
STOCHASTIC REDUCTIONS FOR INERTIAL FLUID-STRUCTURE
INTERACTIONS SUBJECT TO THERMAL FLUCTUATIONS

GIL TABAK ∗ AND PAUL J. ATZBERGER †

Abstract. We investigate the dynamics of elastic microstructures that interact with a fluid
flow when subject to thermal fluctuations. We perform analysis to obtain systematically simplified
descriptions of the mechanics in the limiting regimes when (i) the coupling forces that transfer mo-
mentum between the fluid and microstructures is strong, (ii) the mass of the microstructures is small
relative to the displaced mass of the fluid, and (iii) the response to stresses results in hydrodynamics
that relax rapidly to a quasi-steady-state relative to the motions of the microstructure. We derive
effective equations using a singular perturbation analysis of the Backward Kolmogorov equations of
the stochastic process. Our continuum mechanics description is based on the Stochastic Eulerian
Lagrangian Method (SELM) which provides a framework for approximation of the fluid-structure
interactions when subject to thermal fluctuations. We perform a dimension analysis of the SELM
equations to identify key non-dimensional groups and to characterize precisely each of the limiting
physical regimes. The reduced equations offer insights into the physical accuracy of SELM descrip-
tions in comparison with classical results. The reduced equations also elimintate rapid time-scales
from the dynamics and provide possible approaches for the development of more efficient computa-
tional methods for simulations of fluid-structure interactions when subject to thermal fluctuations.
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1. Introduction. Many applications involve the mechanics of spatially extended elas-
tic bodies that interact with a fluid. For instance, elastic bodies may represent the polymers
of a complex fluid [12, 4], the individual or collective behaviors of amphiphilic molecules of
a lipid bilayer membrane [18, 23, 8], the cilia or flagellum driving the swimming of microor-
ganisms [22, 31], or the components of micro-mechanical devices [32, 19]. In such systems
thermal fluctuations often play an important role. Even in the absence of fluctuations, the
mechanics of fluid-structure interactions pose a number of difficult and long-standing chal-
lenges. The mechanics can exhibit rich behaviors through the interplay of the fluid flow
which can drive deformations of the elastic structures while at the same time the elastic
stresses of the deformed bodies can feedback to resist flow of the fluid or even drive flows.
This can result in complicated long-range coupling between the motions of different bodies
or the motions between different parts of a single spatially extended body. When subject to
thermal fluctuations that drive spontaneous flows, this manifests as diffusive motions with
long-range correlations between immersed microstructures. In continuum mechanics it is
natural to consider descriptions for these interactions in which explicit boundary conditions
are formulated at the interface between the elastic body with the fluid (i.e. the traction
stress and kinematic conditions). However, in practice this approach is often intractable for
physical analysis and prohibitively expensive in computational simulations.

To obtain more tractable descriptions, while still capturing essential features of the
mechanics, many approximations of the fluid-structure interactions have been developed.
These include the Immersed Boundary Method [30, 2], Arbitrary Lagrangian-Eulerian Meth-
ods [6, 13], Stokesian-Brownian Dynamics [5], Lattice-Boltzmann Method [15, 14], and Force
Coupling Method [27, 10]. While these approximations may perform adequately in the de-
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terministic setting, when introducing the thermal fluctuations the approximations can often
introduce unphysical dissipation, spurious drifts, and other artifacts affecting the propaga-
tion of fluctuations throughout the mechanical system. The Stochastic Eulerian Lagrangian
Method (SELM) has been introduced in [1] to provide a framework for the development
of approximate fluid-structure coupling schemes that are amenable to thermal fluctuations.
Provided a few criteria are satisfied by the approximate fluid-structure coupling method em-
ployed, SELM provides an approach to formulate equations of motion for the fluid-structure
system and to introduce stochastic driving fields that yield equilibrium fluctuations having
Gibbs-Boltzmann statistics and stochastic dynamics satisfying detailed balance [1].

The SELM equations are formulated at the level of inertial fluid-structure interactions
and allow for the case of slip between the microstructure and fluid. However, many of the
widely used approximation methods for fluid-structure interactions are formulated in other
physical regimes of interest, such as in the limit with strong fluid-structure coupling with
no-slip, small body mass, or rapid hydrodynamic relaxation (small Reynold’s number) [1]. A
primary objective of our present work is to develop reductions of the SELM equations that
are directly applicable to these regimes and to compare the reduced descriptions with well-
known results in fluid mechanics and statistical mechanics. Some of this work was partially
carried out in our prior paper [1]. In this prior work, we proposed reduced equations based on
formal calculations carried out on an intuitive level using results from the Ito Calculus [28].
The focus of the current work is (i) to develop a more systematic and reliable approach to
reduce the SELM equations, (ii) to characterize precisely the physical regimes and limits
using a dimension analysis of the SELM equations, and (iii) to consider an important, but
previously unexplored, limit for SELM equations in which the fluid-structure coupling forces
that exchange momentum between the microstructures and the fluid becomes strong to
yield no-slip. One potentially important use of these reductions is to eliminate sources of
numerical stiffness by providing equations that can be handled more efficiently in simulations
of fluid-structure interactions when subject to thermal fluctuations.

Our approach is based on a singular perturbation analysis of the Backward Kolmogorov
equation (BKE) carried out using methods similar to those in [25, 24, 26] and rigorously
established in [29, 21]. To perform reductions of fluid-structure mechanics, we show it is
important to reformulate the system in terms of a total momentum density field which elimi-
nates a fluid-structure momentum exchange time-scale from the problem since the total field
includes both the local fluid momentum and local microstructure momentum. As a starting
point in our analysis we present this formulation of the fluid-structure mechanics based on
the Stochastic Eulerian Lagrangian Method (SELM) in Section 2. We present dimension
analysis of the SELM equations to identify non-dimensional groups and to characterize pre-
cisely the limiting physical regimes in Section 3. We then summarize our main results for
those readers primarily interested in the final reduced equations in Section 4. The general
singular perturbation analysis we use for the the Backward Kolmogorov equations is devel-
oped in Section 5. We present the details of the derivations for each of the reduced equations
for the different limiting physical regimes in Section 6. These results present in a few physical
regimes of broad interest a general approach for the development of approximate models of
the fluid-structure interaction when subject to thermal fluctuations.

2. Stochastic Eulerian Lagrangian Method : Inertial Regime. To ac-
count for the fluid-structure interactions subject to thermal fluctuations, we introduce the
fluctuating hydrodynamic equations

ρ
du

dt
= µ∆u−∇p+ Λ[Υ(v − Γu)] + fthm (2.1)

∇ · u = 0 (2.2)
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coupled to the elastic structure equations

m
dv

dt
= −Υ(v − Γu)−∇XΦ[X] + Fthm (2.3)

dX

dt
= v. (2.4)

The thermal fluctuations are given by the Gaussian stochastic fields fthm and Fthm with
mean zero and covariances

〈fthm(s)fTthm(t)〉 = − (2kBT ) (µ∆− ΛΥΓ) δ(t− s) (2.5)

〈Fthm(s)FTthm(t)〉 = (2kBT ) Υδ(t− s) (2.6)

〈fthm(s)FTthm(t)〉 = − (2kBT ) ΛΥδ(t− s). (2.7)

In the notation, the abT denotes the tensor product of vector fields a and b, kBT the thermal
energy, δ(t − s) the Dirac delta function, and 〈·〉 a probability expectation of the random
fields. The fluid velocity is given by u, the structure configuration and velocities by X(q)
and v(q) with q the parameterization of the structure. In the case of a finite collection of
particles, the positions and velocities are given by X(q), v(q) indexed over the integers. The
Φ denotes the potential energy associated with the structure configuration. The ρ denotes
the fluid density, µ the dynamic fluid viscosity, and m the particle excess mass relative
to the fluid (the precise interpretation of course depends on the specific choice of coupling
operators). The p denotes the pressure that serves as the Lagrange multiplier to enforce the
incompressibility condition ∇ · u = 0.

To provide a model of the fluid-structure interactions, momentum is transferred between
the fluid and the structures by the terms −Υ(v − Γu) and Λ[Υ(v − Γu)]. The first term
accounts for the drag that the fluid exerts on the structures as they move. The second term
accounts for the spatial distribution of the equal-and-opposite forces to the drag that are
exerted by the structures on the fluid-body. The operators Λ,Γ serve to transfer information
between the Eulerian and Lagrangian descriptions. The Γ determines from the state of the
fluid a local reference velocity to which to compare in determining the local drag exerted
on the structures. The Λ accounts for how the equal-and-opposite drag force exerted by the
structures are distributed spatially within the fluid body. A number of natural conditions
arise on these operators to ensure that dissipation in the coupling occurs only through the
Υ-drag and not as a consequence of interconversion between the Eulerian and Lagrangian
reference frames. This requires the condition that the operators satisfy the adjoint condition
Λ = ΓT , see [30, 1]. Another natural condition to ensure the drag is dissipative is that the
operator Υ is positive semi-definite. The general formulation given in 2.1 – 2.7 is referred to
throughout as the Stochastic Eulerian Lagrangian Method. For more details concerning the
motivation of these equations and their derivation, see [1].

In practice, many different choices can be made for the coupling operators Λ, Γ, and Υ.
For the purposes of our analysis, we leave this choice general. However, for concreteness we
mention that a common approach is to use local Stokesian drag and the fluid-structure cou-
pling scheme of the Immersed Boundary Method [30]. This would give the specific coupling
operators

(Γu) (q) =

∫
δa(y −X(q))u(x, t)dy (2.8)

(ΛF(q)) (y) = δa(y −X(q))F(q) (2.9)

Υ = 6πµR. (2.10)

The δa is a special kernel function localized around the structure designed to have desirable
numerical properties that preserve to a good approximation translation invariance of the
structure dynamics despite the breaking of this symmetry by the numerical discretization
lattice of the fluid. We refer to the specific choice given [30] as the Peskin δ-function. In
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the notation, the R is the hydrodynamic radius attributed to the effective local size of the
structure. More general coupling schemes can also be developed to which our presented
analysis is applicable. For more details on how these fluid-structure approaches are used in
practice, see [1, 2, 30].

