluorescent intensity along the
biopolymer through interpolation. Additionally, we achieve
a more accurate description of the biopolymer near the end-
points. This is in contrast to a trigonometric Fourier basis
that implicitly requires a periodic function to avoid spurious
oscillations arising from Gibb’s Phenomena [28]. In practice,
a no curvature condition has often been imposed at the end-
points of the contour to avoid this effect [4, 27]; however,
this can result in inaccuracies when estimating the effective
flexural rigidity. Our methods are based instead on orthog-
onal polynomials and can in principle allow for curvature
near the end-points, and could potentially facilitate studies
of a wider class of biopolymers.

To assess the sensitivity of proposed methods for image
and spectral analysis to experimental noise and sampling er-
ror, we introduce a benchmarking approach in which an en-
semble of simulated images is generated from simulations
of a fluctuating biopolymer with known mechanical proper-
ties. We introduce noise and artifacts into the images that are
similar to those observed in experimental data sets. This ap-
proach allows for the systematic study of the roles played
by different types of experimental noise, and the resultant
uncertainty of estimated mechanical properties. The bench-

marking approach we propose provides a potentially pow-
erful metric for rating different spectral analysis methods
and for understanding the statistical significance of differ-
ences reported in experimental results. We then apply the
techniques to an experimental data set of fluorescence im-
ages taken of a fluctuating microtubule. For even these stiff
biopolymers, we find our methods reliably estimate the flex-
ural rigidity and produce modal covariances in agreement
with a worm-like-chain model for the microtubule mechan-
ics. We anticipate that these new approaches will facili-
tate the development of more sensitive assays based on the
thermal fluctuations of biopolymers, and will enable central
questions concerning the molecular origins of cytoskeletal
mechanics to be answered.

2. METHODOLOGY

2.1 Overview

The success of our spectral analysis approach hinges on our
ability to accurately determine the shapes exhibited by a ther-
mally fluctuating biopolymer within a collection of fluores-
cence microscopy images. This shape determination can be
challenging in practice, due to artifacts in the biopolymer
signal resulting from non-uniform binding of dye molecules
or photobleaching, as well as camera noise. This can present
difficulties in generating a sufficient number of good quality
images to ensure small statistical sampling errors. Therefore,
improvements in the tolerance of fitting methods to allow for
a larger number of images to be used could have important
consequences for the quality of experimental results.

Previous methods to characterize the fluctuation spectra
of biopolymer filaments make use primarily of local in-
formation in the fluorescent image. For example, contour
paths have been obtained by interpolating individual con-
figuration points that are determined by manual selection
or by local fitting of the cross-sectional intensity profiles
of fluorescently-labeled filaments [27, 4, 5]. However, since
each control node is fit independently, any local aberration
in the image near a control point could have a large influ-
ence on the entire fitted contour. Such local artifacts can
come from a variety of experimental sources, such as irregu-
larity in fluorophore labeling, the interference of a nearby
physical object, and background noise. Though these ap-
proaches have been successfully employed to provide impor-
tant mechanical information for many types of biopolymers,
for the stiffest biopolymers, like microtubules, results vary
by roughly an order of magnitude [29, 30]. These limitations
indicate a clear need for further development of fitting meth-
ods.

To address these issues, we introduce new methods based
on a variational approach that fits an entire contour at once to
the fluorescence image. This global approach is more robust
to small local disturbances in the fluorescence signal and to
sporadic gaps in intensity along the biopolymer. We perform
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the fit by starting with a trial contour for the biopolymer fil-
ament that is successively refined to minimize a utility func-
tion that measures the overlap of the contour with the flu-
orescence intensities of the image. To do this in practice a
biopolymer is represented by coefficients for a contour ex-
panded in a basis of orthogonal polynomials.

