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Statistical Learning Theory

Framework for characterizing learning problems and algorithms.

Goal: Assess how well a model predicts future input-outputrelations.

“There is nothing more practical
than a good theory.”
- James C. Maxwell.
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Statistical Learning Theory

Framework for characterizing learning problems and algorithms.

Goal: Assess how well a model predicts future input-outputrelations.

Mathematical Definitions: Considerc: X — Y, X-input, Y-output.
Let c = concept, € = {concept class}, # = {hypothesisfunction space},
Doy~ X X Y be unknown probability distributionon X x ¥, and

V(h(xj), y;) = loss function.

Learning Problem: Find the besth €% so that E,[V(h(x),y)] is minimized
whenc € C,y = c(x).

“There is nothing more practical
than a good theory.”
- James C. Maxwell.
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Statistical Learning Theory

Framework for characterizing learning problems and algorithms.
Goal: Assess how well a model predicts future input-outputrelations.

Mathematical Definitions: Considerc: X — Y, X-input, Y-output.
Let ¢ = concept, € = {concept class}, # = {hypothesisfunction space},
Doy ~ X X Y be unknown probability distributionon X X ¥, and
V(h(x),y;) =loss function.

Learning Problem: Find the besth €€ so that E,[V(h(x),y)] is minimized
whenc € C,y = c(x).

Loss Functions: common examples:

Classification: V(h(x),y) = Ihuyzy (zero-oneloss).
Regression:  V(h(x),y) = (h(x) - ¥)?, (least-squares L?-loss).

“There is nothing more practical
than a good theory.”
- James C. Maxwell.
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Statistical Learning Theory

Framework for characterizing learning problems and algorithms.
Goal: Assess how well a model predicts future input-outputrelations.
Mathematical Definitions: Considerc: X — Y, X-input, Y-output.
Let ¢ = concept, € = {concept class}, # = {hypothesisfunction space},
Doy ~ X X Y be unknown probability distributionon X X ¥, and
V(h(x),y;) =loss function.

Learning Problem: Find the besth €€ so that E,[V(h(x),y)] is minimized
whenc € C,y = c(x).

Loss Functions: common examples:
Classification: V(h(x),y) = Ihuyzy (zero-oneloss).
Regression:  V(h(x),y) = (h(x) - ¥)?, (least-squares L?-loss).

Important to learning, the choice of hypothesisclass H and loss used!

“There is nothing more practical
than a good theory.”
- James C. Maxwell.
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“There is nothing more practical

Statistical Learning Theory than a good theory.’

2is . : -- James C. Maxwell.
Framework for characterizing learning problems and algorithms.

ey

Goal: Assess how well a model predicts future input-outputrelations.

Mathematical Definitions: Considerc: X — Y, X-input, Y-output.
Let ¢ = concept, € = {concept class}, # = {hypothesisfunction space},
Doy ~ X X Y be unknown probability distributionon X X ¥, and
V(h(x),y;) =loss function.

Leslie Valiant

Learning Problem: Find the besth €€ so that E,[V(h(x),y)] is minimized
whenc € C,y = c(x).

Viadimir Vapnik  Alexey Chervonenkis

Loss Functions: common examples:

Classification: V(h(x),y) = Ihuyzy (zero-oneloss). 4 ° .
Regression:  V(h(x),y) = (h(x) - ¥)?, (least-squares L?-loss). . ° .o”.
e
Important to learning, the choice of hypothesisclass H and loss used! ¢ A
o 0
°

Practical Challenges: Distribution D usually unknown, optimization is often o e
non-convex and in high-dimensional spaces. i .



Statistical Learning Theory

Notation and definitions:
A input space
Y output space
c(x): L > Y concept
C conceptclass
J€ hypothesis class

We receive samples § = (X4,X5,...,X,) @and labels 5 = (y4, Vs, ... ¥), Where y; = c(Xx;).
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Statistical Learning Theory

Notation and definitions:
A input space
Y output space
c(x): L > Y concept
C conceptclass
J€ hypothesis class

We receive samples § = (X4,Xs,...,X,) and labels 5 = (y4, V5, ... Ym), Where y; = c(X;).

Task: Determine from S and 5 a hypothesis function h € #
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Statistical Learning Theory

Notation and definitions:
A input space
Y output space
c(x): L > Y concept
C conceptclass
J€ hypothesis class

We receive samples § = (X4,Xs,...,X,) and labels 5 = (y4, Y5, ... Ym), Where y; = c(x;).
Task: Determine from § and 5 a hypothesis function h € #

Goal: We want hg(x) that
(1) fits to explain the training data §,5 well.
(il) generalizes to give correctresults for new unseen data points drawn from D,
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Statistical Learning Theory

Notation and definitions:
A input space
Y output space
c(x): L > Y concept
C conceptclass
J€ hypothesis class

We receive samples § = (X4,Xs,...,X,) and labels 5 = (y4, Y5, ... Ym), Where y; = c(x;).
Task: Determine from § and 5 a hypothesis function h € #

Goal: We want hg(x) that
(1) fits to explain the training data §,5 well.
(il) generalizes to give correctresults for new unseen data points drawn from D,

Definition: The generalizationerror(risk) for 0-1 classification Y={0,1} is
[\)(h) = Pl‘{/ls(;l') -‘,é (f'(;l')} = E:r~D [lhs(:z:)#c(:r)]

Machine Learning: Foundations and Applications



Statistical Learning Theory

Notation and definitions:
A input space
Y output space
c(x): L > Y concept
C conceptclass
J€ hypothesis class

We receive samples § = (X4,Xs,...,X,) and labels 5 = (y4, Y5, ... Ym), Where y; = c(x;).
Task: Determine from S and 5 a hypothesis function h; € #

Goal: We want hg(x) that
(i) fits to explain the training data §,5 well.
(il) generalizes to give correctresults for new unseen data points drawn from D,

Definition: The generalizationerror(risk) for 0-1 classification Y={0,1} is
R(h) = Pl‘{hS(J') b (’(J')} = Ez~D [1}15(1);&6(1‘)]

However, in practice this is NOT computable since we do not known ¢(x) and D.




Statistical Learning Theory

Notation and definitions:
A input space
Y output space
c(x): L > Y concept
C conceptclass
J€ hypothesis class

We receivesamples S = (X4,X,,...,Xy,) and labels T = (y,=c(x4), y5=¢(X5), ... Ym=C(Xm)).
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Statistical Learning Theory

Notation and definitions:
A input space
Y output space
c(x): L > Y concept
C conceptclass
J€ hypothesis class

We receivesamples S = (X4,X,,...,Xy,) and labels T = (y,=c(x4), y5=¢(X5), ... Ym=C(Xm)).

Definition: The empirical generalization error(empirical risk) for 0-1 classification %Y={0,1} is
: 1
Rih) = — Z Lhs(@i)#e(a)
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Statistical Learning Theory

Notation and definitions:
A input space
Y output space
c(x): L > Y concept
C conceptclass
J€ hypothesis class

We receivesamples S = (X4,X,,...,Xy,) and labels T = (y,=c(x4), y5=¢(X5), ... Ym=C(Xm)).

Definition: The empirical generalization error(empirical risk) for 0-1 classification %Y={0,1} is
» 1
Rih) = — Z Lpg(ai)e(xs)

This gives an unbiased estimator of the generalization error (true risk).

Lemma: Ex.p~ [ﬁ(h)] = R(h)
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Statistical Learning Theory

Notation and definitions:
A input space
Y output space
c(x): L > Y concept
C conceptclass
J€ hypothesis class

We receivesamples S = (X4,X,,...,Xy,) and labels T = (y,=c(x4), y5=¢(X5), ... Ym=C(Xm)).

Definition: The empirical generalization error(empirical risk) for 0-1 classification %Y={0,1} is
» 1
Rih) = — Z Lpg(ai)e(xs)

This gives an unbiased estimator of the generalization error (true risk).

Lemma: Ex.p~ [ﬁ(h)] = R(h)
Proof:

Ex~.pm [1?(/')] = %ZEmD"* [h@ose(zn]
i=1
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Statistical Learning Theory

Notation and definitions:
A input space
Y output space
c(x): L > Y concept
C conceptclass
J€ hypothesis class

We receivesamples S = (X4,X,,...,Xy,) and labels T = (y,=c(x4), y5=¢(X5), ... Ym=C(Xm)).

Definition: The empirical generalization error(empirical risk) for 0-1 classification %Y={0,1} is
» 1
Rih) = — Z Lng(zi)#e(a)
This gives an unbiased estimator of the generalization error (true risk).

Lemma: Ex.p~ [ﬁ(h)] = R(h)
Proof:

Ex~D"' [R(h ] = o ZEXNDm [lh(.r V#e(x; ) Zpl{h( l) # (l)}

m
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Statistical Learning Theory

Notation and definitions:
A input space
Y output space
c(x): L > Y concept
C conceptclass
J€ hypothesis class

We receivesamples S = (X4,X,,...,Xy,) and labels T = (y,=c(x4), y5=¢(X5), ... Ym=C(Xm)).

Definition: The empirical generalization error(empirical risk) for 0-1 classification %Y={0,1} is
» 1
Rih) = — Z Lng(zi)#e(a)
This gives an unbiased estimator of the generalization error (true risk).