2.1. Reformulation in Terms of the Total Momentum Density Field.
For our analysis it is useful to reformulate the equations in terms of a total momentum
density field. This field accounts simultaneously for both the momentum of the fluid and
structures at a given location in space. For this purpose we define the total momentum
density field

p(x, t) = ρu(x, t) + Λ [mv(t)] . (2.11)

Also for convenience, and to treat more general approaches for the fluid-structure system,
we introduce the operator L = µ∆ in place of the Newtonian stress term. We only assume
L is negative semi-definite throughout. This allows for fluid-structure interactions to be
expressed in terms of p,v,X as

dp

dt
= ρ−1L (p− Λ[mv]) + Λ[−∇XΦ(X)] + (∇XΛ[mv]) · v + λ+ gthm (2.12)

m
dv

dt
= −Υv + ρ−1ΥΓ(p− Λ[mv])−∇XΦ(X) + ζ + Fthm (2.13)

dX

dt
= v. (2.14)

The thermal fluctuations are given by the Gaussian stochastic fields with covariance

〈gthm(s)gTthm(t)〉 = − (2kBT )L δ(t− s) (2.15)

〈Fthm(s)FTthm(t)〉 = (2kBT ) Υ δ(t− s) (2.16)

〈gthm(s)FTthm(t)〉 = 0. (2.17)

The λ and ζ are Lagrange multipliers enforcing holonomic constraints on the system (such
as incompressibility of the fluid or rigid-body restrictions on deformations of the structures).
The stochastic driving field for the total momentum is related to the stochastic driving fields
of the fluid and structures in equations 2.1 and 2.3 by gthm = fthm + Λ[Fthm], see [1].

An important technical issue is that the total momentum field p itself need not be
incompressible (solenoidal) as a consequence of the somewhat arbitrary way momentum
of the structures is spatial distributed by Λ [mv(t)]. This will require some care in our
calculations to ensure that the incompressibility constraint is satisfied by the corresponding
fluid velocity field u. We handle this technical point by considering a decomposition of the
total momentum field into a solenoidal part and non-solenoidal part. An important feature
is that only the solenoidal part of the total momentum field plays a significant role in the
coupled fluid-structure equations 2.12 – 2.14.

2.2. Handling Constraints : Incompressibility and Solenoidal Decom-
position. The structure equations depend on the total momentum field p only through
u = p − Λ[mv] which is constrained to be solenoidal (incompressible). As a consequence,
if we apply the operator ℘ that projects any field to its solenoidal part we have u = ℘u =
℘p − ℘Λ[mv]. This well-known approach for expressing the incompressibility of hydrody-
namic equations [9] yields the following closed set of equations for SELM

d(℘p)

dt
= ℘

[
ρ−1L (p− Λ[mv]) + Λ[−∇XΦ(X)] + (∇XΛ[mv]) · v + gthm

]
(2.18)

m
dv

dt
= −Υv + ρ−1ΥΓ℘(p− Λ[mv])−∇XΦ(X) + Fthm (2.19)

dX

dt
= v. (2.20)
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We remark that only the dynamics of ℘p need be explicitly retained, since the non-solenoidal
components play no role in the fluid-structure dynamics. The equations take the same
identical form as equations 2.12–2.14 when making the substitutions

p̃ = ℘p, L̃ = ℘L, Λ̃ = ℘Λ, Γ̃ = Γ℘. (2.21)

Similarly, the covariance structure of gthm takes the same form when making these substi-
tutions. Consequently, to avoid clutter in the notation, we shall not explicitly distinguish
the incompressible case when carrying out the reductions. Instead, the procedure outlined
above shall be assumed throughout the paper. We remark that the presentation can also be
simplified with respect to the constraint terms for the microstructures. These can be han-
dled readily by simply using an appropriate choice of generalized coordinates obeying the
constraints. Again, we shall not explicitly distinguish this case and instead simply utilize
this convention throughout the paper.

In practice, the fluid-structure dynamics given by equations 2.12 – 2.14 can exhibit a
broad range of spatial/temporal scales. In the case of well-separated time-scales we shall
aim to derive effective dynamical equations in terms of only those degrees of freedom and
dynamics that evolve on the slower time-scales. Such reduced equations are useful both in
gaining insights into the physics of such fluid-structure interactions when subject to thermal
fluctuations and in the development of efficient computational methods simulations. To
characterize these important dynamical scales and different limiting physical regimes, we
perform a dimension analysis of the SELM equations.

3. Dimension Analysis. To investigate behaviors of the fluid-structure system it
is useful to introduce characteristic scales that can be employed to non-dimensionalize the
dynamic equations 2.12 – 2.14. The Buckingham Π-theorem provides a useful guide by
stating that for a physical system with M parameters and m fundamental physical units the
system can be characterized completely by M−m non-dimensional groups Π1, · · · ,ΠM−m [7].
For the SELM equations there are M = 7 distinct parameters ρ, µ,m, T,Φ,Υ,Γ (note that
Γ = ΛT ) and m = 4 fundamental physical units mass, length, time, temperature. From
the Buckingham Π-theorem, we have that SELM is characterized by three non-dimensional
groups Π1,Π2,Π3. In principle, There are many possible choices that can be made for
these non-dimensional groups. We have found it useful to make the specific choice with this
first group characterizing the strength of the coupling that exchanges momentum between
the fluid and structures. For the second group, we choose a parameter that characterizes
the inertial contributions arising from the differences in density between the fluid and the
structures. To define these more precisely, we introduce for SELM some natural characteristic
scales for length, time, and mass.

3.1. Characteristic Scales. For the SELM dynamics, it is natural to consider the
time-scale on which the velocity of a particle relaxes or decorrelates. This gives the time-scale
τv = m/Υ0. The Υ0 can be interpreted as the characteristic strength of the momentum-
exchange coupling and m is the excess mass of the immersed structure. This is similar to the
time-scale that often arises when considering the reduction of the Langevin equations to the
Smoluchowski equations [34, 17]. Another important time-scale is the duration for a fluid
parcel to move the distance ` when it has kinetic energy on the order kBT . We define this
time-scale as τk =

√
m0`2/kBT , where ` is a characteristic of the length scale of the fluid

parcel and m0 = ρ`3 characterizes the mass of the fluid parcel. These scales provide a natural
way to characterize the strength of the momentum-exchange. In particular, we consider the
relative time-scale on which the structure momentum decorrelates in time relative to moving
a significant displacement in space. For this purpose, we introduce our first non-dimensional
group

ε = τv/τk, with Π1 = ε. (3.1)

When ε becomes small this indicates the coupling has become strong.
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To obtain a second non-dimensional group that characterizes the contributions of inertial
effects, we consider the magnitude of the excess mass associated with the immersed structure.
This is compared to the comparable mass of fluid that occupies a volume of comparable size
to the immersed structure. The ratio of these masses define our second non-dimensional
group

κ−1 = m/ρ`3 = m/m0, with Π2 = κ−1. (3.2)

We denote m0 = ρ`3. When κ−1 is small this indicates the inertia from the excess mass
density of the immersed structure is negligible relative to that of the displaced fluid.

Finally, we note that the potential Φ may vary in scale depending on the application.
For this reason we introduce a third timescale to characterize the potential Φ = Φ0Φ̄,

α = Φ0/kBT, with Π3 = α. (3.3)

Using this dimensional group will help separate the inertial effects due to the excess mass
from the contributions due to the potential in both the Eulerian and Lagrangian frames.

We further impose the condition that ακ = O(1). As we will see, this is important
in capturing the coupling forces on the structure over the forces due to the structures own
potential.

By the Buckingham-Π Theorem all parameters of the physical system can be expressed
in terms of these three non-dimensional groups ε, κ−1, α. For this purpose, we first express
the parameters in terms of intermediate characteristic scales by :

t = τk t̄, X = `X̄, v = v0v̄ =
`

τk
v̄, (3.4)

p = p0p̄ =
m0

τk`2
p̄, Λ = Λ0Λ̄ =

1

`3
Λ̄, L = L0L̄ =

m0

`3τk
L̄. (3.5)

The stochastic driving fields present some interesting considerations to obtain an appropriate
non-dimensionalization. We express the stochastic terms by scalings of the form

gthm (X, s) = g0ḡthm = g0D−L̄ξ̄

(
X

`
,
s

τk

)
, (3.6)

Fthm (s) = F0F̄thm = F0DῩη̄

(
s

τk

)
. (3.7)

The ξ̄ and η̄ denote Gaussian random fields having mean zero and unit covariances

〈ξ̄(X̄, s̄)ξ̄T (Ȳ, t̄)〉 = δ(X̄− Ȳ)δ(s̄− t̄), (3.8)

〈η̄(s̄)η̄T (t̄)〉 = δ(s̄− t̄). (3.9)

This allows for the characteristic strengths of the stochastic driving fields to be expressed as

g0
2 =

kBT

`3τk
L0, F0

2 =
kBT

τk
Υ0, 2DADA

T = A. (3.10)

In our notation, DA denotes the square root of the operator 1
2
A which is assumed to be

positive semi-definite. The DA is an operator defined with the same domain and range as
A. We also find it convenient to define at this stage the Reynold’s number which is given by

Re = ρ`U/µ (3.11)

where U is a characteristic velocity scale.
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3.2. Summary of Non-Dimensional Equations. The SELM equations 2.12–
2.14 can be expressed non-dimensionally using the characteristic scales of Section 3.1 as

dp̄

dt
= L̄

(
p̄− κ−1Λ̄[v̄]

)
+ αΛ̄[−∇X̄Φ̄(X̄)] + κ−1 (∇X̄ Λ̄[v̄]

)
· v̄ + ḡthm (3.12)

dv̄

dt
= −1

ε
ῩC1(v̄ − v̄0)− κα∇X̄Φ̄(X̄) +

√
1

ε

√
κF̄thm (3.13)

dX̄

dt
= v̄ (3.14)

where

C1 = (I + κ−1Γ̄Λ̄) (3.15)

v̄0 = C−1
1 Γ̄p̄. (3.16)

The thermal fluctuations are given by the stochastic driving fields with covariances

〈ḡthm(s)ḡTthm(t)〉 = −2L̄ δ(t− s) (3.17)

〈F̄thm(s)F̄Tthm(t)〉 = 2Ῡ δ(t− s) (3.18)

〈ḡthm(s)F̄Tthm(t)〉 = 0. (3.19)

As discussed in Section 2.2, the constraints are handled implicitly throughout. Our assump-
tion κα = O(1) is made to guarantee that the potential term in 3.13 contributes at order
one.