This representation provides for a unified approach where
the coefficients used in the spectral analysis are directly ob-
tained by fitting to the fluorescence image. This is in contrast
to previous methods where the filtering of image background
noise, the interpolation between control nodes, and the spec-
tral analysis were all treated algorithmically as separate com-
ponents. Our more unified approach results in methods ex-
hibiting enhanced robustness when estimating mechanical
properties.

2.2 Variational Contour Fitting Method

The biopolymer shape is described by a curve x(s) of length
L, where s ∈ [0, L] is the arc-length parameter of the con-
tour. To measure how well the contour x overlaps with the
fluorescence signal of the biopolymer we use the utility func-
tion

U [x, I] = −
∫ L

0

∫
Ω

k(|y − x(s)|)I(y)dyds. (1)

The fluorescent image intensity is given by I = I(y) param-
eterized over the spatial domain Ω and k(r) is a smoothing
kernel vanishing for r > r0.

The inner-integral of equation 1 gives the average inten-
sity in a region near the location x(s) by using the weighting
specified by k(r). The outer-integral collects these values to
provide a measure of the total amount of overlap of a contour
with the biopolymer fluorescence signal. The convolution by
k(r) with I filters the high spatial-frequency noise inherent
in the image intensity.

We use the following kernel function (see Figure 1.)

k(r) =

{
α[1 + cos (πr/r0)] r 6 r0

0 r > r0.
(2)

Here, r0 is chosen to be approximately equal to the width
of the imaged polymer. In the case of microtubules, with a
diameter of approximately 25 nm, r0 is taken to be approxi-
mately equal to the the width of the point spread function of
the microscope.

The α is a normalization constant ensuring the kernel
function weighting integrates to one. This kernel can be
shown to have a number of desirable properties when used
for discrete pixel maps and lattice models, see [31, 32].

The contour configuration that minimizes the utility func-
tion U provides a fit that maximizes the overlap within the
image between the contour and the biopolymer fluorescence
signal. To minimize the utility function in practice we re-

quire a representation for the contour amenable to calcula-
tions. For this purpose, we represent the contour by its tan-
gent angle θ(s) along the length and by a reference point at
the left end-point x0 = x(0). These physically meaningful
degrees of freedom uniquely specify the contour curve x(s),
which can be recovered by

x(s) =

∫ s

0

τ (θ(s′))ds′ + x0. (3)

The tangent vector τ for a given angle θ is given by τ (θ) =
(cos(θ), sin(θ)).

This representation is used to minimize the utility func-
tion by evolving the degrees of freedom (θ(s),x0) using the
steepest descent dynamical equations

∂θ(s)

∂t
= −δU

δθ
(s)

∂x0

∂t
= −∇x0

U .
(4)

The term δU/δθ denotes the variational derivative of the util-
ity function. This term generalizes the usual vector derivative
and captures how values change when the entire collection of
tangent vectors along the contour are varied [33]. The∇x0

U
denotes the usual vector derivative in x0 of the utility func-
tion. This term captures how values change when the left
end-point x0 is varied.

FIGURE 1 Schematic of the Methodology: (A) The intensity of
the fluorescence signal of the biopolymer (inset) and the flu-
orescence microscopy image being fit by a trial contour (red
line). The white arrows indicate the direction of evolution of the
trial contour when using the method of steepest descent for the
utility function given in equation 1. (B) The radially symmetric
kernel function k(r) having cut-off radius r0 (indicated by white
dotted circle). (C) Close-up of fluorescent image data within the
range of influence given by r0. In this case, the fluorescence
image exhibits gaps in intensity along the biopolymer that is
handled naturally by the utility function and the inherent inter-
polation of the trial contour.

It can be shown that for all possible variations of
(θ(s),x0), the direction in configuration space giving the
most rapid decrease in the utility function U is the negative
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of the gradient −∇θ(s),x0
U = −(δU/δθ,∇x0

U). This mo-
tivates the choice for the dynamics, which ensures the con-
tour configuration moves in a manner that steadily decreases
the value of U over time. The limiting contour configuration
that is stationary under these dynamics has a zero gradient
and is a critical point of the utility function U . Such a con-
tour is a candidate for minimizing U [33].

