Spring 2015

INSTRUCTOR	Paul J. Atzberger http://atzberger.org/#Teaching	<i>Office</i> : 6712 South Hall <i>Office Hours</i> : TR 9:30am – 11:00am	
CLASS TIMES	TR 11:00am – 12:15pm. GIRV 1115.		
TA HOURS	John Kaminsky, Tuesdays, 4:00pm-5:00pm in South Hall 6432T (graduate tower). Mondays, 5:00pm-7:00pm in Mathlab, South Hall (ground floor).		
DESCRIPTION	Computational approaches play an important role in many fields ranging from basic scientific research to the design of financial products. This class will discuss both the mathematical foundations and the practical implementation of modern numerical methods. Examples will also be discussed from applications areas. More information is on the website.		
PREREQUISITES	Calculus, Linear Algebra, Differential Equations, and experience programming.		
TEXTBOOKS	Numerical Analysis 9th Edition by R. L. Burden and J. D. Faires.		
GRADING	Homework30%Midterm30%Take-home Final Exam40%		
POLICIES	Assignments will be assigned in class and posted on the course website. Prompt submission of homeworks will be required. While no late homework will be accepted, one missed homework will be allowed without penalty. While it is permissible for you to discuss materials with classmates, the submitted homework must be your own work.		
EXAMS	A midterm exam will be on Tuesday, April 21 st . Final exam/project will be at the end of the quarter.		
TOPICS	 Boundary Value Problems for Ordinary Linear Problems Iterative Methods Non-linear Problems Steepest Descent Newton Methods for Systems Shooting Methods Rayleigh-Ritz Method 	Differential Equations (ODEs)	
	 Eigenvalue Methods Linear Algebra Background Standard Forms Geršgorin Theorem 		

- Power Method
- Householder's Method
- QR Decomposition and Algorithm
- Singular Value Decomposition (SVD)

Solving Partial Differential Equations (PDEs)

- Parabolic PDEs
- Elliptic PDEs
- Hyperbolic PDEs
- Finite Difference Methods
- \circ Crank-Nicolson Method
- Lax-Wendroff Method
- o Consistency, Accuracy, Stability of Methods
- Courant-Friedrichs-Lewy (CFL) Condition
- Lax–Richtmyer Theorem
- Finite Element Methods
- o Lagrange and Hermite Elements
- Lax–Milgram Theorem

WEBSITE http://atzberger.org/#Teaching