4. Stochastic Reduction. In a few limiting physical regimes, we derive effective
fluid-structure dynamics from the inertial SELM equations 2.12– 2.14. The first regime
we consider corresponds to the case when the coupling strength becomes strong for the
momentum-exchange between the immersed structures and the fluid. This corresponds to
the limit ε→ 0. We summarize the leading order behavior in this section, as well as the first
order terms in ε that result from the reduction. For the leading order terms, we then consider
the case when the the immersed structures have an excess mass density that becomes small
relative to the surrounding fluid. This corresponds to the limit κ−1 → 0. Finally, we consider
the case when in response to stresses the hydrodynamics relax rapidly relative to the motions
of the microstructures. This corresponds to the small Reynold’s number limit Re → 0. We
give a summary of our results for the effective equations in each of these physical regimes
in Section 4. We then provide our detailed perturbation analysis and derivations of each of
these equations in Section 5 and Section 6.

4.1. Limit of Strong Coupling : Summary of Reduced Equations. In
the limit ε → 0 the fluid and the microstructures become strongly coupled and momentum
is exchanged rapidly. In terms of the physical parameters this occurs when the momentum
coupling parameter satisfies Υ0 >>

√
m0kBT/`2. In this regime we obtain the effective

inertial dynamics

dp

dt
= ρ−1L (p− Λ[mv0])− Λ∇XΦ(X) + (∇XΛ[mv0]) · v0

+ kBT∇XΛ : C−1
1 + λ+ gthm + θp (4.1)

dX

dt
= v0 + θX . (4.2)

In the notation, the double dot product should be interpreted as ∂XkΛij(C
−1
1 )jk. The v0

denotes the effective velocity of the microstructures to leading order

v0 = ρ−1C−1
1 Γp (4.3)

C1 = I + ρ−1mΓΛ. (4.4)
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The thermal fluctuations are taken into account through the Gaussian stochastic driving
field gthm with mean zero and covariance

〈gthm(s)gTthm(t)〉 = − (2kBT )L δ(t− s). (4.5)

The θ terms represent higher-order terms at the next order in ε. For the strong coupling limit
they capture the leading order correction from slip effects between the fluid and structures
in this regime. These terms could be useful in capturing the permeation of fluid through a
structure within the fluid such as a porous membrane. These terms are given explicitly in
section 6.2.

4.2. Limit of Strong Coupling : Reduced Equations in Terms of the
Effective Fluid Velocity u. The effective fluid velocity field ū is obtained from the
total momentum field p by

ū = ρ−1 (p− Λ[m(v0 + θX)]) . (4.6)

The v0 is given in Section 4.1 and θX is given in Section 6.2. The effective fluid-structure
dynamics are

ρ
dū

dt
= Lū + kBT∇XΛ : C−1

1 − Λ
d

dt
[mv0]− Λ∇XΦ(X) + θp + λ+ gthm (4.7)

dX

dt
= v0 + θX = Γū + C1θX (4.8)

and

〈gthm(s)gTthm(t)〉 = − (2kBT )L δ(t− s). (4.9)

The v0 can be interpreted as the effective velocity of the microstructures

v0 = Γū + ρ−1mΓΛθX . (4.10)

The higher-order correction due to the fluid slip is given by θX of Section 6.2. These equations
were obtained by using the following terms that can be differentiated and combined to yield

(∇XΛ[mv0]) · v0 −
d

dt
(Λ[mv0]) (4.11)

= (∇XΛ[mv0]) · v0 − (∇XΛ[mv0]) · v0 − Λ
d

dt
[mv0] = Λ

d

dt
[mv0]. (4.12)

We remark that the effective fluid equations 4.7 capture the hydrodynamic response to
shear stresses within the fluid, structure related body forces, and the inertia of the immersed
microstructures. The stochastic fields yield the thermal fluctuations. Interestingly, there are
also higher order inertial effects that arise for a finite ε (non-infinite Υ) from the weakly
permitted slip of a structure relative to the background fluid flow. This latter term can
be thought of as the momentum response to an applied body force to a microstructure, for
detailed expressions see Section 6.2.

Another interesting feature of the analysis is that it had to be performed using the total
momentum density field (as opposed to directly on the fluid velocity field) since in the strong
coupling limit the momentum exchange between the fluid and microstructures becomes in-
creasingly rapid as the coupling strength increases, see Section 2.1. This has the important
consequence that the fluid velocity does not behave as an appropriate “slow variable” in the
strong coupling limit. Instead it is the total momentum density that serves the role of a
suitable “slow variable.” We found it a bit curious and counter-intuitive that after such an
analysis we can again express the reduced equations in terms of the fluid velocity ū. What
should be realized is that while the instantaneous fluid velocity degrees of freedom were
inadequate in the reduction analysis, upon performing the limit, their interpretation takes
on a slightly different meaning as a consequence of subtle features of the averaging that was
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performed. In fact, this subtle point that the mathematical analysis systematically handles,
can indeed be understood intuitively. In particular, one should realize that the fluid velocity
ū attributed from p in equation 4.6 should no longer be viewed as the “instantaneous” fluid
velocity. Instead, one should view it intuitively as an effective fluid velocity obtained by
appropriately averaging over an intermediate time-scale that is larger than the momentum
exchange time-scale but shorter than the other dynamical time-scales. We can view our
transformation to the total momentum density field and our systematic reduction analysis
as a precise way to take just such a limit.

The fluid-structure equations 4.7– 4.10 greatly simplify in the limit when the excess
body mass becomes negligible relative to the displaced fluid.

4.3. Limit of Negligible Excess Mass : Summary of Reduced Equations.
When the excess mass associated with the microstructure relative to the local displaced fluid
is small, this corresponds to the limit κ→∞, see equation 3.2. We approach this limit when
the excess mass parameter satisfies m << ρ`3. This results in the reduced fluid-structure
equations

ρ
du

dt
= Lu− Λ∇XΦ(X) + kBT∇X · Λ + λ+ θp + fthm (4.13)

dX

dt
= Γu + θX (4.14)〈

fthm(t)fthm(s)T
〉

= −2kBTLδ(t− s). (4.15)

A derivation of these equations is given in Section 6.4.

In this limit, the inertial terms in equations 4.7– 4.8 disappear. This is very similar
to the physical regime that is treated by the Stochastic Immersed Boundary Method (SIB)
in [2]. However, the systematic reduction analysis we perform here in Section 6.1 shows that
there is an important drift term that is missing in the original SIB formulation [2]. This
corresponds to the term kBT∇XΛ : C−1

1 in equation 4.7 which becomes when m = 0 the
term kBT∇X · Λ in equation 4.13. This important drift term arises from the generalized
coordinates (non-conjugate configuration and momentum in the Hamiltonian sense) that is
used to describe the mechanics of the fluid-structure system. The consequence of this is that
within the phase-space there is an induced metric factor in the generalized Louiville theorem
for the dynamical system, see [1].

We remark that in the zero excess mass limit with m = 0 there is no longer a distinction
between formulating the equations of motion in terms of the total momentum field or the
fluid velocity equations since p = ρu. Approximate fluid-structure methods, such as the
Immersed Boundary Method [30] treat precisely this physical regime. Our results suggest
that in the mechanics we should interpret the immersed structures in the IB approach as
assumed to be effectively density matched with that of the surrounding fluid flow so that the
excess mass m = 0. Furthermore, any inertial effects of the immersed structures are modeled
through the effective kernel functions involved in the velocity averaging / force-spreading and
arise from the corresponding dynamics of the overlapping local fluid elements [30, 1, 2]. To
model further inertial effects of structures, some recent extensions of IB have been introduced
in [20, 3].

4.4. Limit of Rapid Hydrodynamic Relaxation : Summary of Reduced
Equations. We consider the regime where the hydrodynamics rapidly equilibrate to a
quasi-steady state in response to body forces. This corresponds to the limit when the
Reynold’s number Re = ρ`U/µ � 1 is small. In terms of the fluid viscosity this requires µ
is large in the sense µ >> ρ`U . The ρ is the fluid density. The U is a characteristic velocity
and ` a characteristic length-scale associated with the microstructures. We consider the case
when the limit ε→ 0 taken, so that slip corrections are neglected. This results in the reduced
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equations

dX

dt
= HSELM[−∇XΦ(X)] + (∇X ·HSELM)kBT + hthm (4.16)

HSELM = Γ(℘L)−1Λ (4.17)

〈hthm(s),hTthm(t)〉 = 2kBTHSELMδ(t− s). (4.18)

We define L = µ∆. In this regime the fluid degrees of freedom are eliminated entirely and
replaced by the effective hydrodynamic coupling tensor HSELM. Interestingly, the metric
factors arising in the inertial regime from the generalized fluid-structure coordinates used
for the description of the mechanical system manifests as the term (∇X ·HSELM)kBT . This
drift-divergence term is essential for the microstructure dynamics to have invariant the Gibbs-
Boltzmann distribution with detailed balance.