To work with this description in practice we expand the
tangent angles in an orthogonal polynomial basis

θ(s) =
∑
n

anTn(s). (5)

Each Tn(s) is a polynomial of degree n satisfying the or-
thonormal inner-product condition 〈Ti, Tj〉 = δij , where δij
is the Kronecker delta-function Figure 2. In practice, this
expansion is truncated after a finite number of terms sum-
ming up only to degree N polynomials. Dynamical equa-
tions are obtained readily for the coefficients an(t) by plug-
ging this expansion into equation 4 and projecting the direc-
tion of evolution on the polynomials up to degree N , see the
Supplemental Materials.

A particularly useful feature of this coefficient representa-
tion is that even when only a finite number of coefficients
are used the contour recovered by equation 5 and equa-
tion 3 has total arc-length L throughout the minimization
procedure. In presenting our approach, we use throughout
the Chebychev orthogonal polynomials defined by Tn(s) =
cos(n arccos((2s/L)− 1)), see [28]. This choice was moti-
vated by the ability to take advantage of Fast Fourier Trans-
form methods. However, after developing our methods this
benefit was found to be modest. Other types of orthogo-
nal polynomial bases could also be used, such as the Leg-
endre polynomials orthogonal with the L2-inner-product,
which might provide some advantages when performing the
spectral analysis. For more details concerning the particu-
lar forms of the variational derivatives used and truncation
of the dynamics for a finite number of coefficients, see the
Supplemental Materials.

2.3 Determining Persistence Length from the Spectrum of
Biopolymer Fluctuations

Using results from equilibrium statistical mechanics, we can
estimate the elastic properties of isolated, thermally fluctuat-
ing biopolymers [4]. We focus here on determining the per-
sistence length; however, these methods can be applied more
generally to other mechanical moduli.

To describe the elastic responses of biopolymers, we use
the worm-like chain (WLC) model [34], which associates to
a given biopolymer configuration x(s) a bending energy

Ebend[x] =
EI

2

∫ L

0

(
θ̇(s)

)2

ds. (6)

The EI denotes the flexural rigidity and θ̇(s) = dθ/ds de-

notes the derivative of the tangent angle in s. For an isotropic
elastic structure, EI is the product of the Young’s modulus
E and the geometric moment of inertia I , corresponding to
the cross section of the biopolymer. At thermodynamic equi-
librium, the biopolymer thermal fluctuations have a Gibbs-
Boltzmann distribution with the probability density

ρbend[x] =
1

Z
exp[−Ebend[x]/kBT ] (7)

where T is the temperature, kB is the Boltzmann constant,
and Z denotes the partition function, see [35].
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FIGURE 2 Representation of the Biopolymer Shape using Or-
thogonal Polynomials : (A) The contour tracing out the shape of
the biopolymer is described by parameterizing the shape using
arc-length s and giving the local angle θ(s) of the tangent vector
τ with respect to the x-axis. The point x0 is used to uniquely
determine the position of the contour. (B) To work with this de-
scription in practice we expand θ(s) in an orthogonal polyno-
mial basis to obtain coefficients an. (C) We use the Chebychev
orthogonal polynomial basis for this purpose. The first four non-
constant orthogonal polynomial modes are shown.

Using our representation of the biopolymer configuration
x(s) in terms of coefficients of the orthogonal polynomial
expansion (see equation 5), the energy can be expressed as

Ebend[a] =
EI

2
aTSa

Sij =

∫ L

0

Ṫi(s)Ṫj(s)ds.
(8)

The term a denotes the composite vector of coefficients with
[a]n = an and S denotes the stiffness matrix of the biopoly-
mer modes. We remark that the entries Si,j of the stiffness
matrix are given by the L2-inner product of the orthogonal
polynomials with index i and j, so the matrix is not necessar-
ily diagonal. For example, for our choice of Chebyshev poly-
nomials the off-diagonal entries of S are non-zero, while for
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other choices of polynomial bases, the matrix can be made
strictly diagonal [28].