Lemma: Ex.p~ [ﬁ(h)] = R(h)
Proof:

Ex~pm [R(l) ] S ZE""’D'" [l;,(Jr Ve(z; ) ZPI{/:( ¥} £elx)} = ’Z;R(h) = R(h). =

m
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PAC-Learning

Probability Approximately Correct (PAC) Learning Framework.
Introduced by Leslie Valiantin 1984 to assess computational
complexity of learning tasks.

Leslie Valiant
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PAC-Learning

Probability Approximately Correct (PAC) Learning Framework.
Introduced by Leslie Valiantin 1984 to assess computational
complexity of learning tasks. <

v o/
Leslie Valiant

PAC-learning
We say a conceptclass Cis PAC-learnable ifthere exists an algorithm s and

polynomial bound so that given € > 0 and & > 0, the following holds for any distribution
D € D on &, target conceptc in €, and sample size m = poly(1/¢,1/5,n,size(c))

Pr{R(hs) <€} >1—46
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PAC-Learning

Probability Approximately Correct (PAC) Learning Framework.
Introduced by Leslie Valiantin 1984 to assess computational
complexity of learning tasks.
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PAC-learning
We say a conceptclass Cis PAC-learnable ifthere exists an algorithm s and

polynomial bound so that given € > 0 and & > 0, the following holds for any distribution
D € D on &, target conceptc in €, and sample size m = poly(1/¢,1/5,n,size(c))

Pl‘{R(hs) < 6} 2 1 -4

EfficientPAC-learnable
We say a problemis efficiently PAC-learnabile if the algorithm < runs in at

mosta time poly(1/e,1/5,n,size(x)).
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PAC-Learning

Probability Approximately Correct (PAC) Learning Framework.
Introduced by Leslie Valiantin 1984 to assess computational
complexity of learning tasks. W

Leslie Valiant

PAC-learning
We say a conceptclass Cis PAC-learnable ifthere exists an algorithm s and

polynomial bound so that given € > 0 and & > 0, the following holds for any distribution
D € D on &, target conceptc in €, and sample size m = poly(1/¢,1/5,n,size(c))

Pr{R(hs) <€} >1-4

EfficientPAC-learnable
We say a problemis efficiently PAC-learnabile if the algorithm < runs in at

mosta time poly(1/e,1/5,n,size(x)).

We call # the PAC-learning algorithm for C.

Machine Learning: Foundations and Applications




PAC-Learning
Obstacle Navigation

Example: Learning intervals on R-line. wal wal

(S.T) = {(zi,m) }iz1, i € R,y € {0,1}
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PAC-Learning

p
S A Obstacle Navigation
Example: Learning intervals on R-line. =2 2 i
: ’ B - - B
General Case Algorithm Algorithm:
. —— . o &8,
| e e o 0‘_10\0 ° | |0001L 10 o o 1000| o I[—,E]smallest el o mrclsesl) %%
.2 , T \\ . 2 [ - S ——- l
| / Is N\ L f2f  lg  Ye2 I a=n llll{ L,|q, = l} H
false false ’(|| II_Z':
\ / >

(5:7T) = {(;r.'.y,')};';,.r,- eR.y € {0. l}
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PAC-Learning

(
S : Obstacle Navigation
Example: Learning intervals on R-line. = 2 7
, 1 B - - B
General Case Algorithm Algorithm:
. — . . &,
|eoe 000 s 00 | leee 00 o: ese S g —,{smallest interval of in-class}. "7%
[~ 2 ap =% 4 i
Is N /20 Ig 2 a = min{r;ly; = 1}
talse false J ALY 12 ?
regatives positives b = max{r;|y; = 1} . kit
\. & /

We need to show: Given € >0, § > 0 there exists a polynomial bound in samples m with
Pr {R(Is)<e}>1-4.

X~ I)n)

(S.T) = {(zi,wi) }izy. i € R.y; € {0, 1}

Paul J. Atzberger, http://atzberger.org/

Machine Learning: Foundations and Applications



PAC-Learning

('
S : Obstacle Navigation
Example: Learning intervals on R-line. =2 2 i
, , B - - B
General Case Algorithm Algorithm:
. — . o &,
|ooe o00 000 | [s0e, io 0 0: eee Ie‘\-. 15[ —,{]smallest interval of in-class}. "’%
; TN =1 * s =|a.b
| '/ [ Is \” I 21 lg  Ye2 ' a = min{zr;|ly; = 1} H
alse alse ) (2) !
negstivee poskives d { b= max{x;|ly; = 1} . k it
\, s >

We need to show: Given € >0, § > 0 there exists a polynomial bound in samples m with
Pr {R(Is) <€} >1-0.

X‘er m

(S$.7) = {(zi.yi) }izy.xi € R, y; € {0, 1}

Since /¢ C I, we only need to worry about false negatives. This has

R(Is) = = Pll)"{' ¢ IsNue e I} = Ez~D [lh..,-(.r.);éc(x)] . N Overlaps
() | H
Is ¢
Il ,u
(i) ' H-
! '
¢ ,'l. ’l:- o
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PAC-Learning

f
S : Obstacle Navigation
Example: Learningintervals on R-line. I = o
, , B - - B
General Case Algorithm Algorithm:
. — . o &,
|ooe o00 000 | [s0e, io 0 0: eee [eA—. I_g[ —’{]smallest interval of in-class}. "7%
l. ,! 5! _\ ol - S = ll: )
| / 5 I 2! Ig o2 ! a = min{zr;|ly; = 1}
talse false ALY 72 ?
negatives positives b= lllﬂX{.l'ilyi - l} : . robot
\, s >

We need to show: Given € >0, § > 0 there exists a polynomial bound in samples m with
Pr {R(Is) <€} >1-0.

X~ l)nn

(8.7) = {(zi,w) }iZ1. xi € R,y € {0,1}

Since /¢ C I, we only need to worry about false negatives. This has

fls) = xf};m{-" ¢lsnNerel}y=E, p [lh_..;(.r);é(‘(.l‘)] : N Overlaps
We use that if A = B then Pr{A} < Pr{B} and we use 1 — x < exp[—uz]. i) | '.i
If IsNI% # 0.Vi = 1,2 then R(Is) < ¢ . By contrapositive R(Is) >¢=3i st IsnI® = 0. , ’s 5,...
(ii) ’ =
P Ve A
¢ ,'l. ’lJ- o
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PAC-Learning

(
S : Obstacle Navigation
Example: Learningintervals on R-line. I = o
, , B - - B
General Case Algorithm Algorithm:
. — . o &,
|ooe o00 000 | [s0e, io 0 0: eee [eA—. I_g[ —’{]smallest interval of in-class}. "7%
i) ; == — + s =|a.b
| / 5 a 2! I le2 ! a = min{r;|y; =1} "
talse false ALY 72
oo il positives b = max{zr|y; = l} . robot
\, >

We need to show: Given € >0, § > 0 there exists a polynomial bound in samples m with

r’ll)m{l? (Is) <€} >1-0.

(8.T) = {(zi,wi) }izy. xi € R.y; € {0, 1}

Since /¢ C I, we only need to worry about false negatives. This has

R(IS‘) — XEI)'"'{.I' e IS Na € I} — E.IT~D [lh,,-(.r)¢c(r)] K f§ Over|ap3
We use that if A = B then Pr{A} < Pr{B} and we use 1 — x < exp[—uz]. al oy
OB 1
If IsnI™ # O.¥i = 1,2 then R(Is) < ¢ . By contrapositive R(Is) > ¢ = 3i st IsNnI" =0, b, Is e
This gives the bound 0
— X i1
Pr{R(Is) > ¢} < Pr{UZ, IsnI® = 0} < T2 Pr{Isnl® = 0} <2(1—¢/2)™ < 2exp[-] <o | W —
¢ ,'l,. . .’lJ- o
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PAC-Learning

(
S : Obstacle Navigation
Example: Learningintervals on R-line. I = o
, , B - - B
General Case Algorithm Algorithm:
. — . o &,
|ooe o00 000 | [s0e, io 0 0: eee [eA—. I_g[ —’{]smallest interval of in-class}. "7%
i) ; == — + s =|a.b
| / 5 a 2! I le2 ! a = min{r;|y; =1} "
talse false ALY 72
oo il positives b = max{zr|y; = l} . robot
\, >

We need to show: Given € >0, § > 0 there exists a polynomial bound in samples m with

r’ll)m{l? (Is) <€} >1-0.

