Homework 3

Machine Learning: Foundations and Applications
Paul J. Atzberger MATH CS 120

1. (Kernel-Ridge Regression) Consider the problem of constructing a model that approximates the relation $y=f(x)$ from samples obscured by noise $y_{i}=f\left(\mathbf{x}_{i}\right)+\xi_{i}$, where ξ_{i} is Gaussian. As discussed in lecture when using Bayesian methods with a Gaussian prior this leads to the optimization problem

$$
\min _{\mathbf{w}} J(\mathbf{w}) \text {, where } J(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{m}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\frac{1}{2} \gamma \mathbf{w}^{T} \mathbf{w} .
$$

(a) Show that the solution weight vector \mathbf{w} always can be expressed in the form $\mathbf{w}=$ $\sum_{i=1}^{m} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)$. Hint: Compute the gradient $\nabla_{\mathbf{w}} J=0$.
(b) Consider the design matrix $\boldsymbol{\Phi}=\left[\phi\left(\mathbf{x}_{\mathbf{1}}\right), \ldots, \phi\left(\mathbf{x}_{\mathbf{m}}\right)\right]^{T}$ defined by the data so we can express $\mathbf{w}=\boldsymbol{\Phi}^{T} \boldsymbol{\alpha}$. Substitute this into the optimization problem to obtain the dual formulation in terms of minimizing over a function $J(\boldsymbol{\alpha})$. Express this in terms of the design matrix $\boldsymbol{\Phi}$ and Gram matrix K, where $K_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$.
(c) Compute the gradient $\nabla_{\boldsymbol{\alpha}} J=0$ to derive equations for the solution of the optimization problem. Express the linear equations for the solution $\boldsymbol{\alpha}$ in terms of the Gram matrix K.
(d) Explain briefly the importance of the term γ and role it plays in the solution.
(e) Suppose we consider the regression problem to be over all functions $f \in \mathcal{H}$ in some Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} with kernel k and use regularization $\|f\|_{\mathcal{H}}^{2}$. This corresponds to the optimization problem

$$
\min _{f \in \mathcal{H}} J[f], \text { with } J[f]=\frac{1}{2} \sum_{i=1}^{m}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\frac{1}{2}\|f\|_{\mathcal{H}}^{2} .
$$

Show the solution to this optimization problem yields the same result as in the formulation above using $\boldsymbol{\alpha}$. Hint: Use the representation results we discussed in lecture for objective functions of the form $J[f]=L\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right)+G\left(\|f\|_{\mathcal{H}}\right)$.
2. Consider kernel regression in the case when $k(\mathbf{x}, \mathbf{z})=\exp \left(-c\|\mathbf{x}-\mathbf{z}\|^{2}\right)$. Compute the kernelridge regression for $f(x)=\sin (x)$ in the specific case of $y_{i}=\sin \left(x_{i}\right)$ with $x_{i}=2 \pi(i-1) / m$ for $i=1,2, \ldots, m$. Study the L_{2}-error (least-squares error) $\epsilon_{\text {err }}=\int_{0}^{2 \pi}\left(\mathbf{w}^{T} \phi(z)-f(z)\right)^{2} d z$ when estimated by $\tilde{\epsilon}_{\text {err }}=\frac{2 \pi}{N} \sum_{\ell=1}^{N}\left(\mathbf{w}^{T} \phi\left(z_{i}\right)-f\left(z_{i}\right)\right)^{2}$. To try to approximate the integral well take $z_{i}=2 \pi(i-1) / N$ with large $N \gg m$, say $N=10^{5}$. Use this to construct a log-log plot of $\tilde{\epsilon}_{\text {err }}$ vs m when m varies over the range, say $10,10 \times 2^{1}, 10 \times 2^{2}, \ldots 10 \times 2^{9}$. Plot on the same figure the errors $\tilde{\epsilon}_{\text {err }}$ vs m for a few different choices of the hyperparameter c, say $c=100,10,1,0.1,0.01$. For $f(x)=\sin (x)$ for which c values do you get the best accuracy? Explain briefly for what choice of c you would expect for the model to generalize the best under a data distribution for x_{i} that is uniform on $[0,2 \pi]$.
3. (L_{1}-Regularization) Consider the optimization problem

$$
\min _{\mathbf{w}} J(\mathbf{w}), \quad \text { with } J(\mathbf{w})=\frac{1}{2}(\mathbf{w}-\mathbf{q})^{T}(\mathbf{w}-\mathbf{q})+R(\mathbf{w})
$$

(a) Find the solution $\mathbf{w} \in \mathbb{R}^{4}$ when $R(\mathbf{w})=\gamma \frac{1}{2}\|\mathbf{w}\|_{2}^{2}$ with $\mathbf{q}=(1,1,1,4)$ and $\gamma=1$. Hint: Consider values \mathbf{w} where $\nabla_{\mathbf{w}} J=0$ or the gradient does not exist.
(b) Find the solution $\mathbf{w} \in \mathbb{R}^{4}$ when $R(\mathbf{w})=\gamma\|\mathbf{w}\|_{1}$ with $\mathbf{q}=(1,1,1,4)$ and $\gamma=1$. Hint: Consider values \mathbf{w} where $\nabla_{\mathbf{w}} J=0$ or the gradient does not exist.
(c) For which solution are most of the components of \mathbf{w} zero. Briefly explain why one might expect one of the regularizations to do better in pushing solutions close to the coordinate axes to promote sparsity.

