Homework 5

Machine Learning: Foundations and Applications MATH CS 120

Paul J. Atzberger http://atzberger.org/

1. (Neural Networks) Consider a basic Multi-Layer Perceptron (MLP) with two inputs x_1, x_2 , single output y, and a hidden layer with n units h_i . Corresponding to this MLP is the hypothesis space $\mathcal{H} = \{q : \mathbb{R}^2 \to \mathbb{R} | q(x_1, x_2; \mathcal{W}) = \sum_{i=1}^n w_i^{(2)} h_i$, where $h_i = \sigma(w_{i1}^{(1)} x_1 + w_{i1}^{(1)} x_2)\}$. The output is $y = q(x_1, x_2; \mathcal{W})$ where the \mathcal{W} denotes the collection of weights.

Consider the case where we set $x_2 = 1$ and $x_1 \in [0,1]$ with activation the Rectified Linear Unit (ReLU) $\sigma = \max(0, z)$. Show that with at most n = k + 2 hidden units we can exactly represent any function $f(x_1)$ that is continuous piece-wise linear on [0,1]with k interior transition points and f(x) = 0 for $x \notin (0,1)$. For instance, show that f(x) = x for $x \leq 1/2$ and f(x) = 1 - x for x > 1/2 can be exactly represented on [0,1]by a MLP with n = 3 units.

- 2. (Backpropagation and Training) Consider approximating a general function f(x) on [0, 1] by using a gradient descent $\dot{\mathbf{w}} = -\nabla_{\mathbf{w}}L$ to minimize the loss $L(q) = \frac{1}{m} \sum_{i=1}^{m} (f(z_i) - q(z_i; \mathbf{w}))^2$ for m data points $z_i \in [0, 1]$, where we take in the MLP $x_1 = z_i$ and $x_2 = 1$. State for the MLP the back-propagation method for computing the gradient in \mathbf{w} . Draw the computational graph in the case when n = 1 and m = 1 for both the "forward pass" and the "backward pass." Explain techniques for how you might mitigate getting stuck in local minima or overfitting the data?
- 3. (Neural Networks as Universal Approximators) The Cybenko Theorem states that if a continuous activation function g(z) is discriminatory on the unit cube $I_n \subset \mathbb{R}^n$ then the linear space $\mathcal{V} = \{q | q(\mathbf{x}) = \sum_{j=1}^n \alpha_j g(\mathbf{w}_j^T \mathbf{x} + b_j), n \in \mathbb{N}\}$ is dense in the space of continuous functions $\mathcal{C}(I_n)$. In other words, for any continuous function $f \in \mathcal{C}(I_n)$ and $\epsilon > 0$, there exists a $q \in \mathcal{V}$ such that $|f(\mathbf{x}) - q(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in I_n$. An activation function g(z) is said to be discriminatory if for a Borel measure $\mu \in \mathcal{M}$ we have for all weights \mathbf{w}, b that $\int g(\mathbf{w}^T \mathbf{x} + b) d\mu(\mathbf{x}) = 0$ then the measure must be zero $\mu \equiv 0$.
 - (a) Show that the sigmoid activation function $g(z) = 1/1 + e^{-z}$ is discriminatory on $I_1 = [0, 1]$. Hint: Use that $\int g(\mathbf{w}^T \mathbf{x} + b) d\mu(\mathbf{x}) = 0$ for all \mathbf{w}, b iff $\int q(\mathbf{x}) d\mu(\mathbf{x}) = 0$ for all $q \in \mathcal{V}$.
 - (b) Show that the ReLU activation function $g(z) = \max(z, 0)$ is discriminatory on I_1 . Hint: Use that $\int g(\mathbf{w}^T \mathbf{x} + b) d\mu(\mathbf{x}) = 0$ for all \mathbf{w}, b iff $\int q(\mathbf{x}) d\mu(\mathbf{x}) = 0$ for all $q \in \mathcal{V}$.
 - (c) Show that the linear activation function g(z) = z is not discriminatory on I_1 . Hint: Construct a counter-example using a measure of the form $\mu(x) = a_1\delta(x-x_1) + a_2\delta(x-x_2) + a_3\delta(x-x_3)$, where $\delta(\cdot)$ denotes here the Dirac δ -function (measure).