(8.T) = {(zi,wi) }izy. xi € R.y; € {0, 1}

Since /¢ C I, we only need to worry about false negatives. This has

R(IS‘) — XEI)'"'{.I' e IS Na € I} — E.IT~D [lh,,-(.r)¢c(r)] K f§ Over|ap3

We use that if A = B then Pr{A} < Pr{B} and we use 1 — x < exp[—uz]. al oy
ON 1

If Isn I # 0.%i = 1,2 then R(Is) < ¢ . By contrapositive R(Is) > ¢ = 3i st IsnI" =0, h, Is y

This gives the bound 0
- I

Pr{R(Is) > ¢} < Pr{UZ, IsnI® = 0} < T2 Pr{Isnl® = 0} <2(1—¢/2)™ < 2exp[-] <o | W —

= m > %ln (%) & v o 1
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Building Identification

PAC-Learning

Example: Learning axis-aligned rectangles.
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Building Identification

PAC-Learning

P

Example: Learning axis-aligned rectangles. ;‘.“ g
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PAC-Learning

Example: Learning axis-aligned rectangles.

i Algorithm L
C
3 e/4, IO
:l'lllllill‘. :
: e ® - L
A nnn-.nt-n’.' I‘
= o
A J

We need to show
Pr{R(hs) <e}>1-4

Building Identification

Google Maps: UCSB South Hall

Picture Annotation




PAC-Learning

Example: Learning axis-aligned rectangles.

i Algorithm L
C
3 e/4, IO
:l'lllllill‘. :
: e ® - L
A nnn-.nt-n’.' I‘
= o
A J

We need to show
Pr{R(hs) <e}>1-4
This implies

R(hs)>¢€ = 3is.t. ha NI =0

Building Identification

Google Maps: UCSB South Hall

Picture Annotation




PAC-Learning

Example: Learning axis-aligned rectangles.

. J .

A : e e :
Sl (i) Overlaps All
E /S/4
5/4, I(l) ?----i'...---?n
= /4 -1 ot
\5/4
- R(hs) < e

/4

(i) Not Full Overlap |

i hsNIW) =@

We need to show
Pr{R(hs) <e}>1-4
This implies
R(hs)>e€ = 3ist. hanI'V =0

Building Identification

Google Maps: UCSB South Hall

Picture Annotation




Building Identification

PAC-Learning

Example: Learning axis-aligned rectangles.

i Algorithm 1 (i) Overlaps All (if) Not Full Overlap\

/S/4

5/4—~'§ - c/4
\5/4
R(hs) < e i, hs NI =@
\_ J . J mt ' S ' R s
We need to show Google Maps: UCSB South Hall
Pr{R(hs) <e}>1-19 Picture Annotation

This implies
R(hs) > € = 3is.t. hsNI"
4
¢ {R(hs) > e} < Pr {U hsﬂl() = }}g
=1

x~Dm




Building Identification

PAC-Learning

Example: Learning axis-aligned rectangles.

i Algorithm 1 (i) Overlaps All (if) Not Full Overlap\

/S/4

5/4—~'§ - c/4
\5/4
R(hs) < e i, hs NI =@
\_ J . J mt ' S ' R s
We need to show Google Maps: UCSB South Hall
Pr{R(hs) <e}>1-19 Picture Annotation

This implies
R(hs) > € = 3is.t. hsNI"

¢ {R(hs) > e} < Pr {U hs N 1) = }} P {hs N1 = @}

x~Dm

< 4(1—€/4)" < dexp[—em/4] < 4.




Building Identification

PAC-Learning

Example: Learning axis-aligned rectangles.

i Algorithm 1 (i) Overlaps All (if) Not Full Overlap\

/S/4

5/4—~'§ - c/4
\5/4
R(hs) < e i, hs NI =@
\_ J . J mt ' S ' R s
We need to show Google Maps: UCSB South Hall
Pr{R(hs) <e}>1-19 Picture Annotation

This implies
R(hs) > € = 3is.t. hsNI"

¢ {R(hs) > e} < Pr {U hs N 1) = }} P {hs N1 = @}

x~Dm
< 4(1—€/4)" < dexp[—em/4] < 4.
Bound on samples m

3 4 4
—em/f4<In|{= )= m>—In|-
4 € 0




Building Identification

PAC-Learning

Example: Learning axis-aligned rectangles.

i Algorithm 1 (i) Overlaps All (if) Not Full Overlap\

/S/4

5/4—~'§ - c/4
\5/4
R(hs) < e i, hs NI =@
\_ J . J mt ' S ' R s
We need to show Google Maps: UCSB South Hall
Pr{R(hs) <e}>1-19 Picture Annotation

This implies
R(hs) > € = 3is.t. hsNI"

¢ {R(hs) > e} < Pr {U hs N 1) = }} P {hs N1 = @}

x~Dm
< 4(1—€/4)" < dexp[—em/4] < 4.
Bound on samples m

3 4 4
—em/f4<In|=)=|m>—In| -
4 € 0




Building Identification

PAC-Learning

Example: Learning axis-aligned rectangles.

i Algorithm 1 (i) Overlaps All (if) Not Full Overlap\

/S/4

5/4—~'§ - c/4
\5/4
R(hs) < e i, hs NI =@
\_ J . J mt ' S ' R s
We need to show Google Maps: UCSB South Hall
Pr{R(hs) <e}>1-19 Picture Annotation

This implies
R(hs) > € = 3is.t. hsNI"

¢ {R(hs) > e} < Pr {U hs N 1) = }} P {hs N1 = @}

x~Dm
< 4(1—€/4)" < dexp[—em/4] < 4.
Bound on samples m Boundonrisk R

3 4 4 4 4 ) 4 4
—em/4 < In (Z) =|m> F—In (5) ¢= ;ln (5) = Pr=1-4. [R(hs) < Eln (3)




Building Identification

PAC-Learning

Example: Learning axis-aligned rectangles.

i Algorithm 1 (i) Overlaps All (if) Not Full Overlap\

/S/4

5/4—~'§ - c/4
\5/4
R(hs) < e i, hs NI =@
\_ J . J mt ' S ' R s
We need to show Google Maps: UCSB South Hall
Pr{R(hs) <e}>1-19 Picture Annotation
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Data Sampling Complexity

Guarantees on Sampling Complexity

How many samples do we need to guarantee a given level of precision €,8in PAC-learning?

What is bound M so form = M we have Pr{R(hs) <¢} >1-067

Empirical Generalization Error

" e
R(h) = — Y Lns(aosetz)
=1
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Data Sampling Complexity

Guarantees on Sampling Complexity

How many samples do we need to guarantee a given level of precision €,8in PAC-learning?

What is bound M so form = M we have Pr{R(hs) <¢} >1-067

This will depend on the hypothesis space # and conceptclass €.

Empirical Generalization Error

. 1
R(h) - ; Z 1h5(1¥.‘)¢c(1’i)

=1
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Data Sampling Complexity

Guarantees on Sampling Complexity

How many samples do we need to guarantee a given level of precision €,8in PAC-learning?
What is bound M so form = M we have Pr{R(hs) <¢} >1-07

This will depend on the hypothesis space # and conceptclass C.

Twoimportant cases:

(i) consistentcase: Cc ¥, hypothesesinclude all concepts.
(if) inconsistentcase: C ¢ ¥, hypotheses can not capture all concepits.

Empirical Generalization Error

. 1 «—
R(h) = o= Zl Lns(ai)#e(a:)
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Data Sampling Complexity

Guarantees on Sampling Complexity

How many samples do we need to guarantee a given level of precision €,8in PAC-learning?
What is bound M so form = M we have Pr{R(hs) <e¢} >1-47?
This will depend on the hypothesis space # and conceptclass C.
Twoimportant cases:
(i) consistentcase: Cc ¥, hypothesesinclude all concepts.

(if) inconsistentcase: C & ¥, hypotheses can not capture all concepts.

Distinguish also case of finite vs infinite hypothesis spaces # and conceptspaces C.

Empirical Generalization Error

m

R(h) = — Zlh (o) #e(z:)




Data Sampling Complexity

Guarantees on Sampling Complexity — f )
[
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How many samples do we need to guarantee a given level of precision €,8in PAC-learning?

What is bound M so form = M we have Pr{R(hs) <e¢} >1-07
This will depend on the hypothesis space # and conceptclass C.

Two important cases:

(i) consistentcase: Cc H, hypothesesinclude all concepts.
(if) inconsistentcase: C ¢ #, hypotheses can not capture all concepts.

Distinguish also case of finite vs infinite hypothesis spaces # and conceptspaces €.

Theorem: Consistent-Finite Hypothesis Spaces #. Let # be any learning algorithm that has
zero Empirical Generalization Error R(hs) = 0 then PAC-learning bound Pr{R(hs) <¢} > 1§
is guaranteed to hold for m samples satisfying

Empirical Generalization Error

1 m

1
> ~(log |H| +1 --.) e, ]
m -~ (( ()gl I (84 5 R(h) = E;lhs(l’.)#('(l‘.)



Data Sampling Complexity

Finite Consistent-Case: Guarantees on Sampling Complexity

Theorem: Consistent-Finite Hypothesis Spaces #. Let #A be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then PAC-learning bound Pr{R(hs) <¢} >1—4 is

guaranteed to hold for m samples satisfying

1 1
m > z(log|H| + log 3)

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Data Sampling Complexity

Finite Consistent-Case: Guarantees on Sampling Complexity

Theorem: Consistent-Finite Hypothesis Spaces #. Let s& be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then PAC-learning bound Pr{R(hs) <¢} >1—4 is

guaranteed to hold for m samples satisfying

1 1
m =z Z(log|H|+logZ)

Proof: Lets be any algorithm that returns for m samples S a hypothesis hs s.t. R(hs) = 0.
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Data Sampling Complexity

Finite Consistent-Case: Guarantees on Sampling Complexity

Theorem: Consistent-Finite Hypothesis Spaces #. Let s& be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then PAC-learning bound Pr{R(hs) <¢} >1—4 is

guaranteed to hold for m samples satisfying

1 1
m =z Z(log|H|+logZ)

Proof: Lets be any algorithm that returns for m samples S a hypothesis hs s.t. R(hs) = 0.