The Gibbs-Boltzmann distribution can be expressed using
this coefficient representation as

ρbend[a] =
1

Z̃
exp

[
−1

2
Lpa

TSa

]
(9)

where Lp = EI/kBT gives the persistence length of the
correlations of fluctuations along the contour and Z̃ is the
partition function of this representation. In this form, we see
that ρbend has the convenient form of a multivariate Gaussian
with mean zero and covariance

〈aaT 〉 =
1

Lp
S−1. (10)

In our analysis, we find it convenient for finite contours
to define a non-dimensional persistence length. In particu-
lar, we define the relative persistence length by `p = Lp/L.
This gives the ratio of the persistence length Lp to the total
contour length L. The covariance structure for biopolymer
fluctuations derived from the WLC model and equation 10 is
given by

Cwlc(`p) =
1

`p
S̃−1. (11)

We have used the non-dimensional WLC stiffness matrix de-
fined by S̃ = LS. This provides a covariance structure pre-
dicted by the WLC model when the non-dimensional persis-
tence length is `p.

In experiments, the covariance is estimated by fitting con-
tours to the fluorescence images and estimating modal coef-
ficients. For M samples, the covariance is estimated by

Cexp =
1

M

∑
m

a(m)a(m)T . (12)

The a(m) denotes the mth sampled modal coefficient.
A central relation we shall use to interpret experimental

fluctuations of a biopolymer and to infer its mechanical prop-
erties is the following

Cexp = Cwlc(`p). (13)

This expression provides the key link between observed
biopolymer fluctuations (left-hand-side) and the biopolymer
mechanical properties (right-hand-side). To infer mechani-
cal properties in experiments, we seek to find a value of `p
so that Cwlc matches to a good approximation the covari-
ance of the experimentally observed biopolymer fluctuations
Cexp.

This requires minimizing the least-squares error given by

V (`p) =
∑
n

(
cn −

1

`p
dn

)2

. (14)

We find in practice that it is sufficient to consider just the
diagonal entries of the covariance matrix, thus the cn =
[Cexp]n,n are the diagonal entries of the covariance ma-
trix for the experimentally observed biopolymer fluctuations.
The dn = [S̃−1]n,n are the coefficients used for representing
the covariances obtained from the WLC model, see equation
11. The fit for `p is obtained by minimizing V (`p) and is
given by

`p = ‖d‖2/(d · c). (15)

We use composite vector notation for the experimental co-
variance data [c]n = cn and for the coefficients of the WLC
model [d]n = dn. The ‖d‖2 =

∑
n d

2
n and d·c =

∑
n cndn.

3. RESULTS AND DISCUSSION

3.1 Robustness and Accuracy of Spectral Analysis
Methods

A prevalent issue in the field of force spectroscopy is the
limited tools researchers have to assess whether the mechan-
ical properties derived from spectral analysis are reliable
and whether deviations from theoretical predictions reflect
real physical features of a biopolymer, or are simply due to
noise in the data. There are two fundamentally independent
sources of error to consider. The first is the inherent prob-
lem of sampling error, where the derivation of mechanical
quantities leads to errors due to an averaging over a finite
number of experimental observations. The second is the ef-
fect of different types of noise in the microscopy images on
the estimated values of physical quantities.

To investigate sampling error, we provide a theoretical
treatment that describes how errors scale for a given number
of experimental fluorescence images. To investigate the finer
details of image noise and its consequences, we also develop
a systematic benchmarking approach, in which we generate
an ensemble of simulated images from the fluctuations of
a simulated biopolymer with known mechanical properties.
We introduce in these images simulated background noise
and other artifacts. In contrast to prior works that have mod-
eled the role of noise on fitting using theoretical assumptions
[4], this benchmarking approach provides a rather direct and
realistic comparison with actual microscopy data.

