Name: \qquad

Practice Problems
 Professor: Paul J. Atzberger
 Introduction to Numerical Analysis, 104A

Scoring:

Problem1: \qquad

Problem2: \qquad

Problem3: \qquad

Problem4: \qquad

Directions: Answer each question carefully and be sure to show all of your work. You are permitted to use a calculator but please be sure to show intermediate steps in your calculations. If you have any questions please feel free to ask.

Problem 1: Compute to four decimal places the absolute and relative errors when approximating p by the value p^{*}. Also, state the number of significant digits.
a) $p=e$ by $p^{*}=2.718$
b) $p=e^{-1}$ by $p^{*}=1839 / 5000$

Problem 2: Consider the following two formulas for computing a value p. Formula 1: $p_{1}^{*}=\left(\left(e^{1} \cdot \pi+\sqrt{6} \cdot \pi\right)+e^{1} \sqrt{6}\right)+6$.

Formula 2: $p_{2}^{*}=(\sqrt{6}+\pi) \cdot\left(\sqrt{6}+e^{1}\right)$.
The exact value is approximately $p=28.89344$.
(a) To model round-off errors use 2-digit-chopping for each formula to compute the numerical value p^{*}. Please be sure to show your intermediate steps and your work carefully.
(b) What is is the absolute error and the relative error of the value p^{*} obtained from each formula?
(c) What is the number of significant digits in your final solution using each formula?
(d) For numerically computing p which of the formulas is more robust to round-off errors? Why?

Problem 3: Compute an approximation after three iterations of the bisection method to the solution of $f(x)=x^{3}-x^{2}+2=0$ when starting with $a=-3$ and $b=3$.
(a) State the relative and absolute errors for the root $x=-1$.
(b) At most how many iterations would be required to approximate using the bisection method the root with an accuracy of 10^{-2} ?

Problem 4: For the following fixed-point iteration methods $x_{n+1}=g\left(x_{n}\right)$ determine the fixed point and the rate of convergence. Use that for x_{n} close to the fixed-point p we have $\left|x_{n}-p\right| \approx k\left|x_{n-1}-p\right| \approx k^{n}\left|x_{0}-p\right|$ with $\left|g^{\prime}(x)\right|<k$.
a) $g(x)=x-\frac{1}{100}\left(x^{3}-2 x\right)$, with $\left|x_{0}\right|<1$.
b) $g(x)=x-\frac{\left(x^{2}-2\right)}{2 x}$, with $\left|x_{0}\right|<2$.