SP[!)""{I) EHA R(h) =0AR(h) > t‘} = SPgm{ln EHN R(h]) =0AR(h)>eV--. Vh|').{| EHA R(’)l;”) =0A R(hyy ) > (}
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Data Sampling Complexity

Finite Consistent-Case: Guarantees on Sampling Complexity

Theorem: Consistent-Finite Hypothesis Spaces #. Let s& be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then PAC-learning bound Pr{R(hs) <¢} >1—4 is

guaranteed to hold for m samples satisfying

1 1
m =z Z(log|H|+logZ)

Proof: Lets be any algorithm that returns for m samples S a hypothesis hs s.t. R(hs) = 0.

SP[!)""{I) EHA R(h) =0AR(h) > t‘} = SPgm{ln EHN R(h]) =0AR(h)>eV--. Vh|').{| EHA R(’)l;”) =0A R(hyy ) > (}

|H |
< > Pr{hi € HA R(h:) = 0A R(h,) > €}
=1

rWe use that
Pr{AABA ('} = Pr{A A BI('} I’r{('}
< Pr{AA B}

l—.l’S«'_I
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Data Sampling Complexity

Finite Consistent-Case: Guarantees on Sampling Complexity

Theorem: Consistent-Finite Hypothesis Spaces #. Let s& be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then PAC-learning bound Pr{R(hs) <¢} >1—4 is

guaranteed to hold for m samples satisfying

1 1
m =z Z(log|H|+logZ)

Proof: Lets be any algorithm that returns for m samples S a hypothesis hs s.t. R(hs) = 0.

SP[!)""{I) EHA R(h) =0AR(h) > t‘} = SPgm{ln EHN R(h]) =0AR(h)>eV--. Vh|').{| EHA R(’)l;”) =0A R(hyy ) > (}

|H |
< > Pr{hi € HA R(h:) = 0A R(h,) > €}
=1

|H |
< > Pr{hi € HA R(hi) = O|R(h) > €}

=1

rWe use that
Pr{AABA ('} = Pr{A A BI('} I’r{('}
< Pr{AA B}
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Data Sampling Complexity

Finite Consistent-Case: Guarantees on Sampling Complexity

Theorem: Consistent-Finite Hypothesis Spaces #. Let s& be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then PAC-learning bound Pr{R(hs) <¢} >1—4 is

guaranteed to hold for m samples satisfying

1 1
m =z Z(log|H|+logZ)

Proof: Lets be any algorithm that returns for m samples S a hypothesis hs s.t. R(hs) = 0.

SP[!)""{I) EHA R(h) =0AR(h) > t‘} = SPgm{ln EHN R(h]) =0AR(h)>eV--. Vh|').{| EHA R(’)l;”) =0A R(hyy ) > (}

|H |
< > Pr{hi € HA R(h:) = 0A R(h,) > €}
=1

|H |
< > Pr{hi € HA R(hi) = O|R(h) > €}

=1

rWe use that
Pr{AABA ('} = Pr{A A BI('} I’r{('}
< Pr{AA B}

< |H|(1 —€)" < |H|exp(—em) < &

l—.l’S«'_I
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Data Sampling Complexity

Finite Consistent-Case: Guarantees on Sampling Complexity

Theorem: Consistent-Finite Hypothesis Spaces #. Let s& be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then PAC-learning bound Pr{R(hs) <¢} >1—4 is

guaranteed to hold for m samples satisfying

1 1
m =z Z(log|H|+logZ)

Proof: Lets be any algorithm that returns for m samples S a hypothesis hs s.t. R(hs) = 0.

SP[!)""{I) EHA R(h) =0AR(h) > t‘} = SPgm{ln EHN R(h]) =0AR(h)>eV--. Vh|').{| EHA R(’)l;”) =0A R(hyy ) > (}

|H |
< > Pr{hi € HA R(h:) = 0A R(h,) > €}
=1

|H |
< > Pr{hi € HA R(hi) = O|R(h) > €}

=1

rWe use that

Pr{AABAC} =Pr{AA B|C'} Pr{C’}
= log(|H|) — em < log(9) < Pr{A A B)

l—a S ¢ e
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Data Sampling Complexity

Finite Consistent-Case: Guarantees on Sampling Complexity

Theorem: Consistent-Finite Hypothesis Spaces #. Let s& be any learning algorithm that has

zero empirical generalization error R(hs) = 0 then PAC-learning bound Pr{R(hs) <¢} >1—4 is

guaranteed to hold for m samples satisfying

1 1
m =z Z(log|H|+logZ)

Proof: Lets be any algorithm that returns for m samples S a hypothesis hs s.t. R(hs) = 0.

SP[!)""{I) EHA R(h) =0AR(h) > t‘} = SPgm{ln EHN R(h]) =0AR(h)>eV--. Vh|').{| EHA R(’)l;”) =0A R(hyy ) > (}

|H |
< > Pr{hi € HA R(h:) = 0A R(h,) > €}
=1

|H |
< > Pr{hi € HA R(hi) = O|R(h) > €}

=1

< |H|(1 —€)" < |H|exp(—em) < &

rWe use that
Pr{AABAC} =Pr{AA B|C'} Pr{C’}
= log(|H|) — em < log(9) < Pr{A A B)

1 1 -
=m> - (log‘(|H|)+log (—)) l —a<e
‘ d - -
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Generalization Bounds

Finite-Consistent Case: Guarantees on Sampling Complexity

Corollary: Consistent-Finite Hypothesis Spaces #. Let s be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then the generalization error is bounded by

1 1
v R =
R(hs) < — (log|H]| +1og 5 )

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Generalization Bounds

Finite-Consistent Case: Guarantees on Sampling Complexity

Corollary: Consistent-Finite Hypothesis Spaces #. Let s be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then the generalization error is bounded by

1 1
v R =
R(hs) < — (log|H]| +1og 5 )

Proof: Follows setting ¢ = % (log(IH ) + log (%)) ‘

Machine Learning: Foundations and Applications
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Generalization Bounds

Finite-Consistent Case: Guarantees on Sampling Complexity

Corollary: Consistent-Finite Hypothesis Spaces #. Let s be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then the generalization error is bounded by

1 1
v R =
R(hs) < — (log|H]| +1og 5 )

Proof: Follows setting ¢ = 'i (log(|H|) + log (%)) ——> m> -}: (log(IHl) + log (%))
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Generalization Bounds

Finite-Consistent Case: Guarantees on Sampling Complexity

Corollary: Consistent-Finite Hypothesis Spaces #. Let s be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then the generalization error is bounded by

1 1
¥ =
R(hs) < — (log |H| +log ;)

) — vt ()) — s

, 1
Proof: Follows setting ¢ = — (log (1H]) + log (3
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Generalization Bounds

Finite-Consistent Case: Guarantees on Sampling Complexity

Corollary: Consistent-Finite Hypothesis Spaces #. Let s be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then the generalization error is bounded by

1 1
¥ =
R(hs) < — (log |H| +log ;)

Proof: Follows setting ¢ = ,i (log(IHI) + log (%)) — m> % (log(IHl) + log (%)) —> R(hg)<ec g

1

Consistent-Finite Hypothesis Case
+ 1/m— error decay rate is in fact very good relative to other cases we shall investigate.

Machine Learning: Foundations and Applications
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Generalization Bounds

Finite-Consistent Case: Guarantees on Sampling Complexity

Corollary: Consistent-Finite Hypothesis Spaces #. Let s be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then the generalization error is bounded by

1 1
R(hs) < — (log|H| +log ;)

Proof: Follows setting ¢ = e (log(|H|) + log (%)) — m> % (Iog(IHl) + log (%)) — R(hs)<e g

m

Consistent-Finite Hypothesis Case
+ 1/m— error decay rate is in fact very good relative to other cases we shall investigate.

« Sample complexity bounds are logarithmic in the hypothesis space size | #|.

* log(|#]|)~ number of bits needed to distinguish a hypothesis function.
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Generalization Bounds

Finite-Consistent Case: Guarantees on Sampling Complexity

Corollary: Consistent-Finite Hypothesis Spaces #. Let s be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then the generalization error is bounded by

1 1
R(hg) < n—z(logIHl + logg)

Proof: Follows setting ¢ = = (log(IHI) + log (%)) —> m2 % (log(IHI) + log (}s)) —> R(hs)<e¢ g

m

Consistent-Finite Hypothesis Case
+ 1/m— error decay rate is in fact very good relative to other cases we shall investigate.

« Sample complexity bounds are logarithmic in the hypothesis space size | #|.

* log(|#]|)~ number of bits needed to distinguish a hypothesis function.

« This indicates smaller hypothesis space - easierto learn concepts.




Generalization Bounds

Finite-Consistent Case: Guarantees on Sampling Complexity =4 i
[

Corollary: Consistent-Finite Hypothesis Spaces #. Let# be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then the generalization error is bounded by

1 1
Nhe) < — O —
R(hg) < m(log |H| + log 6)

1 1
Proof: Follows setting ¢ = — (log(IHI) + log (5)) —> m2 ; ('Og(lHl) + log (;1;)) —> R(hs)<e g

m

Consistent-Finite Hypothesis Case
+ 1/m— error decay rate is in fact very goodrelative to other cases we shall investigate.