5. Stochastic Reduction Method : Singular Perturbation of Backward
Kolmogorov Equations. We derive the reduced equations using a method based on a
singular perturbation analysis of the Backward-Kolmogorov Equations (BKE) [25, 26, 21, 29].
The BKE are given by

∂u

∂t
= Au (5.1)

u(0, z) = f(z). (5.2)

The u(t, z) = Ez[f(Z(t))] with Z(t) = (X(t),p(t),v(t)) [28]. The Ez[· · · ] denotes taking
expectation when the stochastic process starts with Z(0) = z. The A is the infinitesimal
generator of the stochastic process Z(t). The f is assumed to be a C2 smooth function with
compact support. An important connection is that the statistics of the stochastic process
are determined by the expectations taken over the class of functions f . This provides a
mapping between the infinitesimal generator A that appears in the BKE and the underlying
stochastic process Z(t). In particular, consider the stochastic process satisfying

dZ(t) = a(Z(t))dt+ b(Z(t))dWt. (5.3)

The Stochastic Differential Equation (SDE) is to be given the the Ito interpretation [28].
The corresponding infinitesimal generator is

A = a · ∂
∂z

+
1

2
bbT :

∂2

∂z2
. (5.4)

We shall use this to obtain the reduction by performing a singular perturbation analysis of
the BKE to yield a limiting form for the infinitesimal generator Ã = ã · ∂/∂z + 1

2
b̃b̃T :

∂2/∂z2. This determines a reduced stochastic process Z̃(t) satisfying dZ̃(t) = ã(Z̃(t))dt +
b̃(Z̃(t))dW̃t which approximates the full stochastic dynamics of equation 5.3. We remark
that a distinct advantage of using the BKE over the Fokker-Planck Equations (FPE) is that
our approximation will not be required to satisfy additional constraints, such as ensuring
the equation conserves the total probability density. The adjoint of an approximated FPE
differential operator is not always a valid infinitesimal generator. In contrast when making
approximations of the BKE, the obtained second order differential operator has the plausible
form for an infinitesimal generator [28].

To obtain a specific limiting regime, we require that terms be identified that split the
dynamics of the infinitesimal generator into “slow” and “fast” parts

Aε = Lslow + Lfast. (5.5)

As the notation suggests, the splitting is meant to separate the degrees of freedom of the
system into two classes z = (zs, zf ). The zs are those that exhibit relatively “slow” temporal
dynamics. The zf are those degrees of freedom that exhibit relatively “fast” temporal
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dynamics. The Lslow contains only the terms of the infinitesimal generator that involves
derivatives with respect to the “slow” degrees of freedom. Similarly, the Lfast contains only
the terms governing the “fast” degrees of freedom. These notions are defined more precisely
for the SELM dynamics in Section 6.

This splitting provides a useful stationary probability distribution Ψ(zf |zs) for the “fast”
degrees of freedom Zf (t) when evolving under dynamics with the “slow” degrees of freedom
held fixed Zs = zs. This is given by solving the steady-state FPE for the fast degrees of
freedom which can be expressed using the adjoint of the generator as a solution of

L∗2Ψ = 0 (5.6)∫
Ψdzf = 1. (5.7)

More precisely, we shall consider in our analysis for the “fast” degrees of freedom generators
of the general form

Lfast =
1

ε

(
L2 + εL̃2

)
. (5.8)

The L2 represents the leading order contribution to the generator Lfast and is used to
determine the invariant distribution Ψ. Often we have L̃2 = 0, but as we shall discuss,
for many cases of interest this term is non-zero making an interesting contribution to the
reduced effective stochastic dynamics.

For the “slow” degrees of freedom, we find it convenient to split the generator as

Lslow = L̄1 + L1 (5.9)

where

L̄1 =

∫
Ψ(zf |zs)Lslowdzf (5.10)

L1 = Lslow − L̄1. (5.11)

This splitting ensures that L1 generates a stochastic process having mean zero. As we shall
discuss, if L̄1 is a non-zero operator then it captures the leading order dynamics. The L1

then contributes at the next order. These conventions allow for the infinitesimal generator
to be expressed as

Aε = L̄1 + εLε (5.12)

Lε =
1

ε

(
L1 + L̃2

)
+

1

ε2
L2. (5.13)

As we shall show, the operator Lε contributes effectively as order one in the limit ε→ 0 and
hence the scaling and notation chosen.

To make this more precise, we perform the perturbation using the expansion

u(z, t) = u0(z, t) + u1(z, t)ε+ u2(z, t)ε2 · · ·+ un(z, t)εn + · · · . (5.14)

We shall seek ultimately a partial differential equation (BKE) for the first two orders

ū(zs, t) = u0(zs, t) + ū1(zs, t)ε (5.15)

where ū1(zs, t) =
∫

Ψ(zf |zs)u1(z, t)dzf . By comparing orders when plugging equation 5.14
into 5.1 and using 5.12 we obtain

O
(
ε−1) : L2u0 = 0 (5.16)

O (1) :
∂u0

∂t
= L̄1u0 + L1u0 + L̃2u0 + L2u1 (5.17)

O (ε) :
∂u1

∂t
= L̄1u1 + L1u1 + L̃2u1 + L2u2. (5.18)
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We assume throughout that the stochastic process generated by L2 is ergodic on the space
of zf so that dim ker{L∗2} = 1. The order O

(
ε−1
)

can be interpreted as the steady-state

of the Backward-Kolmogorov equation of a stochastic process Ẑf (t) generated by L2. This

suggests that u0(z) = limt→∞E
z
[
f(Ẑf (t)

]
= Ezs

[
f(Ẑf )

]
= u0(zs), where Ẑf (t) is the

process started with Ẑf (t) = zf . By ergodicity the long-term behavior of Ẑf (t) would be
independent of the initial condition and the latter expectation is to be taken with respect
to Ψ satisfying equation 5.6. This gives that u0 = u0(zs) with the only dependence on zs.
Throughout we take u0 only depending on zs which ensures the order O

(
ε−1
)

is always
satisfied since L2 only involves derivatives with respect to zf . The order O (1) can be used
to solve for u1 in terms of u0 by

L2u1 =
∂u0

∂t
− L̄1u0 − L1u0. (5.19)

We used that L̃2u0 = 0 since u0 = u0(zs) and L̃2 only involves derivatives in zf . The
solvability of equation 5.19 requires the right-hand side of the equation be in the range of
the operator L2. A well known condition for this is that the right-hand side be orthogonal
to all elements of the null-space of L∗2. In other words, the range{L2} = ker{L∗2}⊥, where ⊥
denotes the orthogonal compliment of a set under the standard L2-inner product, see [33].
By our ergodicity assumption the kernel only has one dimension and the solvability can be
represented by the condition ∫

Ψ

(
∂

∂t
− L̄1 − L1

)
dzfu0 = 0. (5.20)

The Ψ is the stationary probability density satisfying equation 5.6. This yields the BKE for
the leading order

∂u0

∂t
= L̄1u0. (5.21)

This follows since by definition
∫

ΨL1dzf = 0 and the L̄1 =
∫

ΨL̄1dzf since it has already
been averaged with respect to the probability distribution. The condition for the existence
of the solution u1 in the asymptotic expansion expressed in equation 5.19 provides the
equation 5.21 for the leading order u0. Using equation 5.19, the order u1 can be expressed
as

u1 = L−1
2

(
∂u0

∂t
− (L̄1 + L1)u0

)
= −L−1

2 L1u0. (5.22)

The final expression comes from the relationship of the partial derivative ∂u0/∂t and the
operator L̄1 given by equation 5.21. Now at the order O(ε) a very similar argument can be
made to ensure the solvability of u2. This yields

∂ū1

∂t
= −

∫
Ψ
(
L̄1 + L1 + L̃2

)
L−1

2 L1dzfu0 (5.23)

where ū1(zs, t) =
∫

Ψ(zf |zs)u1(z, t)dzf . This provides a closed set of differential equations
for the first two orders u0, ū1 approximating the solution of the BKE in the ε→ 0 limit, see
equations 5.21 and 5.23.

It is convenient to express this approximation by deriving a set of closed equations for
ū = u0 + εū1. We have that

∂ū

∂t
= L̄1u0 + ε

(
−
∫

Ψ
(
L̄1 + L1 + L̃2

)
L−1

2 L1dzf

)
u0. (5.24)

To express this in terms of ū it is useful to notice that

ū =

(
I − ε

∫
ΨL−1

2 L1dzf

)
u0. (5.25)
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By inverting this operator and expanding to leading orders in ε we have

u0 =

(
I + ε

∫
ΨL−1

2 L1dzf + ε2(· · · ) + · · ·
)
ū (5.26)

By neglecting orders greater than ε we have

L̄1u0 = L̄1ū+ εL̄1

∫
ΨL−1

2 L1dzf ū. (5.27)

This gives the final set of closed reduced equations

∂ū

∂t
=
(
L̄1 + εL̄0

)
ū (5.28)

L̄0 = −
∫

Ψ
(
L1 + L̃2

)
L−1

2 L1dzf . (5.29)

This follows by using equation 5.27 in equation 5.24 and canceling common terms. This
derivation provides a unified expression consistent with the methods used in [24, 25, 26] and
the rigorous results obtained in [21, 29]. This provides a BKE with generator Ã = L̄1 + εL̄0

approximating the full BKE given in equation 5.1. Interestingly, the term Lε of equation 5.13
is approximated in the final set of equations by L̄0 which contributes only as order one in ε,
“Lε → L̄0.” The operator Ã provides the infinitesimal generator for the reduced stochastic
process Z̃(t) approximating the full stochastic process Z(t) given by equation 5.3. The
equations 5.28 and 5.29 establishes our systematic reduction procedure to approximate the
full stochastic dynamics.

6. Derivation of the Non-Dimensional Reduced Equations. The details
are now presented for the derivation of the various reduced equations in the different limits of
strong coupling, small body excess mass, and rapid hydrodynamic relaxation. These regimes
are identified precisely through non-dimensionalization of the equations and definition of
precise non-dimensional groups. The reduced equations are obtained by decomposing the
infinitesimal generator into fast and slow components and applying the singular perturbation
analysis presented in Section 4. A central challenge is to compute the effective averaged
infinitesimal generator which involves inversion of the fast component operator L2. We
identify an appropriate decomposition and show how to perform inversion of L2 to obtain
an explicit expression for the reduced equation in each regime.

6.1. Limit of Strong Coupling : Derivation of Reduced Equations. We
derive the reduced equations in the regime when the coupling for the momentum exchange
between the fluid and the microstructures becomes strong ε→ 0. In this regime the momen-
tum coupling parameter satisfies Υ0 >>

√
m0kBT/`2, see equation 3.1. This corresponds

to the physical regime where the momentum exchange between the fluid and microstructure
degrees of freedom occurs rapidly. This reduction eliminates this rapid time-scale from the
dynamics of the fluid-structure system.

