Homework 2

Machine Learning: Foundations and Applications
Paul J. Atzberger MATH CS 120

1. Consider a random variable X that is non-negative satisfying the inequality $\operatorname{Pr}[X>t] \leq$ $c \exp \left(-2 m t^{2}\right)$ for all $t>0$. Show that $E\left[X^{2}\right] \leq \log (c e) / 2 m$.

Hints: Do this by using that $E\left[X^{2}\right]=\int_{0}^{\infty} \operatorname{Pr}\left[X^{2}>t\right] d t=\int_{0}^{u} \operatorname{Pr}\left[X^{2}>t\right] d t+\int_{u}^{\infty} \operatorname{Pr}\left[X^{2}>t\right] d t$ for any choice of $u>0$. For the first term, use that probabilities are always bounded by one. Optimize the obtained bound over u.
2. Consider a game where we see coin flips and need to decide which of two coins A and B generated the data. Consider the case when the coins have probabilities of heads $p_{A}=1 / 2+\gamma$ and $p_{B}=1 / 2-\gamma$ with $\gamma=0.1$. Suppose we use the strategy of attributing the coin based on a sample of m flips if we saw that most were heads or most were tails. At most how many coin tosses m do we need to observe so that our strategy would identify the correct coin 99% of the time? Hint: Use Hoeffding's Inequality to get an upper bound on m so that $\operatorname{Pr}\left[\left|\frac{1}{m} S_{m}^{(i)}-p_{i}\right| \geq t\right] \leq 2 \exp \left(-2 t^{2} m\right)<\delta=0.01$, where $i \in\{A, B\}$.
3. Consider a family of functions $f^{(m)}: \mathcal{X}^{m} \rightarrow \mathbb{R}$ on a sample space \mathcal{X} and a sequence c_{i} with $\sum_{i=1}^{\infty} c_{i}^{2}<\infty$. Suppose that $f^{(m)}$ has bounded dependence on parameters in the sense

$$
\begin{equation*}
\left|f^{(m)}\left(x_{1}, \ldots, x_{i}, \ldots, x_{m}\right)-f^{(m)}\left(x_{1}, \ldots, x_{i}^{*}, \ldots, x_{m}\right)\right| \leq c_{i} \tag{1}
\end{equation*}
$$

For short-hand we denote $f(s)=f^{(m)}\left(x_{1}, \ldots, x_{i}, \ldots, x_{m}\right)$.
Consider the case when $f^{(m)}=(1 / m) \sum_{k=1}^{m} X_{k}$ for i.i.d random variables $X_{i} \in \mathcal{X}$ with $\left|X_{i}\right| \leq C$. Show this has bounded dependence. How many samples m do we need so that the values $f(S)$ and its mean value $E[f(S)]$ are within the distance 0.1 and this occurs 99% of the time? In other words, establish the following bound and find for what m we have

$$
\begin{equation*}
\operatorname{Pr}[|f(S)-E[f(S)]| \geq \epsilon] \leq 2 \exp \left(-2 \epsilon^{2} / \sum_{i=1}^{m} c_{i}^{2}\right)<\delta, \tag{2}
\end{equation*}
$$

where $\delta=0.01$ and $\epsilon=0.1$. Hint: Use McDiarmids Inequality with $c_{i}=C / i$.
4. Consider k Nearest Neighbor (k-NN) classifiers. Suppose the input data space has features from the unit cube in d-dimensional space and there are two classes we want to distinguish. Suppose that in order to capture well the classes, we need a prototype within a distance at most ϵ of any given input $x \in[0,1]^{d}$. Give an estimate of the number m of training samples (prototypes) needed to ensure this distance requirement holds. Consider here the case of the Euclidean distance. How does the number m of prototypes scale with dimension d ? How many samples m do you need when $\epsilon=10^{-1}$ and $d=100$ if you use the Euclidean distance?
5. Suppose for a data point x_{0} in d dimensional space the conditional probability of a neighboring data point X is distributed uniformly within the unit sphere. Compute the probability density
of $\rho(r)$ where $\operatorname{Pr}\left\{r_{1} \leq\left|X-x_{0}\right| \leq r_{2}\right\}=\int_{r 1}^{r 2} \rho(r) d r$. Show as $d \rightarrow \infty$ for any $\epsilon>0$ that $\operatorname{Pr}\left\{1-\epsilon \leq\left|X-x_{0}\right| \leq 1\right\} \rightarrow 1$. Give an upper bound on $\left|\operatorname{Pr}\left\{1-\epsilon \leq\left|X-x_{0}\right| \leq 1\right\}-1\right|$ in terms of ϵ and d. This result shows that when d corresponds to a high dimensional space we have that the neighboring data points tend to distribute near to the surface of the sphere. For $d=100$ what is the probability that the neighbor X for x_{0} is within the distance $r=10^{-1}$? For $\epsilon=10^{-1}$ how large must d be for $\operatorname{Pr}\left\{1-\epsilon \leq\left|X-x_{0}\right| \leq 1\right\}=99 \%$? Explain briefly what implications this might have for $\mathrm{k}-\mathrm{NN}$ and other methods.