« Sample complexity bounds are logarithmic in the hypothesis space size | #]|.
+ log(|#€|) ~ number of bits needed to distinguish a hypothesis function.
+ This indicates smaller hypothesis space - easierto learn concepts.

+ However, consistencyC c #requires “big enough” hypothesis space J to capture target concepts.

——-*-—*——
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Data Sampling Complexity

o1 | 1]0}|1I
ottty
Example: Boolean Conjunctions.
: 22 N _ ojlo|1]1]O
Let z; be Booleanvariable, a conjunctionis: c =z; Az, A zs A 2.
(0 1 O O O O
OO (1|1
0O|1]10]0]|1I
g1112]2]1]]}

Mohri 2012
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Data Sampling Complexity

o1 {1|O]I
ottty
Example: Boolean Conjunctions.
; 2 _ ojlof1]1]o
Let z; be Booleanvariable, a conjunctionis: c =z, Az, A zs A 2.
(0 1 O O O O
Learning algorithm 4: Use only the positive examples. tlolol 11
o if z; = 1 then include z;.
¢ if z; = 0 then include Z;. Oj1]jojoOfl
ANEREAEANEN

Mohri 2012
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Data Sampling Complexity o[t ]oli|1]~
ot yprjrg+
Example: Boolean Conjunctions. alolzlelols
Let z; be Booleanvariable, a conjunctionis: c =z, Az, A zs A 2. _
AENEIEAENE Y &
Learning algorithm 4: Use only the positive examples. tlololiTi1Tol-
o if z; = 1 then include z;.
« if z; = 0 then include Z;. ofrjojojnrjirg+
oft 221 ]
The conceptclass |C,| = 3", since in n-conjunction either z;, z;, or ¢. Mohri 2012
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Example: Boolean Conjunctions. alolzlelols
Let z; be Booleanvariable, a conjunctionis: c =z, Az, A zs A 2. _
AENEIEAENE Y &
Learning algorithm 4: Use only the positive examples. tlololiTi1Tol-
o if z; = 1 then include z;.
« if z; = 0 then include Z;. ofrjojojnrjirg+
oft 221 ]
The conceptclass |C,| = 3", since in n-conjunction either z;, z;, or ¢. Mohri 2012

Note could learn directly with as few as 2n examples if special ones chosen.




Data Sampling Complexity

ojt1(rjopnr1ry+
O: 14 1k E]X]T)*
Example: Boolean Conjunctions. ololrlilols
Let z; be Booleanvariable, a conjunctionis: c =z, Az, A zs A 2. _
oty {ryprjry+
Learning algorithm 4: Use only the positive examples. tlololilTi1ol-
o if z; = 1 then include z;.
¢ if z; = 0 then include Z;. ojtjofojtjig+
gl1ij2|12]1]]}
The conceptclass |@,| = 3", since in n-conjunction either z;, z;, or ¢. Mohri 2012

Note could learn directly with as few as 2n examples if special ones chosen.

Let # = €, then we have consistent-finite hypothesis spaceand R (hg) = 0.
Sample complexity:

s % (n log (3) + log (%))
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Example: Boolean Conjunctions. ololtlilol
Let z; be Booleanvariable, a conjunctionis: c =z, Az, A zs A 2. _
oty {ryprjry+
Learning algorithm 4: Use only the positive examples. tlololiTi1Tol-
o if z; = 1 then include z;.
c if z; = 0 then include Z;. ARREIEARNES b
oft 221 ]
The conceptclass |C,| = 3", since in n-conjunction either z;, z;, or ¢. Mohri 2012

Note could learn directly with as few as 2n examples if special ones chosen.

Let # = €, then we have consistent-finite hypothesis spaceand R (hg) = 0.
Sample complexity:

s % (n log (3) + log (%))

This shows €, is PAC-learnable.




Data Sampling Complexity
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Example: Boolean Conjunctions. glolilclols
Let z; be Booleanvariable, a conjunctionis: c =z, Az, A zs A 2. _
AENEIEAENE Y &
Learning algorithm 4: Use only the positive examples. tlolol i TiTol-
o if z; = 1 then include z;.
¢ if z; = 0 then include Z;. 0]1101O]1]1])%
gl1i11z|211]1
The conceptclass |C,| = 3", since in n-conjunction either z;, z;, or ¢. Mohri 2012
3 2 : : (Example 2: ik
Note could learn directly with as few as 2n examples if special ones chosen. o I
=2 2/\ 23
. . . A z; ~ "it is raining”
Let # = €, then we have consistent-finite hypothesis spaceand R (hg) = 0. e R ibrella®
Sample complexity: gy ettt wet®
1 1
m > - (n log (3) + log (—))
3 )
This shows €, is PAC-learnable.




Data Sampling Complexity o[t ]oli|1]~
o I I O O O O
Example: Boolean Conjunctions. ololtlilol
Let z; be Booleanvariable, a conjunctionis: c =z, Az, A zs A 2. _
AENEIEAENE Y &
Learning algorithm 4: Use only the positive examples. tlololiTi1Tol-
o if z; = 1 then include z;.
c if z; = 0 then include Z;. ARREIEARNES b
gl1i11z|211]1
The conceptclass |C,| = 3", since in n-conjunction either z;, z;, or ¢. Mohri 2012
3 2 : : (Example 2: ik
Note could learn directly with as few as 2n examples if special ones chosen. O i A B
o z; ~ "it is raining”
Let # = €, then we have consistent-finite hypothesis spaceand R (hs) = 0. ; i -.-;mlvcru::,,l::,,au
Sample complexity: a7 gt et
1 1 Confid desired:
m > - (n log (3) + log (3)) (ol 0?8:1 ;;;ce
d = 0.05 — 95%
This shows €, is PAC-learnable.
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Example: Boolean Conjunctions. ololtlilol
Let z; be Booleanvariable, a conjunctionis: c =z, Az, A zs A 2. _
AENEIEAENE Y &
Learning algorithm 4: Use only the positive examples. tlololiTi1Tol-
o if z; = 1 then include z;.
c if z; = 0 then include Z;. ARREIEARNES b
gl1i11z|211]1
The conceptclass |C,| = 3", since in n-conjunction either z;, z;, or ¢. Mohri 2012
3 2 : : (Example 2: 3
Note could learn directly with as few as 2n examples if special ones chosen. O i A B
) NN s
Let # = €, then we have consistent-finite hypothesis spaceand R (hs) = 0. ; s ~.-;,a:.cr::,;::,|a.,
Sample complexity: a7 gt et
1 1 Confid desired:
m> (n log (3) + log (S)) €= 0.01 » 90%

4 = 0.05 = 95%

This shows €, is PAC-learnable.

Bound on number samples:
m > 630




Data Sampling Complexity

Example: Boolean Conjunctions.
Let z; be Booleanvariable, a conjunctionis: c =z, Az, A zs A 2.

|0 |O| O

Learning algorithm 4: Use only the positive examples.
o if z; = 1 then include z;.
= if z; = 0 then include Zz;.

o

ojt1j?21?2111]1
The conceptclass |C,| = 3", since in n-conjunction either z;, z;, or ¢. Mohri 2012
3 2 : : (Example 2: 3
Note could learn directly with as few as 2n examples if special ones chosen. T
. . . a z; ~ "it is raining”
Let # = €, then we have consistent-finite hypothesis spaceand R (hs) = 0. e R el
Sample complexity: gy ettt wet®
1 1 Confidence desired:
m > - (n log (3) + log (S)) i (1 0T DO
_ _ & = 0.05 — 95%
This shows €, is PAC-learnable. B _
ound on number samples:
m > 630
K (larger than direct testing 2n) 3




Data Sampling Complexity

Example: Boolean Conjunctions.
Let z; be Booleanvariable, a conjunctionis: c =z, Az, A zs A zg.

Learning algorithm 4: Use only the positive examples.

o if z; = 1 then include z;.
= if z; = 0 then include Zz;.

The conceptclass |@,| = 3", since in n-conjunction either z;, z;, or ¢.
Note could learn directly with as few as 2n examples if special ones chosen.

Let # = €, then we have consistent-finite hypothesis spaceand R (hs) = 0.
Sample complexity:

m > 2 ('n. log (3) + log (1>)
€ 0
This shows €, is PAC-learnable.

Note statistical learning might not be as efficient as direct methods when available.

Cr=s Z1NZ2 A\ 23
z; ~ it is raining”
z2 ~ "have umbrella”™

zg3 ~ "getting wet”

Confidence desired
e = 0.01 = 99%

d = 0.05 = 95%

Bound on number samples:
m > 630

(largerthan directtesting 2n)

o(tjtrjojtrji1y+
O: 14 1k E]X]T)*
OO0 (1|1 ]O|I}-
oty fryprjry+
L G |V e E
ojrjofoyji1ji1jy+
gl1ij2|12]1]]}
Mohri 2012
(Example 2: k




Data Sampling Complexity

Example: Universality Class %, = {c: {0,1)" = {0,1}}. All functions ¢(z,,2,,...,2,) = {0,1}.