6.1.1. Splitting of the Infinitesimal Generator into Slow and Fast Parts.
To handle the infinitesimal generator in this regime, it is very useful to make the change of
variable in the velocity ṽ = v − v0. Specifically, we define

v0 = C−1
1 Γp (6.1)

C1 = (I + κ−1ΓΛ). (6.2)

It will be convenient to introduce

C = κ−1C1. (6.3)
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This serves to center up to terms of order ε the equation 3.13 and allows for the equations
to be put into the convenient form

dp

dt
= L

(
p− κ−1Λ[v]

)
+ αΛ[−∇XΦ(X)] + κ−1 (∇XΛ[v]) · (v) + gthm (6.4)

dṽ

dt
=
dv

dt
− dv0

dt
= −1

ε
ΥC1ṽ +

√
1

ε

√
κFthm − ακ∇XΦ(X)−∇X,pv0 ·

d

dt
(X,p) (6.5)

dX

dt
= v. (6.6)

The infinitesimal generator of this fluid-structure system is split into the parts

A = Lslow + Lfast (6.7)

where

Lslow =

[
L
(
p− κ−1Λ[v]

)
+ αΛ[−∇XΦ(X)] + κ−1 (∇XΛ[v]) · v

]
· ∇p (6.8)

−L : ∇2
p + v · ∇X (6.9)

Lfast =[−ΥC1ṽ] · ∇ṽ + κΥ : ∇2
ṽ − ακ∇XΦ(X) · ∇ṽ −A

[
∇X,pv0 ·

d

dt
(X,p)

]
. (6.10)

The slow degrees of freedom are identified as zs = (X,p) and the fast degrees of freedom as
zf = ṽ.

We split further the fast operator

Lfast = L2 + L̃2 (6.11)

with

L2 = [−ΥC1ṽ] · ∇ṽ + κΥ : ∇2
ṽ (6.12)

L̃2 = −ακ∇XΦ(X) · ∇ṽ −A
[
∇X,pv0 ·

d

dt
(X,p)

]
. (6.13)

The Einstein summation convention for repeated indices is used throughout. We denote by
A : B = AijBij . The notation A

[
∇X,pv0 · ddt (X,p)

]
is introduced to denote compactly the

terms of the infinitesimal generator associated with the ∇X,pv0 · ddt (X,p) contribution in

the ṽ equations. The L̃2 will be expressed more explicitly later. For now, we remark that
because of the stochastic contribution of the term dp/dt, the differential operator L̃2 when
fully expressed is second order in ṽ.

In the perturbation analysis, it is sufficient to know L2 to determine the stationary
probability distribution satisfying equation 5.6 for the fast degrees of freedom

Ψ(ṽ) =

√
detC

(2π)N/2
exp

[
−1

2
ṽTCṽ

]
. (6.14)

This is a Gaussian distribution. The C is given in equation 6.3. The N denotes the number
of degrees of freedom for a configuration of the microstructures. This solution intuitively cor-
responds to the Gibbs-Boltzmann distribution of zf when holding the zs degrees of freedom
fixed, see Section 5.

We split further the slow operator by

Lslow = L̄1 + L1 (6.15)

with

L̄1 =
(
L(p− κ−1Λv0) +∇XΛ : C−1

1 + κ−1(∇XΛ[v0]) · v0 − αΛ∇XΦ(X)
)
· ∇p (6.16)

+ v0 · ∇X − L : ∇2
p

L1 = Lslow − L̄1. (6.17)
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The L̄1 is obtained by averaging Lslow with respect to Ψ. This splits the operator into a part
L1 that averages to zero and a part L̄1 that may have a non-zero average. The presented
splittings into “slow” and “fast” parts provide the required decomposition of the infinitesimal
generators for our perturbation analysis.

We remark that the L̄1 operator describes the leading order dynamics for strong-coupling
case considered. That is, the no-slip dynamics may already be recovered from L̄1 without
determining the next-order terms. The next-order dynamics will be captured by the L0 term
given by 5.29.

6.1.2. Inverting the L2 Operator. To obtain the reduced stochastic process in-
cluding the ε-order term, we must determine the operator

L0 = −
∫

Ψ(L1 + L̃2)L−1
2 L1dzf . (6.18)

An often challenging step in determining L0 is to perform the inverse of L2 to find w =
−L−1

2 L1u0. While in simple cases the resulting equation L2w = −L1u0 can be solved
directly, we take a more general approach by representing the action of the inverse operator
over an orthonormal basis determined from solving a related Sturm-Louiville problem [35],
see Appendix A. To apply this approach we use that L2 has the form

L2 = −(ΥCṽ)i
∂

∂ṽi
+ Υij

∂2

∂ṽi∂ṽj
.

This can be put into an even more convenient form by choosing a change of basis for the
velocity vector ṽ so that the matrices diagonalize and the operator is the sum L2 =

∑
i L

(i)
2

where L
(i)
2 only involves independently the ith coordinate of velocity. For this purpose, we

introduce the change of variable α = C1/2ṽ, where the square root C1/2 is ensured to exist
since C is symmetric and positive semi-definite. This allows us to express the operator as

L2 = Anm (−αm∂αn + ∂αm∂αn) (6.19)

A = C1/2ΥC1/2. (6.20)

Since A is symmetric there is a unitary operator Q for a a change of basis that diagonalizes
the operator to yield D = QTAQ with Dij = δijdi, β = QTα. This gives

L2 =
∑

L
(i)
2 (6.21)

L
(i)
2 = di

(
−βi∂βi + ∂2

βi

)
. (6.22)

We remark that the cumulative change of variable used is β = QTC1/2ṽ. We find it con-
venient also to introduce Q̂ = C−1/2Q. We can now express the inverse problem in terms
of Sturm-Louiville operators, see Appendix A. This is achieved by introducing a factor to
define a new operator

L̂2 = e−
1
2
β2

L2. (6.23)

The inverse problem that needs to be solved becomes

L̂2w = f̃(β)µ(β) (6.24)

where µ(β) = e−
1
2
β2

and f̃ = −L1u0. This gives the eigenvalue problem∑
i

diµ(β)
(
−βi∂βi + ∂2

βi

)
φk(β) = λkµ(β)φk(β). (6.25)

The separated form of the differential operator allows for the solution to be represented in
the separated form φk(β) =

∏
i φki(βi) with ki = [k]i, βi = [β]i. The equation 6.25 can be
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decomposed into distinct Sturm-Louiville problems for the eigenfunctions φki(βi) by using

pi(βi) = die
− 1

2
βi

2

, see Appendix A. After some algebra, each of these eigenvalue problems
have the general form

φ′′k(β)− βφ′k(β) = λ̃kφk(β). (6.26)

The β is now simply a scalar variable. In this case, we have the well-known Sturm-Louiville
equations for the Hermite Orthogonal Polynomials [35]. The eigenvalues can be shown to
be the non-negative integers. We denote the kth Hermite Polynomial by Hk(β) and the
eigenvalue by λ̃k = k ≥ 0 with k ∈ Z+. For equation 6.25 this gives the eigenfunctions
φk(β) =

∏
iHki(βi) and the eigenvalues λk =

∑
i diλ̃ki =

∑
i diki. The action of the inverse

operator on a basis element can then be expressed as

L−1
2 φk = −

[∑
i

diki

]−1

φk. (6.27)

In the case that f̃ = −L1u0 is a polynomial of finite degree in zf the inverse is also a finite
degree polynomial. For the low degree polynomials that arise from the SELM dynamics
these results provide a particularly useful inversion procedure. For convenience, we list here
the first few Hermite Polynomials

H0(β) = 1 (6.28)

H1(β) = β (6.29)

H2(β) = β2 − 1. (6.30)

A few useful inversion formulas of which we shall make use include

L−1
2 βi = −D−1

ij βj = −d−1
i βi (6.31)

L−1
2 βiβj = − (di + dj)

−1 βiβj , i 6= j (6.32)

L−1
2

(
β2
i − 1

)
= −(2di)

−1 (β2
i − 1

)
. (6.33)

In some of the calculations it is helpful to use the tensor notation D−1
ij = d−1

i δij and to
combine equation 6.32 and 6.33 to obtain

L−1
2 (βiβj − δij) = − (di + dj)

−1 (βiβj − δij) = −Eij (βiβj − δij) (6.34)

where Eij = (di + dj)
−1.

6.1.3. Representation of the Operators under the Change of Variable
for Strong Coupling. To succinctly carry-out the calculation of the effective infinitesimal
generator, it is helpful to introduce some notation for the change of variable we use from ṽ
to β. To summarize the notation we introduced so far we had

A ≡ C1/2ΥC1/2, (6.35)

D = QTAQ (Q unitarily diagonalizes A), (6.36)

Q̂ ≡ C1/2Q, so that D = Q̂TΥQ̂ (6.37)

β ≡ Q̂T ṽ. (6.38)

To account for the drift contributions to the slow variable in a form amenable to Hermite
polynomials of order 0, 1, and 2 we introduce respectively

T ≡ v0 �

[
L
(
p− κ−1Λ[v0]

)
− αΛ[∇XΦ(X)] +∇XΛ : C−1

1 + κ−1(∇XΛ[v0]) · v0

]
(6.39)

R ≡ IN×N �B, with (6.40)

B ≡ κ−1

[
− LΛ(·) + (∇XΛ(·)) · v0 +∇X(Λv0) · (·)

]
(6.41)

S ≡ 0N×N×N � κ−1∇XΛ. (6.42)
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The notation � is introduced to “glue-together” two tensors along the first index, so that
for Aijk with 1 ≤ i ≤ N and Bijk with 1 ≤ i ≤ M we define the new tensor C = A � B by
Cijk = Aijk when 1 ≤ i ≤ N and Cijk = B(i−N)jk when N + 1 ≤ i ≤ N +M . We call � the
“glue-product.” The 0N×N×N denotes a 3-tensor of zeros and IN×N the identity 2-tensor.
The order of coordinates in 6.42 is understood to be (∇XΛ)ijk = ∂XkΛij . It will be useful
in L̃2 to introduce the modified noise term

V = 0N×N �−C−1
1 ΓLΛC−1

1 . (6.43)

where 0N×N denotes a 2-tensor of zeros. Here, C1 is the same as in 6.2. We also use

y ≡ zs = (X,p). (6.44)

This allows for the slow operator of equation 6.17 to be expressed succinctly as

L1 =
[
Rij ṽj + Sijk(ṽkṽj − ṽkṽj)

] ∂

∂yi
. (6.45)