3.2 Role of Sampling Error on Estimated Persistence
Length

Here we develop a theory for the error in the estimated
biopolymer persistence length `p in terms of the number of
sampled images M . For this purpose, we assume a biopoly-
mer exhibits fluctuations given by the WLC model, and esti-
mate the covariance

C̃M =
1

M

M∑
m=1

a(m)a(m)T . (16)
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The a(m) denotes the mth sample of the modal coefficients.
The tilde notation ˜ will be used throughout to distinguish
variables that model quantities that would be estimated ex-
perimentally. The sampling error can be expressed as

C̃M = Cwlc(`p) + ξ. (17)

TheCwlc(`p) denotes the covariance structure obtained from
the WLC model in equation 7. For a sufficient number of
samples, we have as a consequence of the Central Limit The-
orem that ξ is approximately a Gaussian with mean zero and
covariance 〈ξξT 〉 = Cov(aaT )/M . Expressions for this co-
variance can be obtained by computing the fourth moments
of the Gaussian distribution given in equation 7.

To simplify the presentation, we assume that the compo-
nents of [a]n can be treated as statistically independent. Ad-
ditionally, we describe our theory only for estimates of the
diagonal entries of the covariance matrix, which are the only
entries used in the least-squares fitting. In the case of a poly-
nomial basis making S̃ diagonal these assumptions hold and
the general case reduces to what we present.
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FIGURE 3 Probability Distribution of Sampling Errors in the
Estimate of ˜̀

p : The sampling error of the estimated non-
dimensional persistence length exhibits a non-Gaussian dis-
tribution with an infinite second moment. For M < 100, the
distribution is highly skewed as a consequence of the inverse
dependence involving `−1

p in the least-squares fit of the esti-
mated biopolymer covariances with sampling errors. However,
for M > 100, to a good approximation the distribution can be
fit with an effective Gaussian distribution. This is shown as the
blue dotted curves for M = 256, M = 512, and M = 1024.

With these assumptions, we denote the diagonal entries
of the covariance by the vectors c̃M = diag(C̃M ) and
cwlc = diag(Cwlc). We model the covariance estimates for
M samples by

c̃M = cwlc(`p) + ξ. (18)

The ξ denotes a Gaussian with independent components
each having mean zero and covariance 〈ξξT 〉 = DM . The
covariance has diagonal entries

[DM ]n,n = E[ξ2
n] = 2[cwlc(`p)]

2
n/M (19)

with the off-diagonal entries zero.
This model can be used to study how sampling errors from

the estimate of the modal covariances c̃M propagate into the

estimation of the persistence length ˜̀
p. In particular, from

the least-squares fit of equation 15, we have

˜̀−1
p = (d · c̃M )/‖d‖2 = `−1

p +
∑
n

ξndn/‖d‖2. (20)

This shows the estimated inverse persistence length ˜̀−1
p is a

Gaussian-distributed quantity with mean µ̃ = `−1
p and vari-

ance σ̃2
M = dTDMd/‖d‖4.

The estimated persistence length ˜̀
p has the probability

distribution

ρM (`p) =
`−2
p√

2πσ̃2
M

exp

[
−

(`−1
p − µ̃)2

2σ̃2
M

]
. (21)

The µ̃ and σ̃2
M are defined as above. Note that this distribu-

tion is not Gaussian, rather it has long-tails as a consequence
of the `−2

p term and yields an infinite variance. For different
values of M this distribution is shown in Figure 3.

The non-Gaussian form of the distribution requires that
some care is taken when characterizing how the sampling
errors influence the estimated value of ˜̀

p. We can no longer
make use of the standard deviation to give the magnitude
of errors since the second moment is infinite. To cope with
this issue, we use a confidence interval based on the above
probability distribution ρM . Interestingly, while the sec-
ond moment is infinite, the distribution ρM can be well-
approximated by a Gaussian distribution for M sufficiently
large (M > 100; see Figure 3). Through an asymptotic anal-
ysis of equation 21, as M becomes large, we find ρM is ap-
proximated by a Gaussian with mean µ = `p and variance
σ2
M = `4pσ̃

2
M = `4pd

TDMd/‖d‖4. This can be used in prac-
tice to obtain confidence intervals for errors in estimates of
˜̀
p.