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Data Sampling Complexity

Example: Universality Class %, = {c: {0,1}" - {0,1}}. All functions ¢(z1,2y,...,z,) = {0,1}.

A consistent-finite hypothesis class # must contain U, giving | #| = |, | = 2%".

This suggests a sample complexity (if bounds tight) of

m > % (2" log (2) + log (%))
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Data Sampling Complexity

Example: Universality Class %, = {c: {0,1}" — {0,1}}. All functions c(z,,2,,...,2,) = {0,1}.

A consistent-finite hypothesis class # must contain U,, giving | #| = |U,| = 22".
This suggests a sample complexity (if bounds tight) of
1 1
> S ) -
w2 (2 log (2) + log (6))
This suggests learning problem requires exponential number of samples in the input size n.

Not hard to show this conceptclassis in fact not PAC-Learnable.
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Data Sampling Complexity

Example: Universality Class U, = {c: {0,1}" — {0,1}}. All functions ¢(z,,2,,...,2,) =2 {0,1}.
A consistent-finite hypothesis class # must contain U,, giving | #| = |U,| = 22".
This suggests a sample complexity (if bounds tight) of

m > : (2" log (2) + log (l))
€ 0

This suggests learning problem requires exponential number of samples in the input size n.

Not hard to show this conceptclassis in fact not PAC-Learnable.
Efficientlearnability requires our conceptclass not be too broad.

In particular, that there is some level of mathematical structure we can exploit in developing
algorithms to use training information to distinguish hypothesis in representing concepts.



Data Sampling Complexity

Example: Universality Class U, = {c: {0,1}" — {0,1}}. All functions ¢(z,,2,,...,2,) =2 {0,1}.
A consistent-finite hypothesis class # must contain U,, giving | #| = |U,| = 22".
This suggests a sample complexity (if bounds tight) of

m > L (2" log (2) + log (l))

€ 0

This suggests learning problem requires exponential number of samples in the input size n.
Not hard to show this conceptclassis in fact not PAC-Learnable.
Efficientlearnability requires our conceptclass not be too broad.

In particular, that there is some level of mathematical structure we can exploit in developing
algorithms to use training information to distinguish hypothesis in representing concepts.

Learning completely generic functions is just too hard to do efficiently (too many possibilities).



Agnostic PAC-Learning

Inconsistentcase when C ¢ #.
Forall h we may have R (h) # 0. Our aim is to achieve as small a generalization error as
possible.
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Agnostic PAC-Learning

Inconsistentcase when C ¢ #.
Forall h we may have R (1) # 0. Our aim is to achieve as small a generalization error as

possible.

Agnostic PAC-Learning:
We say a conceptclass Cis Agnostic PAC-Learnableif there exists an algorithm < and

polynomial bound so that given € > 0 and & > 0, the following holds for any distribution D on
I x Y, target conceptcin €, and sample size m = poly(1/e,1/0,n,size(x))

Pr{R(hs) — }llél?l} R(h)<e}>1-4
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Agnostic PAC-Learning

Inconsistentcase when C ¢ #.
Forall h we may have R (1) # 0. Our aim is to achieve as small a generalization error as

possible.

Agnostic PAC-Learning:
We say a conceptclass Cis Agnostic PAC-Learnableif there exists an algorithm < and

polynomial bound so that given € > 0 and & > 0, the following holds for any distribution D on
I x Y, target conceptcin €, and sample size m = poly(1/e,1/0,n,size(x))

Pr{R(hs) — }llél?l} R(h)<e}>1-4

Note, generalizationerrorisnow R(h) = Pr [h(z)#yl= E [lp@)zyl-
(z.y)~D (z,y)~D
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Agnostic PAC-Learning

Inconsistentcase when C ¢ #.
Forall h we may have R (1) # 0. Our aim is to achieve as small a generalization error as
possible.

Agnostic PAC-Learning:
We say a conceptclass Cis Agnostic PAC-Learnableif there exists an algorithm < and

polynomial bound so that given € > 0 and & > 0, the following holds for any distribution D on
I x Y, target conceptcin €, and sample size m = poly(1/¢,1/5,n,size(x))

- L& 3=
Pr{R(hs) Eél;}R(h) €} >1

Note, generalization errorisnow R(h) = ( ) [h(:z:) #y] = D[l,,(x)#y].
Ty ~D ~

If computational complexity of algorithm is poly(1/e,1l6,n,S|ze(x)) we say the conceptclassis
Efficiently Agnostic PAC-Learnable.
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Agnostic PAC-Learning

Inconsistent case when C ¢ #.

Forall h we may have R (h) # 0. Our aim is to achieve as small a generalization error as
possible.

Agnostic PAC-Learning:

We say a conceptclass Cis Agnostic PAC-Learnableif there exists an algorithm s and
polynomial bound so that given € > 0 and & > 0, the following holds for any distribution D on
I x Y, target conceptcin €, and sample size m = poly(1/e,1/8,n,size(x))

Pr{R(hs) —min R(h) < e} >1—6
r{R(hs) — min R(h) < e} 2

Note, generalizationerrorisnow R(h) = Pr [h(z)#yl= E [lp@)zyl-

(z,y)~D (z,y)~D :
If computational complexity of algorithm is poly(1/¢,1/0,n,size(x)) we say the conceptclassis
Efficiently Agnostic PAC-Learnable.

Stochastic vs Deterministic Learning: Above applies also when label y for feature vector
X is not unique, as in many real-world data sets. Uncertainty capturedby D ~ X x ¥,
allowing for a type of stochastic learning. Goal: Find best assignmenty = h(x) minimizing
generalization error.

. 4 e
VN DG £ \
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces #. Let st be any learning algorithm that has
empirical generalization error (hs) then forany h € # we have

log |H| + log 2
2m B

R(h) < R(h) + \/
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces #. Let st be any learning algorithm that has
empirical generalization error (hs) then forany h € # we have

log |H| + log 2
2m B

R(h) < R(h) + \/

This shows training error is indicative of the generalization error with enough samples

R(h) - R(h)| < \/ log(IH1) + log(3)

2m
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces #. Let st be any learning algorithm that has
empirical generalization error R(hs) then for any h € # we have

log |H| + log %
2m B

R(h) < R(h) + \/

This shows training error is indicative of the generalization error with enough samples

log(|H|) + log(3)
2m

R(h) - R(h)| < \/

This means if we have small training set error R(hs) then “with enough” samples we can obtain
small gap in generalization errors.
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces #. Let st be any learning algorithm that has
empirical generalization error R(hs) then for any h € # we have

log |H| + log %
2m B

R(h) < R(h) + \/

This shows training error is indicative of the generalization error with enough samples

log(|H|) + log(3)
2m

R(h) — R(h)‘ < \/

This means if we have small training set error R(hs) then “with enough” samples we can obtain
small gap in generalization errors.

For Agnostic PAC-Learnableconceptswe have Pr{R(hg) — hmi% R(h)<e}>1-9
€
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces #. Let st be any learning algorithm that has
empirical generalization error R(hs) then for any h € % we have

log |H| + log %
2m B

R(Rh) < R(h) + \/

This shows training error is indicative of the generalization error with enough samples

log(|H|) + log(2)
2m

R(h) — R(h)‘ < \/

This means if we have small training set error R(hs) then “with enough” samples we can obtain
small gap in generalization errors.

For Agnostic PAC-Learnableconceptswe have Pr{R(hs) — };ni;} R(h)<e}>1-9
€

Theseresults show even in the inconsistent case forenough samples m a small training set error
is still indicative for obtaining an hypothesis h with best generalization error.




Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces #. Let # be any learning algorithm that has
empirical generalization error R(hs) then for any h € # we have

log |H| + log 2
2m B

R(h) < R(h) + \/

This shows training error is indicative of the generalization error with enough samples

log(|H|) + log(%)
2m

R(h) — R(h)‘ < \/

This means if we have small training set error R(hs) then “with enough” samples we can obtain
small gap in generalization errors.

For Agnostic PAC-Learnableconceptswe have Pr{R(hs) — };ni;} R(h)<e}>1-9
€

Theseresults show even in the inconsistent case forenough samples m a small training set error
is still indicative for obtaining an hypothesis h with best generalization error.

Note, only m~/2 scaling in the bound (compare to the finite-consistentcase ~ m™).




Probability Theory and Inequalities

ConcentrationInequalities
Lemma: Markov Inequality Pr[X > €] = Pr[e!X > e'] < e7*E[e'*] fort > 0.
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Probability Theory and Inequalities

ConcentrationInequalities
Lemma: Markov Inequality Pr[X > €] = Pr[e!X > e%] < e7*E[e'*] fort > 0.

Proof: Pr{e™ > e*} < / leoesete (x)dDy < / e~ *e™ dDy = e *E [e"‘]
Q
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Probability Theory and Inequalities

ConcentrationInequalities

Lemma: Markov Inequality Pr[X > ¢] = Pr[e'® > e*] < e *E[e'*] fort > 0.
Proof: Pr{e™ > e*} < /Qletxzeu (x)dDy < /e'“e"‘ dD, = e"“E [e’x] i

Lemma: (Hoeffding's Lemma) Let X be a random variable with E[X] =0, a < X < b, and

b > a, then we have the bound
t2(b—a)2

Ele!*] <e 3
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Probability Theory and Inequalities

ConcentrationInequalities
Lemma: Markov Inequality Pr[X > ¢] = Pr[e'® > e*] < e *E[e'*] fort > 0.
Proof: Pr{e™ > e*} < / letes et (x)dDy < /e'“e"‘ dD, = e “E [etx] .