Ultimately, this operator will be expressed in terms of a change of variable from ṽ to β. This
makes it useful to make also the change of variable for R and S, which is given by

R̂ij =RikQ̂kj Ŝijk =SilmQ̂ljQ̂mk. (6.46)

We then have for the fast operator an expression in terms of β

L1 =
[
R̂ijβj + Ŝijk(βkβj − δkj)

] ∂

∂yi
= L

(1)
1 + L

(2)
1 where (6.47)

L
(1)
1 = R̂ijβj

∂

∂yi
, L

(2)
1 = Ŝijk(βkβj − δkj)

∂

∂yi
. (6.48)

In the interest of computing the A[∇yv0 · dydt ] appearing in L̃2, it is useful to express

dy

dt
= U(ṽ) + gthm, with (6.49)

U(ṽ) = Ti +Rij ṽj + Sijk(ṽkṽj − ṽkṽj) (6.50)

〈gthm(s),gTthm(t)〉 = 0N×N �−2Lδ(t− s). (6.51)

This allows for the fast operator to be expressed in terms of β as

L̃2 =

[
− ακ∇XΦ(X)−∇yv0 · U(ṽ)

]
· ∇ṽ − V : ∆2

ṽ (6.52)

=

[
− ακ∇XΦ(X)−∇yv0 · U(ṽ)

]
· Q̂∇β − Q̂TV Q̂ : ∆2

β (6.53)

=

[
T̃i + R̃ijβj + S̃ijk(βkβj − δkj)

]
· ∇β + Ṽ : ∆2

β. (6.54)

In these expressions we define

T̃ = Q̂T (−ακ∇XΦ(X)−∇yv0 · T ) (6.55)

R̃ = Q̂T (−∇yv0 ·R) (6.56)

S̃ = Q̂T (−∇yv0 · S) (6.57)

Ṽ = −Q̂TV Q̂. (6.58)

We take the convention that the dot products above are all taken between the first compo-
nents in the gradient terms and the R, S, and T tensors. We further take the convention
that each QT multiplies along the first component index of the tensor.



18 G. TABAK AND P. J. ATZBERGER

Finally, we split L̃2 for convenience in later integral expressions into several components
that each involve a different degree polynomial in β. We label these using the convention
that a derivative contributes “negatively” to the degree while a variable in β contributes
“positively” to the degree. This gives the decomposition

L̃2 =
∑

L̃
(i)
2 (6.59)

with

L̃
(−2)
2 = Ṽij∂

2
βij L̃

(−1)
2 = T̃i∂βi

L̃
(0)
2 = R̃ijβj∂βi L̃

(1)
2 = S̃ijk(βkβj − δkj)∂βi . (6.60)

These conventions provide useful notation to succinctly express the consequences of the
change of variable from ṽ to β.

6.1.4. Computing the Effective Infinitesimal Generator for Strong Cou-
pling. To obtain the effective infinitesimal generator L̄ = L̄1 + εL0 we must still compute
L0 = −

∫
Ψ(L1 + L̃2)L−1

2 L1dz. We start by expressing the probability distribution Ψ from
equation 6.14 in terms of the variable β and use the associated Jacobian to obtain

Ψ(β) = (2π)−N/2 exp

[
−1

2
β2

]
. (6.61)

To determine the operator is useful to split into the parts L0 =
∑
ij Iij +

∑
ij Jij with

Iij = −
∫

Ψ(β)L
(i)
1 L−1

2 L
(j)
1 dβ (6.62)

Jij = −
∫

Ψ(β)L̃
(i)
2 L−1

2 L
(j)
1 dβ. (6.63)

The operators L
(i)
1 and L̃

(i)
2 are defined in equations 6.47 and 6.60. In practice, the terms

I11 and I22 are the only Iij needed to determine L0 since the Iij = 0 when i 6= j. This
is a consequence of odd degree monomials in β averaging to zero under the probability
distribution. Similarly, the only terms Jij that are non-zero and needed to determine L0 are
J−2,2, J0,2, J−1,1, J1,1.

A useful feature of our decomposition is that the operators involve terms that are at
most a degree two multinomial in the variables βi. From the inversion formulas established
in equations 6.31– 6.33 and the decomposition of L1 we have

I11 = −
∫
RN

ψ(β)R̂nmβm∂ynL
−1
2 [R̂ijβj∂yi ]dβ (6.64)

=

∫
RN

ψ(β)R̂nmβm∂yn [R̂ijD
−1
jk βk∂yi ]dβ = R̂nkD

−1
jk ∂yn [R̂ij∂yi ]. (6.65)

We used the specific inversion formula 6.31 to obtain that L−1
2 [R̂ijβj∂yi ] = [R̂ijD

−1
jk βk∂yi ].

We can reverse the change of variable to express this in terms of the original variables (X,p)
as

I11 = RnrC
− 1

2
rs QskD

−1
jk ∂yn [RipC

− 1
2

pq Qqj∂yi ] = RnrΥ
−1
rp ∂yn [Rip∂yi ] (6.66)

= RnrΥ
−1
rp R

T
pi∂

2
ynyi + Υ−1

np [∂XnBip]∂pi (6.67)

= (RΥ−1RT ) : ∇2
y + [(∇XB) : Υ−1] · ∇p (6.68)

= Υ−1 : ∇2
X + (BΥ−1BT ) : ∇2

p + [(∇XB) : Υ−1] · ∇p. (6.69)

To obtain this result, we used that R is a function of X but not p. We also used that the
first N rows of R are constant (and correspond to I). The B is defined in equation 6.41.
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We next compute I22. From equation 6.42, we denote Ŝijk = SimnQ̂mjQ̂nk. To avoid
confusion in the notation for the indices m and n, we denote this sum explicitly. This gives

I22 = −
∫
RN

ψ(β)L
(2)
1 L−1

2 L
(2)
1 dβ (6.70)

= −
∫
RN

ψ(β)Ŝijk(βjβk − δjk)∂yiL
−1
2 [Ŝlmn(βmβn − δmn)∂yl ]dβ (6.71)

=

∫
RN

ψ(β)Ŝijk(βjβk − δjk)∂yi

[∑
mn

ŜlmnEmn(βmβn − δmn)∂yl

]
dβ (6.72)

=
∑
mn

Ŝ
(2)
ijkŜ

(2)
lmnEmn

∫
RN

ψ(β)(βjβk − δjk) [(βmβn − δmn)] dβ∂2
pipl . (6.73)

The inversion formula 6.34 was used to obtain L−1
2 (βmβn − δmn) = Emn(βmβn − δmn).

Another important point to mention is that Ŝijk only yields non-zero terms when i > N .
This follows since the indices with i < N involve contributions to the X equations which
are zero and were represented using our glue-product in equation 6.42. For this reason it is
convenient to use the notation for Ŝ above, A

(2)
ijk = A

(2)

(i−N)jk for i > N .
To integrate the expressions against Ψ, we find it useful to introduce an integration by

parts in the variable βj∫
RN

ψ(β)βjβkβmβndβ (6.74)

=
1

(2π)N/2

∫
RN−1

(∫
R
βje
− 1

2
β2
j βkβmβndβj

)
e−

1
2

∑
a6=j β

2
adβ/j (6.75)

=
1

(2π)N/2

∫
RN

e−
1
2
β2
j ∂βj (βkβmβn)dβje

− 1
2

∑
a 6=j β

2
adβ/j (6.76)

= δjkδmn + δjmδkn + δjnδkm. (6.77)

The dβ/j = dβ1 · · · dβj−1dβj+1 · · · dβN denotes the differential excluding dwj . Using this
result we obtain ∫

RN

ψ(β)(βjβk − δjk)(βmβn − δmn)dβ (6.78)

= δjkδmn + δjmδkn + δjnδkm − 2δjkδmn + δjkδmn (6.79)

= δjmδkn + δjnδkm. (6.80)

This yields

I22 =
∑
mn

Ŝ
(2)
ijkŜ

(2)
lmnEmn(δjmδkn + δjnδkm)∂2

pipl (6.81)

=
∑
mn

(Ŝ
(2)
imnŜ

(2)
lmn + Ŝ

(2)
imnŜ

(2)
lnm)Emn∂

2
pipl . (6.82)

Since the terms ∂2
pipl = ∂2

plpi are equal we can write the differential operator as

I22 =
∑
mn

(Ŝ
(2)
imnŜ

(2)
lmn +

1

2
Ŝ

(2)
imnŜ

(2)
lnm +

1

2
Ŝ

(2)
lmnŜ

(2)
inm)Emn∂

2
pipl . (6.83)

This gives 1
2
Ail∂

2
pipl with a tensor A that is symmetric in the indices i, l. This allows for the

operator to be expressed as

I22 =
1

2
[σσT ]il∂

2
pipl =

1

2
σσT : ∇2

p (6.84)

where σ is a square root factor for A = σσT .
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To determine the specific form of σ, we consider for fixed indices m and n

Wilmn = Ŝ
(2)
imnŜ

(2)
lmn + Ŝ

(2)
imnŜ

(2)
lnm = S

(2)
iabS

(2)
lcdQ̂amQ̂bn(Q̂cmQ̂dn + Q̂cnQ̂dm). (6.85)

Using the form 6.85 in 6.82, we have

I22 = S
(2)
iabS

(2)
lcd

[∑
mn

Q̂amQ̂bnEmn(Q̂cmQ̂dn + Q̂cnQ̂dm)

]
∂2
pipl . (6.86)

By interchanging m and n and averaging the original and new forms of I22 we find

I22 =
1

2
S

(2)
iabS

(2)
lcd

[∑
mn

(Q̂amQ̂bn + Q̂anQ̂bm)Emn(Q̂cmQ̂dn + Q̂cnQ̂dm)

]
∂2
pipl . (6.87)

This gives

σi,{m,n} = S
(2)
iab(Q̂amQ̂bn + Q̂anQ̂bm)

√
Emn. (6.88)

We remark that the summation convention is assumed on the indices a, b, but not m,n. This
provides an explicit form for the factor A = σσT required in equation 6.88. This result is
useful since it provides an explicit form in the reduced equations for any general choice that
is made for the coupling operator Υ.