3.3 Generating Simulated Fluorescence Images with
Controlled Levels of Noise and Artifacts

To characterize the quality of proposed spectral analysis
methods, we first apply the algorithms to a simulated ensem-
ble of images generated by simulating the fluctuations of a
biopolymer with known mechanical properties. We compare
how well the methods estimate the known biopolymer me-
chanical properties when the images are subjected to dif-
ferent levels of noise and artifacts. This provides a well-
controlled test for the study of the reliability and accuracy
of proposed spectral analysis methods.

To generate noise and artifacts similar to those encoun-
tered in experiments, we consider primarily two types of
noise, (i) background noise in which randomly varying lev-
els of intensity are seen throughout the image, and (ii) spo-
radic gaps in which intensity varies in the fluorescence sig-
nal along the biopolymer. The background noise is motivated
by contributions from ambient light sources and out-of-focus
fluorophores in an image. The gap artifacts are motivated by
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the uneven binding of fluorescent labels along the biopoly-
mer, inherent fluorescence excitation inefficiencies, and the
effects of stochastic photobleaching. Using simulated en-
sembles of images, we can systematically study how these

different sources of noise affect the accuracy of the spec-
tral analysis methods. We then use this information to help
optimize experimental conditions and improve measurement
precision and accuracy.

0
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0.5

0 0.125 0.25 0.5

FIGURE 4 Ensembles of Simulated Fluorescence Images. To investigate our spectral analysis methods when subjected to the
types of noise and artifacts found in experimental images, we simulate ensembles of images from a simulated biopolymer with
known mechanical properties. Shown here are images generated from biopolymer configurations using our contour representation
with `p = 10,N = 8. The ensembles correspond to different levels of background noise throughout the image and gap artifacts along
the biopolymer contour. The background noise increases left to right while the gap artifacts increase from top to bottom. The level
of background noise is characterized by the ratio σb/Ic for the perturbed background pixel standard deviation σb and the average
difference of intensity between the contour and background Ic. The level of gap artifacts is characterized by the ratio σg/µg obtained
by integrating the random cosine modulations used to generate the artifacts to obtain an effective mean µg and standard deviation
σg .

To simulate the configurations of a biopolymer having a
specified persistence length, we generate modal coefficients
for our orthogonal polynomial representation of the contour
using the multi-variate Gaussian distribution with mean zero
and covariance given by equation 10. Throughout our stud-
ies we use lp = 10 and calculate values for the first 8 modes
(N = 8). To obtain an image with a fluorescence signal for
the biopolymer of thickness r0, we use the kernel function of
equation 2 to trace along the biopolymer contour. For conve-
nience, we normalize all fluorescence intensity values to lie
between zero and one.

To introduce background noise, we perturb each pixel
value not on the contour by a Gaussian-distributed random
value having mean µb = 0 and variance σ2

b . Along the con-
tour we perturb pixels with a Gaussian-distributed random
value having µc = 0 and σ2

c = σ2
b . To characterize the noise,

we define Ic to be the characteristic intensity difference be-
tween the contour and background Ic = 〈I(y)〉c − 〈I(y)〉b,
where 〈·〉`, ` ∈ {b, c} gives respectively the average of inten-
sity values over the contour or background pixels. To char-
acterize the level of background noise in our images we use
the ratio σb/Ic.