Q

Lemma: (Hoeffding's Lemma) Let X be a random variable with E[X] =0, a < X < b, and

b > a, then we have the bound
t2(b—a)2

Ele!*] <e 3

Proof: We have that ¢* <

e’ using a<x<b, x—e™ isa convex function.
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Probability Theory and Inequalities

ConcentrationInequalities
Lemma: Markov Inequality Pr[X > ¢] = Pr[e'® > e*] < e *E[e'*] fort > 0.

Proof: Pr{e™ > e*} < / leoesete (x)dDy < /e"“e"‘ dDy = e “E [e‘x] .
Q

Lemma: (Hoeffding's Lemma) Let X be a random variable with E[X] =0, a < X < b, and

b > a, then we have the bound
t2(b—a)2

Ele*]<e s

D
Proof: We have that ¢ <
b — a b—a

From E[X] =0, we have E [e"‘] < bieta £ b__"aetb — ®(t)
—_ a —

e’ using a<x<b, x—e™ isa convex function.
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Probability Theory and Inequalities

ConcentrationInequalities
Lemma: Markov Inequality Pr[X > ¢] = Pr[e'® > e*] < e *E[e'*] fort > 0.

Proof: Pr{e™ > e*} < / leoesete (x)dDy < /e"“e"‘ dDy = e “E [e‘x] .
Q

Lemma: (Hoeffding's Lemma) Let X be a random variable with E[X] =0, a < X < b, and

b > a, then we have the bound
t2(b—a)2

Ele*]<e s

D
Proof: We have that ¢ <
b — a b—a

From E[X] =0, we have E [e‘x] < bie“’ - =
—a —a

e’ using a<x<b, x—e™ isa convex function.

etb — eé(t) e (D(t) — log( b Cta - a Ctb)
_ b—a b—a
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Probability Theory and Inequalities

ConcentrationInequalities
Lemma: Markov Inequality Pr[X > ¢] = Pr[e'® > e*] < e *E[e'*] fort > 0.
Proof: Pr{e™ > e*} < / letes et (x)dDy < /e"“e"‘ dD, = e “E [etx] .

Q

Lemma: (Hoeffding's Lemma) Let X be a random variable with E[X] =0, a < X < b, and

b > a, then we have the bound
t2(b—a)2

Ele!*] <e 3

D
Proof: We have that ¢ <

e’ using a<x<b, x—e™ isa convex function.

b—a b—a
From E[X] = 0, we have E [e‘x] < b—bae“’ £ b_—aae‘b = e) «—  o(t) = log (b ¢ ; e — : 2 : c‘b)
i = . —a
om0 b a  ¢(b—a)
=g (C (b—a b—a(
. oy b (¥ t(b—a)
—ta+log(b_a —_
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Probability Theory and Inequalities

ConcentrationInequalities
Lemma: Markov Inequality Pr[X > ¢] = Pr[e'® > e*] < e *E[e'*] fort > 0.

Proof: Pr{e™ > e*} < / leoesete (x)dDy < /e"“e"‘ dD, = e"*“E [etx] .
Q

Lemma: (Hoeffding's Lemma) Let X be a random variable with E[X] =0, a < X < b, and

b > a, then we have the bound
t2(b—a)?

Ele!X]<e 3
Proof: We have that ¢ <

t . . .
e’ using a<x<b,x—e™ isa convex function.

b —a - b a
From E[X] = 0, we have ol [, th — ¢¥t) «— o(t) = log ol ,tb
[X]=0 IE[e ] < b—ae +b—-ae e o(t) = log T .

Forany t > 0, we have for ¢/(t).o"(t) b a
a ¥ 2 = log e = — (0=
y 0 (t) = u(l—u)(b-a) b—a b-—a

o'(t) =a—
b a t(b—a)
= ¢ log — >
(l+0g(b—(z b—a(

b/(b— a)e—t(b=3) — 3/(b — a)
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Probability Theory and Inequalities

ConcentrationInequalities
Lemma: Markov Inequality Pr[X > ¢] = Pr[e'® > e*] < e *E[e'*] fort > 0.

Proof: Pr{e™ > e*} < / leoesete (x)dDy < /e"“e"‘ dD, = e"*“E [etx] .
Q

Lemma: (Hoeffding's Lemma) Let X be a random variable with E[X] =0, a < X < b, and

b > a, then we have the bound
t2(b—a)?

Ele!X]<e 3
Proof: We have that ¢ <

t . . .
e’ using a<x<b,x—e™ isa convex function.

b —a - b a
From E[X] = 0, we have ol [, th — ¢¥t) «— o(t) = log ol ,tb
[X]=0 IE[e ] < b—ae +b—-ae e o(t) = log T .

Forany t > 0, we have for ¢'(t).o"(t) " i
pe) =5 - ¢"(t) = wu(l-u)(b- 3)2 = log (Cta (b —a b — a @‘(b—“)))
b/(b— a)e=t(b=3) — 3/(b—a)’
u=a/((1-a)e™ ™ +a) a=—-a/(b-a), ue[0,1]. i ( LI Ct(b-a))
i / / ) — O
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Probability Theory and Inequalities

ConcentrationInequalities

Lemma: Markov Inequality Pr[X > ¢] = Pr[e'® > e*] < e *E[e'*] fort > 0.

Proof: Pr{e™ > e*} < /(;leexzen (x)dDy < /e"“e"‘ dDx = e"*E [etx] .

Lemma: (Hoeffding's Lemma) Let X be a random variable with E[X] =0, a < X < b, and
b > a, then we have the bound

E[e!X] < =5

x b_ ' ta . ¢ . . .
Proof: We have that ¢ < = ;ct ;) — ::c-'tb using a < x < b, x — e is a convex function.
= | b a
From E[X] = 0, we have Xl < — et q eth — (1) H(t) = log g i
[X]=0 IE[e ]—b—ae +b—ae e «— o(t) = log b—a( b—a.(
Forany t > 0, we have for g’(t).@”(t) o ( . b -
/ t) = } N/ _ B o 2 = 10€ | € - — — (&
o'(t)=a b/(b— a)e—t6-3) — 2/(b—a) @"(t) u(l — u)(b - a) b—a b-—a
u=a/ ((1 —a)e” """ 4 a) = _a/(b2— a), u € [0,1]. = ta + log (l 3 5 s _ Ct(b—a))
This gives ¢(0) = ¢'(0) =0, ¢"(t) < b= Since u-(1—u) < 1/4. = =i

1
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Probability Theory and Inequalities

ConcentrationInequalities
Lemma: Markov Inequality Pr[X > ¢] = Pr[e'® > e*] < e *E[e'*] fort > 0.
Proof: Pr{e™ > e*} < / leersete (x)dDy < /e"“e"‘ dD, = e *E [e'x] .

Q

Lemma: (Hoeffding's Lemma) Let X be a random variable with E[X] =0, a < X < b, and

b > a, then we have the bound
t2(b—a)2

Ele!X]<e 3

o b
Proof: We have that ¢ <

t . . .
e’ using a<x<b,x—e™ isa convex function.

b —a , b a
— tX ta tb _ . o(t) / N ta tb

From E[X] = 0, we have IE[e ] Sb—ae +b—ae = «— ot) lo”(b—a( T )
Forany t > 0, we have for ¢/(t).o"(t) h :
d(t)=a- : o"(t) = u(l-u) =g (Cm (b i "t(b_a)))

b/(b - a)e—f(b—a) — a/(b —_ a) ’ o — —

u=a/((1-a)e™® +a) a=—a/(b-a), u€[0.1]. P (1 b _ . (.,:(b—a))

This gives ¢(0) = ¢'(0) =0, ¢"(t) < (b_L,a) sinceu-(1—u) <1/4. , 2 )2_ ) o
By the Taylor Remainder Theorem 3¢ € [a,b] S.t. 6(t) = 6(0) + t6'(0) + %¢"(€) <t (b; a)
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Probability Theory and Inequalities

ConcentrationInequalities
Lemma: Markov Inequality Pr[X > ¢] = Pr[e'® > e*] < e *E[e'*] fort > 0.
Proof: Pr{e™ > e*} < / leersete (x)dDy < /e"“e"‘ dD, = e *E [e'x] .

Q

Lemma: (Hoeffding's Lemma) Let X be a random variable with E[X] =0, a < X < b, and

b > a, then we have the bound
t2(b—a)2

Ele!X]<e 3

o b
Proof: We have that ¢ <

t . . .
e’ using a<x<b,x—e™ isa convex function.

