
Deliver Your Java Application in One-JAR™!

Copyright 2004-2010 by P. Simon Tuffs, All Rights Reserved. http://www.simontuffs.com

sourceforge.net/one-jar

One-JAR Blog

One-JAR v0.97

Introduction

Background

Quick Start

Ant Taskdef

One-Jar Appgen

SDK

Downloads

Build Tree

Source Code

0.98 Pre-Release

Options & Properties

Manifest Attributes

Resource Loading

Native Libraries

Build Tools

Ant

Ant Example

Maven

Maven Example

Frameworks

Spring Framework

Guice

Support

More Information

Releases

Key Features

FAQ

License

Acknowledgements

Test Results

Other Documentation

IBM DeveloperWorks

Version 0.96

Version 0.95

<<Background Home Print Layout Ant Taskdef>>

Quick Start

There are various approaches to getting started with One-JAR. Ant users will find the

"Application Generator Approach" most useful, Maven users the "Maven Approach",

command-line tool users may prefer the "Command Line Approach".

Application Generator Approach

This approach provides you with a complete Eclipse/Ant application directory, which you can

use as a starting point for your own One-JAR application. The application generator is

driven by a template built into the one-jar-appgen.jar file (see one-jar-appgen)

Download one-jar-appgen-0.97.jar1.

Generate application, build, and run it.

$ java -jar one-jar-appgen-0.97.jar

Enter project path (project name is last segment): c:/tmp/test-one-jar
Enter java package name: com.example.onejar

$ cd c:/tmp/test-one-jar
$ ant
$ cd build

$ java -jar test-one-jar.jar

test_one_jar main entry point, args=[]
test_one_jar main is running
test_one_jar OK.

2.

Add source code to the src directory, library jars to the lib directory, and rebuild.

Command-Line Approach

The use of Ant is not required: a One-JAR archive is simple to build using just the jar tool

using the following steps.

Create a working directory to act as the "root" of the one-jar with main, lib

sub-directories.

1.

Copy your main application jar file into root/main and library dependencies into

root/lib

2.

Unjar the one-jar-boot-0.97.jar file into the root directory, and delete the "src"

tree

3.

Edit the boot-manifest.mf file and add a new line: One-Jar-Main-Class:

your-main-class

4.

cd root; jar -cvfm ../one-jar.jar boot-manifest.mf .5.

You should end up with a One-JAR archive which mirrors the "root" tree:

Deliver Your Java Application in One-JAR™ ! http://one-jar.sourceforge.net/index.php?page=getting-st...

1 of 2 08/22/2011 09:12 AM

one-jar.jar
| META-INF/MANIFEST.MF
| .version
| com/simontuffs/onejar
 | Boot.class, ...etc.
| doc/one-jar-license.txt
| main/main.jar
| lib/a.jar ...etc.

Thats it: no code to write, just a directory tree, some copy operations, and a file edit. The

One-JAR classloader discovers the libraries and main code based on their position in the

archive, and ignores any other Jar files should you need to embed archives which should

not be on the classpath. Embedding the one-jar-license.txt ensures compliance with

the BSD-style license.

Maven Approach

There is a Maven2 plugin for One-JAR. It is easy to use for Maven projects. Please consult

the documentation here: http://code.google.com/p/onejar-maven-plugin/

Ant Taskdef Approach

Detailed use of the One-JAR Ant Taskdef is discussed here. Note that the one-jar-appgen

approach uses the Ant taskdef.

SDK Approach

Use of the (deprecated) SDK is discussed here

If you like One-JAR then you might want to check out some of the other Open-Source projects developed by

simontuffs.com:

Deliver Your Java Application in One-JAR™ ! http://one-jar.sourceforge.net/index.php?page=getting-st...

2 of 2 08/22/2011 09:12 AM