Next, we can compute the integrals Jij . Recalling the function on which the operator is
applied depends only on the slow variables, we may apply the derivative in L̃2 only on the
fast variables appearing on L−1

2 L1. We find

J−2,2 = −
∫
RN

ψ(β)L̃
(−2)
2 L−1

2 L
(2)
1 dβ (6.89)

=

∫
RN

ψ(β)Ṽij∂
2
βij

[∑
mn

ŜlmnEmn(βmβn − δmn)∂yl

]
dβ (6.90)

=

∫
RN

ψ(β)Ṽij

[∑
mn

ŜlmnEmn(δjmδni + δmiδjn)∂yl

]
dβ (6.91)

=

[∑
mn

ŜlmnEmn(Ṽnm + Ṽmn)∂yl

]
(6.92)

= −1

2
Slab

[∑
mn

(Q̂amQ̂bn + Q̂anQ̂bm)Emn(Q̂cmQ̂dn + Q̂dmQ̂cn)

]
Vcd∂yl (6.93)

= −1

2
SlabΞ

cd
abVcd∂yl = −1

2
(S : Ξ : V ) · ∇y = −1

2
(S(2) : Ξ : V ) · ∇p (6.94)

Here,

Ξcdab =
∑
mn

(Q̂amQ̂bn + Q̂anQ̂bm)Emn(Q̂cmQ̂dn + Q̂dmQ̂cn) (6.95)

The notation A : Ξ : B = AijΞ
kl
ijBkl, where the iterated sum over i, j is taken over the last

two coordinates of A, while the sum over k, l is taken over the first two coordinates of B.
We remark with this notation we can write

σσT = S(2) : Ξ : (S(2))T = κ−2∇XΛ : Ξ : (∇XΛ)T (6.96)
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Next,

J0,2 = −
∫
RN

ψ(β)L̃
(0)
2 L−1

2 L
(2)
1 dβ (6.97)

=

∫
RN

ψ(β)R̃ijβj∂βi

[∑
mn

ŜlmnEmn(βmβn − δmn)∂yl

]
dβ (6.98)

=

∫
RN

ψ(β)R̃ij

[∑
mn

ŜlmnEmn(δmiβjβn + βmβjδni)∂yl

]
dβ (6.99)

= R̃ij

[∑
mn

ŜlmnEmn(δmiδjn + δmjδni)∂yl

]
(6.100)

=
1

2
Slab

[∑
mn

(Q̂amQ̂bn + Q̂anQ̂bm)Emn(R̃mn + R̃nm)

]
∂yl (6.101)

= Slab

[∑
mn

(Q̂amQ̂bn + Q̂anQ̂bm)EmnR̃mn

]
∂yl (6.102)

=
∑
nm

σl,{m,n}ωmn∂pl = Z · ∇p (6.103)

We label the tensors

ωmn =
√
EmnR̃mn Zi =

∑
nm

σi,{m,n}ωmn. (6.104)

J−1,1 =−
∫
RN

ψ(β)L̃
(−1)
2 L−1

2 L
(1)
1 dβ =

∫
RN

ψ(β)T̃i∂βi [R̂ljD
−1
jk βk∂yl ]dβ (6.105)

=

∫
RN

ψ(β)T̃i[R̂ljD
−1
ji ∂yl ]dβ = T̃iR̂ljD

−1
ji ∂yl (6.106)

=− [RΥ−1(ακ∇XΦ(X) +∇yv0 · T )] · ∇y (6.107)

=− [Υ−1(ακ∇XΦ(X) +∇yv0 · T )] · ∇X (6.108)

− [BΥ−1(ακ∇XΦ(X) +∇yv0 · T )] · ∇p (6.109)

J1,1 = −
∫
RN

ψ(β)L̃
(1)
2 L−1

2 L
(1)
1 dβ (6.110)

=

∫
RN

ψ(β)S̃inm(βnβm − δnm)[R̂ljD
−1
ji ∂yl ]dβ = 0 (6.111)

(6.112)

The last integral is 0 since βnβm = δnm.
By combining the above results L0 = I11 + I22 + J−2,2 + J0,2 + J−1,1 + J1,1 from

equations 6.66, 6.87, 6.89, 6.97, 6.105, and 6.110 we obtain the operator

L0 = Υ−1 : ∇2
X + [(∇XB) : Υ−1] · ∇p +

1

2
M : ∇2

p (6.113)

−
(

1

2
S(2) : Ξ : V − Z +BΥ−1(ακ∇XΦ(X) +∇yv0 · T )

)
· ∇p (6.114)

− [Υ−1(ακ∇XΦ(X) +∇yv0 · T )] · ∇X (6.115)

The M = σσT + 2(BΥ−1BT ).
These results combined with the L̄1 given in equation 6.16 gives the final reduced op-

erator L0 = L̄1 + εL0. While the L̄1 operator yields the reduced stochastic process in the
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strong coupling limit given in equations 4.1 and 4.2, the terms due to effects of order ε are
captured in the operator L0.

We may be interested in the limit of L0 in the negligible mass limit (κ−1 → 0). In this
case it is important to remember to make certain assumptions about the relationship of the
non-dimensional constants κ, ε, and α. In particular, we recall the requirement κα = O(1),
which implies ε << (κα)−1. This avoids the blow-up of the potential terms in L0 when we
wish to take κ−1 → 0.

6.2. Strong Coupling with Weak Slip: Higher Order Terms in ε. We now
consider the next order correction terms in ε. These first-order terms contain contributions
that can be interpreted in the strong coupling regime as the weak leading-order slip-effects
between the fluid and structures. Such effects are known to arise in small-scale systems from
hydrophobic effects or a break-down of the continuum hypothesis (non-negligible Knudsen
number) [16, 11]. In the SELM formulation the precise form of the slip arises from the choice
of coupling operators Λ and Γ. To capture weak slip effects, these terms could possibly be
used to incorporate leading-order slip effects for analysis or for computational simulations
without suffering the rapid dynamics over short time-scales associated with the strong cou-
pling.

For the SELM formulation, it is convenient to express the effective “slip terms” θp and
θX in Section 4.1 by decomposition into the parts

θp = Θp + Θp
thm (6.116)

θX = ΘX + ΘX
thm. (6.117)

These were computed using the non-dimensional conventions. It is most convenient to com-
bine the dimensions to the resulting non-dimensional ε-order terms, as dictated by the units
of each equation. That is, we multiply

Θp = Θp
0Θ̄p, ΘX = ΘX

0 Θ̄X . Θp
thm = Θp

0Θ̄p
thm, ΘX

thm = ΘX
0 Θ̄X

thm (6.118)

where

Θp
0 =

(
m0

τk`2

)
, ΘX

0 =

(
`

τk

)
. (6.119)

The non-dimensional ε-order corrections to the drift are given by

Θ̄p = ε

(
(∇XB) : Υ−1 − 1

2
S(2) : Ξ : V + Z −BΥ−1(ακ∇XΦ(X) +∇yv0 · T )

)
(6.120)

Θ̄X = ε
(
−Υ−1(ακ∇XΦ(X) +∇yv0 · T )

)
. (6.121)

In our notation, the constituent terms Θ̄ are understood to have no dimensions. The non-
dimensional ε-order corrections to the noise are given by:〈

Θ̄p
thm(s̄)(Θ̄p

thm)T (t̄)
〉

= ε
(
σσT + 2(BῩ−1BT )

)
δ(t̄− s̄), (6.122)〈

Θ̄X
thm(s̄)(Θ̄X

thm)T (t)
〉

= 2εῩ−1 δ(t̄− s̄). (6.123)

The Ξ is given in equation 6.95, Z is given in equation 6.104, and σ is given in equation 6.96.
The T , B, S, and V are defined in equations 6.39, 6.41, 6.42, and 6.43. A derivation of
these equations is given in Section 6.1. In the notation A : Ξ : B = AijΞ

kl
ijBkl, where the

indices i, j iterate through the last two coordinates of A, while k, l iterate through the first
two coordinates of B.
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6.3. Limit of Negligible Excess Mass : Derivation of Reduced Equa-
tions. To obtain the reduced equations in the limit of negligible excess mass, we consider
the limit κ → ∞, with the limit ε → 0 assumed to be already taken for simplicity. This
corresponds to the physical regime with m << m0 = ρ`3 with the coupling very strong.

We begin with the L̄1 operator, which describes the dynamics for the limit ε→ 0 taken.
This operator is given by equation 6.16. In the limit κ−1 → 0 we find

L̄1 = (Lp +∇XΛ : I − Λ∇XΦ(X)) · ∇p + v0 · ∇X − L : ∇2
p (6.124)

Equations 6.1–6.2 simplify to

v0 = Γu. (6.125)

We write

∇XΛ : I = tr[∇XΛ] = ∇X · Λ. (6.126)

We obtain 4.13–4.15 by adding the units to the non-dimensional variables and writing the
equation in its dynamical form.

6.3.1. Special Case of Stokes Drag. In the special case when the Stokes drag
is used for coupling Υ = Υ0I and C = C0I, the expressions for the strong coupling regime
simplify. In this case, we have D = Υ0C0I and Q = I. This gives that E = 1

2
Υ−1

0 C−1
0 I.

The reduced equations are given by

1

2
σσT = (Υ0C0κ

2)−1[(∇XΛ) : (∇XΛ)T ] : ∇2
p (6.127)

σi,{m,n} =
√

2(Υ0C0κ
2)−1/2(∇XΛ)inm. (6.128)

We note that B, S, and σ are proportional to κ−1, and thus appear only when inertial
contributions are important. We see that even in the case considered here the contributions
due to inertial terms in higher order are non-trivial. The inertial terms contribute at first
order in ε both to the effective total momentum equations and to the configuration equations.

Consider Φ(X) = 0 for simplicity. Taking κ−1 → 0, we obtain the contribution with no
inertial dynamics:

L0 = Υ−1
0 [tr∇2

X] + Υ−1
0 (∇yv0 · T ) · ∇X. (6.129)

6.4. Limit of Rapid Hydrodynamic Relaxation : Derivation of Reduced
Equations. We now consider the regime where the hydrodynamics relaxes rapidly relative
to the time-scale of the microstructure motions. We consider the regime with small Reynold’s
number Re = ρLU/µ � 1, where U is a characteristic flow velocity, L = ` a characteristic
length-scale, and µ the fluid viscosity.

