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1. Consider a random variable X that is non-negative satisfying the inequality Pr [X > t] ≤
c exp(−2mt2) for all t > 0. Show that E[X2] ≤ log(ce)/2m.

Hints: Do this by using that E[X2] =
∫∞
0 Pr[X2 > t]dt =

∫ u
0 Pr[X2 > t]dt+

∫∞
u Pr[X2 > t]dt

for any choice of u > 0. For the first term, use that probabilities are always bounded by one.
Optimize the obtained bound over u.

2. Consider a game where we see coin flips and need to decide which of two coins A and B
generated the data. Consider the case when the coins have probabilities of heads pA = 1/2+γ
and pB = 1/2 − γ with γ = 0.1. Suppose we use the strategy of attributing the coin based
on a sample of m flips if we saw that most were heads or most were tails. At most how
many coin tosses m do we need to observe so that our strategy would identify the correct
coin 99% of the time? Hint: Use Hoeffding’s Inequality to get an upper bound on m so that

Pr[| 1mS
(i)
m − pi| ≥ t] ≤ 2 exp(−2t2m) < δ = 0.01, where i ∈ {A,B}.

3. Consider a family of functions f (m) : Xm → R on a sample space X and a sequence ci with∑∞
i=1 c

2
i <∞. Suppose that f (m) has bounded dependence on parameters in the sense

|f (m)(x1, . . . , xi, . . . , xm)− f (m)(x1, . . . , x
∗
i , . . . , xm)| ≤ ci. (1)

For short-hand we denote f(s) = f (m)(x1, . . . , xi, . . . , xm).

Consider the case when f (m) = (1/m)
∑m

k=1Xk for i.i.d random variables Xi ∈ X with
|Xi| ≤ C. Show this has bounded dependence. How many samples m do we need so that the
values f(S) and its mean value E[f(S)] are within the distance 0.1 and this occurs 99% of
the time? In other words, establish the following bound and find for what m we have

Pr[|f(S)− E[f(S)]| ≥ ε] ≤ 2 exp

(
−2ε2/

m∑
i=1

c2i

)
< δ, (2)

where δ = 0.01 and ε = 0.1. Hint: Use McDiarmids Inequality with ci = C/i.

4. Consider k Nearest Neighbor (k-NN) classifiers. Suppose the input data space has features
from the unit cube in d-dimensional space and there are two classes we want to distinguish.
Suppose that in order to capture well the classes, we need a prototype within a distance at
most ε of any given input x ∈ [0, 1]d. Give an estimate of the number m of training samples
(prototypes) needed to ensure this distance requirement holds. Consider here the case of the
Euclidean distance. How does the number m of prototypes scale with dimension d? How
many samples m do you need when ε = 10−1 and d = 100 if you use the Euclidean distance?

5. Suppose for a data point x0 in d dimensional space the conditional probability of a neighboring
data point X is distributed uniformly within the unit sphere. Compute the probability density
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of ρ(r) where Pr{r1 ≤ |X − x0| ≤ r2} =
∫ r2
r1 ρ(r)dr. Show as d → ∞ for any ε > 0 that

Pr{1 − ε ≤ |X − x0| ≤ 1} → 1. Give an upper bound on |Pr{1 − ε ≤ |X − x0| ≤ 1} − 1| in
terms of ε and d. This result shows that when d corresponds to a high dimensional space we
have that the neighboring data points tend to distribute near to the surface of the sphere. For
d = 100 what is the probability that the neighbor X for x0 is within the distance r = 10−1?
For ε = 10−1 how large must d be for Pr{1− ε ≤ |X − x0| ≤ 1} = 99%? Explain briefly what
implications this might have for k-NN and other methods.
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