Finite Difference Methods
Problem Set

Professor: Paul J. Atzberger

Exercises

1. (Order of Accuracy) For the diffusion equation u; = u,, show that the
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is first order in time and second order in space.

2. (Stability) For the diffusion equation u; = u,,, show using von Neumann
Analysis v" — g"e™’ that the scheme in problem 1 is stable provided s < 1/2
where s = k/h>.

3. (Stability) For the diffusion equation u; = wu,, show using von Neumann
Analysis that the Crank-Nicolson scheme
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is unconditionally stable.



4. (Stability) For the advection equation w; = cu,, determine using von
Neumann Analysis v, — ¢"e™ the conditions on s = k/h and ¢ under
which the scheme below is stable. Show the scheme is unstable when ¢ < 0
for any choice of s. Show the scheme is stable when ¢ > 0 provided s taken
sufficiently small.
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5. (Stability) For the advection equation u; = cu,, show using von Neumann
Analysis v, — ¢g"e"™? that the Lax-Wendroff scheme below is stable provided
s = k/h is taken sufficiently small.
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6. (Order of Accuracy) For the advection equation u; = cu,, show that the
Lax-Wendroft scheme in Problem 5 is second order accurate.

7. (Bonus Problem: Order of Accuracy) Show that the (forward-backward)
MacCormack scheme
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is a second-order accurate scheme for the one-way wave equation u;+au,+f =
0. Show that for f = 0 it is identical with the Lax-Wendroff scheme.