To introduce gap noise along the contour we modulate
the fluorescence signal by a weight function obtained from
a cosine series c(s) =

∑K−1
k=0 wk cos(2πks/L). The ran-

dom weight coefficients wk are chosen so that the integral

of c(s) over [0, L] has mean µg and variance proportional to
σ2
g . The form of c(s) necessitates that w0 = µg . To achieve a

variance proportional σ2
g , we use (w1, ..., wK−1) uniformly

distributed over the surface of a K − 1 dimensional sphere
of radius

√
2σ2

g . To control how oscillatory the gap artifacts
appear in the image, we vary the number of modes K. We
find that K = 25 provides a modulation that agrees well
with what is seen in experimental fluorescence images. To
characterize the level of gap artifacts in our images we use
the ratio σg/µg .

3.4 Benchmarking Studies for Different Levels of Noise
and Artifitacts

To investigate the robustness of our methodology, we numer-
ically generate ensembles of fluorescence images with pre-
scribed noise conditions, similar to those observed in exper-
iments. The ensembles contain M = 1000 images, simulat-
ing the thermal fluctuations of a biopolymer with persistence
length Lp = 9.45L, where L is the polymer length (taken to
be 1 in arbitrary units).

To minimize the effects of sampling errors in these stud-
ies, we use the same underlying configurations for the sim-
ulated biopolymer to generate each ensemble of images. A
sample image from each of these ensembles is shown in Fig-
ure 4.
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Table 1 Results for the Simulated Ensembles of Fluorescence Images. To study our spectral analysis methods we simulated
ensembles of fluorescence images with varying levels of background noise and gap artifacts generated from the fluctuations of
a simulated biopolymer with known persistence length, Lp = 9.45L, where L is the polymer length (taken to be 1 in arbitrary units).
We report results for our spectral analysis methods using M = 1000 simulated images. We report the relative errors (% err) in these
estimates and the percentage of images found to be of sufficient quality to allow for convergent fits independent of the initial trial
contour (% conv). Relative errors are reported with respect to the baseline case of no background noise or gap artifacts. The table
indices correspond to the same ordering and ratios used for characterizing the ensembles of images shown in Figure 4.

We find that in the absence of any explicitly introduced
background noise or gap artifacts our methods yield an esti-
mated non-dimensional persistence length of L̃p = 9.38. We
use this value as our reference when reporting relative errors
in order to remove the baseline sampling error from the re-
ported results and better reflect the differences in the levels
of noise and artifacts in the images.

For each simulated ensemble of images, we performed the
spectral analysis using the initial five Chebyshev modes. We
report the results of the spectral analysis using our methods
for each of the image ensembles in Table 1.

When performing fits, we find that introduction of noise
and gap artifacts can, in a small number of cases, result in
images of insufficient quality. For such images (typically less
than 5% of the ensemble), the contour fitting does not con-
verge in a manner that is independent of the initial trial con-
tour. These images are ignored when estimating the modal
covariances and persistence length. The percentages of im-
ages used for each of the reported persistence length values
are included in Table 1.

A unique feature of our method is that it globally fits the
entire contour to the fluorescence image. The smooth inter-
polation enables robust determination of persistence length,
even in the presence of substantial gap artifacts, which are
frequently encountered in experiments. We find relative er-
rors for the estimated persistence length to be < 1% for a
majority of low to moderate noise cases, and < 10% even
for the largest background and gap noise levels probed.

3.5 Experimental Results for Microtubules

To demonstrate our approach in practice we apply our fil-
ament tracing and spectral analysis methods to character-
ize the persistence length of an isolated microtubule (MT)
imaged using total internal reflection fluorescence (TIRF)
microscopy. The MT was labeled with rhodamine dyes to
enable visualization, confined to move within a thin, well-
sealed sample chamber to ensure that the fluctuating filament
remained in focus throughout the experiment and only ther-
mal forces acted upon the MT. The experimental details are

further described in the Supplemental Materials.
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FIGURE 5 Experimental Results for a Microtubule : We analyse
using our spectral analysis methods the thermal fluctuations of
a microtubule forM = 147 images. The exhibited thermal fluctu-
ations in the microtubule shape are shown in the inset. The ex-
hibited modal covariances of the microtubule fluctuations agree
well with a worm-like-chain model (dashed line). The error bars
in our analysis correspond to 95.5% confidence intervals using
our sampling error analysis in Section 3.2. Our methods yield an
actual dimensional persistence length of L̃p = 3.45± 0.52 mm.