To handle the important incompressibility constraint on the fluid, we now introduce a
projection operator approach to handle the Lagrange multiplier λ in

ρ
du

dt
= Lu− Λ∇XΦ(X) + kBT∇X · Λ + fthm + λ (6.130)

dX

dt
= Γu. (6.131)

The λ acts as a constraint force density that enforces ∇·u = 0. This can be written in terms
of a projection operator as

λ = −(I − ℘)(Lu− Λ∇XΦ(X) + kBT∇X · Λ + fthm). (6.132)

The projection operator is given by ℘ = I −∇∆−1∇·. This gives

ρ
du

dt
= ℘[Lu− Λ∇XΦ(X) + kBT∇X · Λ + fthm] (6.133)

dX

dt
= Γu. (6.134)
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We assume that ℘L = L℘ and make use of the properties ℘2 = ℘ and ℘ = ℘T . We can
express this in non-dimensionalized form with ε = Re as

du

dt
= ℘

[
1

ε
Lu− Λ∇XΦ(X) +∇X · Λ +

√
1

ε
fthm

]
(6.135)

dX

dt
= Γu. (6.136)

The infinitesimal generator is given by

A =
1

ε
[℘Lu + ε℘(−Λ∇XΦ(X) +∇X · Λ)] · ∇u −

1

ε
(℘L) : ∇2

u + [Γu] · ∇X. (6.137)

To apply our perturbation analysis introduced in Section 4, we split the operator as

A = Lslow + Lfast (6.138)

with

Lslow = L̄1 + L1 (6.139)

Lfast = L2 + L̃2. (6.140)

In this regime we have

L̄1 = 0 (6.141)

L1 = (Γu) · ∇X (6.142)

L2 = (℘Lu) · ∇u − (℘L) : ∇2
u (6.143)

L̃2 = ℘(−Λ∇XΦ(X) +∇X · Λ) · ∇u. (6.144)

We remark that each of the coefficients of L2 and L̃2 are in the range of ℘. Using the linearity
of ℘ and L we may interpret the derivatives ∇u as ∇℘u and complete the reduction with the
fast variable in the space u ∈ S. The S denotes our space of solenoidal vector fields. Given
the specific form of L2, the inverse operator can be expressed as

L−1
2 u = L−1u, for u ∈ S. (6.145)

This allows us to carry out readily the inverse

L1L
−1
2 L1 = L1L

−1
2 [(Γu) · ∇X] = L1[(ΓL−1u) · ∇X] (6.146)

= (Γu) · ∇X[(ΓL−1u) · ∇X], for u ∈ S. (6.147)

We still need to evaluate
∫
u∈S ψ(u)L1L

−1
2 L1. An important feature is that the covariance

structure of ψ is the identity in the space S because the operator coefficients on the first and
second order terms in L2 are identical. It is useful to rewrite the inverse as

L1L
−1
2 L1 = (Γu) · ∇X[(ΓL−1u) · ∇X] (6.148)

= ∇X · {(Γu)[(ΓL−1u) · ∇X]} − (∇X · (Γu))[(ΓL−1u) · ∇X]. (6.149)

The averaging with respect to ψ(u) can be computed readily in this form by passing the
integral onto u inside each term. From the covariance structure of ψ we have the useful
identities

∫
uiujψ(u)du = δij for u ∈ S. By using these identities and that Γ = ΛT , we have∫

u∈S
ψ(u)L1L

−1
2 L1 = ∇X · [(ΓL−1℘Λ) · ∇X]− (ΓL−1℘∇X · Λ) · ∇X (6.150)

= [∇X · (ΓL−1℘Λ)] · ∇X + (ΓL−1℘Λ) : ∇2
X − (ΓL−1℘∇X · Λ) · ∇X. (6.151)
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We can evaluate the remaining integral term in L0 by∫
u∈S

ψ(u)L̃2L
−1
2 L1 (6.152)

=

∫
u∈S

ψ(u)℘(−Λ∇XΦ(X) +∇X · Λ) · ∇u[(ΓL−1u) · ∇X] (6.153)

=

∫
u∈S

ψ(u)[(ΓL−1℘(−Λ∇XΦ(X) +∇X · Λ)) · ∇X] (6.154)

= (ΓL−1℘(−Λ∇XΦ(X) +∇X · Λ)) · ∇X. (6.155)

For the effective infinitesimal operator L̄ = L̄1 + εL0, this gives

L̄ = −ε

(∫
u∈R(℘)

ψ(u)L̃2L
−1
2 L1 +

∫
u∈R(℘)

ψ(u)L1L
−1
2 L1

)
(6.156)

= −ε
{

(ΓL−1℘[−Λ∇XΦ(X) +∇X · Λ]) · ∇X (6.157)

+ [∇X · (ΓL−1℘Λ)] · ∇X + (ΓL−1℘Λ) : ∇2
X − (ΓL−1℘∇X · Λ) · ∇X

}
(6.158)

= ε

{[
Γ(−L)−1℘[−Λ∇XΦ(X)] + [∇X · (Γ(−L)−1℘Λ)]

]
· ∇X (6.159)

+ (Γ(−L)−1℘Λ) : ∇2
X

}
. (6.160)

By letting H̃SELM = −ΓL−1℘Λ, we can express this more compactly as

L̄ = ε

{[
H̃SELM(−∇XΦ(X)) +∇X · H̃SELM

]
· ∇X + H̃SELM : ∇2

X

}
. (6.161)

By converting expressions to have physical units, the reduced stochastic processes in the
small Reynold’s number limit is

dX

dt
= HSELM[−∇XΦ(X)] + (∇X ·HSELM)kBT + hthm (6.162)

HSELM = Γ(−L)−1℘Λ (6.163)

〈hthm(s),hTthm(t)〉 = 2kBTHSELMδ(t− s). (6.164)

The properties of ℘ allow us to write HSELM = Γ℘T (−L)−1℘Λ. This provides a convenient
way to factor the hydrodynamic coupling tensor and generate stochastic driving fields. In
particular, HSELM = QTQ with Q = Γ℘T

√
(−L)−1.

7. Conclusions. We have shown how to systematically reduce in different physical
regimes the inertial dynamics of fluid-structure interactions subject to thermal fluctuations.
We have shown in the limit of strong coupling between the fluid and microstructures impor-
tant terms appear in the fluid equations that account for inertial effects. We have further
shown that in the limit of small excess mass of immersed bodies relative to the displaced
fluid, important thermal drift terms arise in the fluid equations arising from the general-
ized coordinates used in the mechanics (non-conjugate configuration and momentum coordi-
nates). In the over-damped limit where the hydrodynamics relaxes rapidly on the time-scale
of the microstructure motion, we have shown how the approximate fluid-structure coupling
operators contribute to the effective hydrodynamic tensor that couples the motions of the
microstructures. The presented reduction approach and reduced equations allow for remov-
ing sources of numerical stiffness and provide a promising approach for the development
of efficient computational methods for simulations of fluid-structure interactions subject to
thermal fluctuations.
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Appendix A. Inverting L2 : A General Method based on Sturm-Louiville
Theory.

In the stochastic reduction procedure of Section 4 the operator L2 needs to be inverted.
In general, this presents one of the most significant challenges in determining the form
of the reduced equations. Interestingly in the regimes we consider for the SELM stochastic
dynamics, the L2 operators can be related to Sturm-Louiville problems [35] and the inversions
can be represented readily over a finite sum over elements of an orthonormal basis of known
functions. We first develop this general theory and then show how it can be used as an
effective method to invert the L2 operators that arise in practice for the SELM stochastic
dynamics.

The L2 is an infinitesimal generator of a stochastic process and second order differential
operator. We refer to it as a Sturm-Louiville operator (for short a SL-operator) if it has the
specific form

L2 = − ∂

∂z

[
p(z)

∂

∂z

]
+ q(z) (A.1)

where p(z) > 0 and q(z) ≥ 0. In practice, not all of the infinitesimal generators we encounter
will be SL-operators directly but with a change of variable and other related adjustments
can be related to an operator of this form. The inverses we encounter are typically of the
form w = −L−1

2 L1u which amounts to finding a solution to the problem

L2w = f(z). (A.2)

As we shall discuss the functions f(z) that arise in practice often have special properties
that we can utilize. The Sturm-Louiville property has the important consequence that an
orthonormal basis of eigenfunctions can be constructed for this operator by solving

L2φn = λnµ(z)φn. (A.3)

The µ is some fixed function with µ(z) > 0 which serves to give a weighted inner product

〈g(z), h(z)〉µ =

∫
g(z)h(z)µ(z)dz. (A.4)

Since φn are eigenfunctions of L2 in the sense of equation A.3, it is useful to express the
inversion problem as

L2w = f̃(z)µ(z) (A.5)
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where f̃(z) = f(z)/µ(z). The orthonormal basis can then be used to represent both w and
f̃ as

f̃(z) =
∑
k

f̃kφk(z) (A.6)

w(z) =
∑
k

wkφk(z) (A.7)

f̃k = 〈f̃(z), φk(z)〉µ (A.8)

wk = 〈v(z), φk(z)〉µ. (A.9)

Plugging this into equation A.5 gives

〈L2u, φk(z)〉 = wkλk = f̃k. (A.10)

The 〈·, ·〉 without the subscript denotes the usual unweighted L2-inner-product. For the
inverse w = L−1

2 f , this provides the following representation

w(z) =
∑
k

wkφk(z) (A.11)

wk = f̃k/λk. (A.12)

Appendix B. Table of constants.
Value Description

Υ0 Fluid-structure momentum coupling constant.
ρ Density of the fluid.
` Characteristic structure length-scale.
m Excess mass of a structure.

m0 = ρ`3 Mass of fluid in the volume `3.
kBT Boltzmann’s constant × temperature.

τv = Υ0/m Relaxation time-scale of the structure velocity.

τk =
√
m0`2/kBT Characteristic diffusion time-scale.

κ = ρ`3/m = m0/m Fluid-structure density ratio.
ε = τv/τk Inertial vs diffusive time-scale ratio.

α = Φ0/kBT Scale of potential energy w.r.t. thermal energy.