As a test of our approach, an ensemble of M = 147 flu-
orescence microscopy images were obtained and analyzed
using our contour fitting method and least-squares estimator
to analyze the first four modes. From these, we determine a
non-dimensional persistence length of ˜̀

p = 176.6 using the
spectral characteristics of the fluctuating filament, see Fig-
ure 5. In this test case, the microtubule contour length was
estimated to be L̃ = 19.6µm. This gives an actual dimen-
sional persistence length of L̃p = 3.45mm. To determine
the uncertainty in this measurement, we consider errors aris-
ing from both sampling and image artifacts. We estimate
the sampling error when using only M = 147 images to
be ±.48mm in L̃p. From analysis of the experimental flu-
orescence images, we estimate an average effective back-
ground noise of σb/Ic = 0.143 and average effective gap
noise of σg/µg = 0.184. From the results of a benchmark-
ing study performed under similar noise conditions, we es-
timate the contribution to L̃p-uncertainty of ±0.2mm. We
anticipate that the uncertainties due to sampling errors and
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noise artifacts behave in a fairly independent manner. Un-
der this assumption, the total uncertainty can be estimated
by adding these two contributions in quadrature. Therefore,
we estimate L̃p = 3.45 ± 0.52 mm. These results represent
a measurement uncertainty of ≈ 15%. Our measured persis-
tence length is well-within the range of previously reported
values [29, 30]. The dashed black line in Figure 5 shows the
variances for the Chebyshev modes predicted using a WLC
model with the same mean bending stiffness. We find good
agreement between the WLC model and our spectral data,
validating our fitting algorithm under experimental condi-
tions and relatively small sample sizes. Moreover, we find
good agreement with the WLC prediction for at least six in-
dependent modes.

4. SUMMARY

New spectral analysis methods were presented for the mea-
surement of biopolymer flexural rigidity from observations
of the biopolymer thermal fluctuations. Our approach was
based on global fitting of an entire trial contour at once to
the fluorescence image. We used a contour representation
expressed in terms of a curve parameterized by arc-length
with specified tangent angles expanded in a basis of orthog-
onal polynomials. Using this representation we performed
statistical analysis of the modal coefficients to infer a flexu-
ral rigidity for the biopolymer.

To investigate the robustness and accuracy of spectral
analysis methods, we developed a benchmarking approach
based on a simulated ensemble of images with realistic noise
artifacts generated from the configurations of a simulated
fluctuating biopolymer with known mechanical properties.
Our spectral analysis methods were found to work very well
even in the case of images exhibiting significant background
noise and gap artifacts. In contrast to contour tracing ap-
proaches that make use of primarily local information, our
new more global methods allow for robust fits that inter-
polate and filter information in the fluorescence image pro-
viding tolerance to sporadic gaps in the fluorescent intensity
along the biopolymer and other types of noise. The bench-
marking approach we propose provides a potentially power-
ful metric for rating different spectral analysis methods and
for understanding the statistical significance of differences
reported in experimental results.

To demonstrate our methods in practice, we studied ex-
perimental fluorescence images of a fluctuating microtubule.
We found good agreement in the covariance structure of the
modes of the fitted contours with the worm-like chain model
for at least six different modes and measurement uncertain-
ties of ≈ 15%. These results were obtained for a relatively
small sample of images, M = 147, showing the promise of
our approach.

Our results indicate that these new spectral analysis meth-
ods provide a substantial improvement in precision for mea-

surements of stiffness based on observed fluctuations of a
biopolymer. We expect these approaches will enable future
studies of the differential effects of polymerization condi-
tions and MAPs on microtuble mechanics.
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