From E[X] =0, we have E [e‘x] < %e"’ -+ b_—aaetb = et) «— o(t) = log (b f = et — A ﬁ p c-“’)
F?r any t > 0, we have for g’(t).c')”(t) e ((__,ta ( b a Ct(b_a)))
O(t):a—b/(b—a)e—f(b—a)—a/(b—a)’O”(t) = u(l-u) : T
u=al ((1 - a)e™ ¢ 4 a) = —a/(b2— a), u € [0,1]. = ta + log ( I 7 2 _ (-.t(b—a))
This gives 6(0) = ¢'(0) = 0, 6"(t) < “= since u- (1 —u) < 1/4. 2 2 "2— a b-a
By the Taylor Remainder Theorem 3¢ € [a,b] s.t. ¢(t) = &(0) + t6'(0) + % ") < (b; a)
= E[e'*] < e®?) < eﬂb_;_aﬁ .
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Probability Theory and Inequalities

ConcentrationInequalities

Lemma: (Hoeffding's Inequality) Let X,, X,, ..., X,, be random variables with a; < X, < b,,
b; > a;and S,, = X%, X, then we have the bounds

Pr[Sm — E[Sm] 2 €] < e~2¢"/ Tity (bi—ai)?
Pr[Sy, — E[Sn] < —¢] < 6_262/2210"'_“‘)2
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Probability Theory and Inequalities

ConcentrationInequalities

Lemma: (Hoeffding's Inequality) Let X,, X,, ..., X,, be random variables with a; < X, < b,,
b; > a;and S,, = X%, X, then we have the bounds

Pr[Sm — E[Sm] > €] < e 26/ Zitabi=ai)’
Pr[S;, — E[Sn] < —¢] < 3‘2‘2/2&1(%-0:‘)2
Proof:
Let Zn = Sm — E[Sm] and Q =Y[1, (b — ai)?.
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Probability Theory and Inequalities

ConcentrationInequalities

Lemma: (Hoeffding's Inequality) Let X,, X,, ..., X,, be random variables with a; < X, < b,,
b; > a;and S,, = X%, X, then we have the bounds

Pr[Sm — E[Sm] > €] < e 26/ Zitabi=ai)’
Pr[S;, — E[Sn] < —¢] < 3‘2‘2/221(51'-0&)2
Proof:
Let Zn = Sm — E[Sm] and Q =Y[7, (b — a:)?.

2 m e )2
Pr{Sm — E[Sm| > €} =Pr{Zm 2 €} <e™“E [et-zm] = e "I E [e“x“b"x‘“] <e *exp (t Z‘“(sb' 2 ) = exp (¢(t))
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Probability Theory and Inequalities

ConcentrationInequalities

Lemma: (Hoeffding's Inequality) Let X,, X,, ..., X,, be random variables with a; < X, < b,,
b; > a;and S,, = X%, X, then we have the bounds

Pr[Sm — B[Sn] > €] < e~2/ Sl (bima)?
Pr(Sym — E[Sm] < —€] < o261 Tity(bi—a:)?
Proof:
Let Z,. = S, — E[Sm] and Q@ =3n,(bi —ai)*.
—~te tZ —tepym ¢(X;—E[X; —te t> > iy (b — ai)2
Pr{Sm — E[Sm| 2 €} =Pr{Zm 2 €} <e™“FE [e '"] =e Ii=1F [e (Xa=El '])] <e Cexp ( : 18 ) = exp (¢(t))
t

Markov Inequality

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Probability Theory and Inequalities

ConcentrationInequalities

Lemma: (Hoeffding's Inequality) Let X,, X,, ..., X,, be random variables with a; < X, < b,,
b; > a;and S,, = X%, X, then we have the bounds

Pr{Sm — E[Sm] > ¢ < e72¢/ Eatbima”
Pr[Sm - E[Sm] < —€] < 6_262/2211(1"_“‘)2

Proof:
Let Zm — Sm — E[S'm] and Q — Z:';l(b' " Qi)2 .
—te tzZ —tepym t(X;—E[X;]) —te t* Z:’;l(b! — a'i)2
Pr{Sm — E[Sm| > €} =Pr{Z, > €} <e “E [e '"] =e Ii= B [e . ' ] <e “exp 3 = exp (¥(t))
t t
Markov Inequality Hoeffding Inequality
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Probability Theory and Inequalities

ConcentrationInequalities

Lemma: (Hoeffding's Inequality) Let X,, X,, ..., X,, be random variables with a; < X, < b,,
b; > a;and S,, = X%, X, then we have the bounds

Pr[Sm — E[Sm] > €] < e—2€*/ it (bi—ai)?
Pr{S — E[Sim] < —¢] < €726/ Zikalbimas)’
Proof:
Let Z,. = S, — E[Sm] and Q@ =3n,(bi —ai)*.
~te tZ —tepym (X —E[X; —te t> > iey (bi — a,-)2
Pr{Sm — E[Sm| 2 €} =Pr{Zm 2 €} <e™“FE [e "‘] =e =B [e (a8l ")] <e ‘“exp ( Lot ) = exp (¥(t))

8
t t
Markov Inequality Hoeffding Inequality

We minimize ¥(t) in t to obtain optimal upper bound.

2
() = —8teg-t Q
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Probability Theory and Inequalities

ConcentrationInequalities

Lemma: (Hoeffding's Inequality) Let X,, X,, ..., X,, be random variables with a; < X, < b,,
b; > a;and S,, = X%, X, then we have the bounds

Pr[Sm — E[Sm] > €] < e—2€*/ it (bi—ai)?
Pr{S — E[Sim] < —¢] < €726/ Zikalbimas)’
Proof:
Let Z,. = S, — E[Sm] and Q@ =3n,(bi —ai)*.
~te tZ —tepym (X —E[X; —te t> > iey (bi — a,-)2
Pr{Sm — E[Sm| 2 €} =Pr{Zm 2 €} <e™“FE [e "‘] =e =B [e (a8l ")] <e ‘“exp ( Lot ) = exp (¥(t))

8
t t
Markov Inequality Hoeffding Inequality

We minimize () in t to obtain optimal upper bound.

- § , —8¢ + 2t.,
v(t)= HHLQ L y(p) = AL

=0=-8c+2t.Q =0
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Probability Theory and Inequalities

ConcentrationInequalities

Lemma: (Hoeffding's Inequality) Let X,, X,, ..., X,, be random variables with a; < X, < b,,
b; > a;and S,, = X%, X, then we have the bounds

Pr[Sm — E[Sm] > €] < e—2€*/ it (bi—ai)?
Pr{S — E[Sim] < —¢] < €726/ Zikalbimas)’
Proof:
Let Z,. = S, — E[Sm] and Q@ =3n,(bi —ai)*.
~te tZ —tepym (X —E[X; —te t> > iey (bi — a,-)2
Pr{Sm — E[Sm| 2 €} =Pr{Zm 2 €} <e™“FE [e "‘] =e =B [e (a8l ")] <e ‘“exp ( Lot ) = exp (¥(t))

8
t t
Markov Inequality Hoeffding Inequality

We minimize () in t to obtain optimal upper bound.

e 2 —
b(t) = steth — () = 86;2t*Q=0=>—8e+2t.Q=0=>t.=%.
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Probability Theory and Inequalities

ConcentrationInequalities

Lemma: (Hoeffding's Inequality) Let X,, X,, ..., X,, be random variables with a; < X, < b,,
b; > a;and S,, = X%, X, then we have the bounds

Pr[Sm — E[Sm] > €] < e—2€*/ it (bi—ai)?
Pr{S — E[Sim] < —¢] < €726/ Zikalbimas)’
Proof:
Let Z,. = S, — E[Sm] and Q@ =3n,(bi —ai)*.
~te tZ —tepym (X —E[X; —te t> > iey (bi — a,-)2
Pr{Sm — E[Sm| 2 €} =Pr{Zm 2 €} <e™“FE [e "‘] =e =B [e (a8l ")] <e ‘“exp ( Lot ) = exp (¥(t))

8
t t
Markov Inequality Hoeffding Inequality

We minimize () in t to obtain optimal upper bound.

2 -
U(t) = St ¥Q ' () = S A0 =0=-8+2t.Q=0=1t., = 5
8 8 Q
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Probability Theory and Inequalities

ConcentrationInequalities

Lemma: (Hoeffding's Inequality) Let X,, X,, ..., X,, be random variables with a; < X, < b,,
b; > a;and S,, = X%, X, then we have the bounds

Pr[Sm — E[Sm] > ¢ < 72/ Eialbimai)”
Pr[Sp — E[Sm] < —¢] < 726/ Eita(bi=a:)”
Proof:
Let Z,, = Sm — E[Sm] and Q =Y"1", (b —a:)®.

_BL% 2y (b —a;)?
Pr{Sm — E[Sm] > €} = Pr{Zn > €} < e “E [e‘-zm] =g "IN, E [e‘(x"'b[x")] <e "exp ( 2iz (b — @) ) = exp (1(t))

8
t t
Markov Inequality Hoeffding Inequality

We minimize () in t to obtain optimal upper bound.

2 -
8 8 Q
ple) = T+ 10 20 L exp(y(t)) = exp (—28/;(1».- -ai)z).
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Probability Theory and Inequalities

ConcentrationInequalities

Lemma: (Hoeffding's Inequality) Let X,, X,, ..., X,, be random variables with a; < X, < b,,
b; > a;and S,, = X%, X, then we have the bounds

Pr[Sm — E[Sin] > €] < 726/ Zita(bi=ai)®
Pr[Sp — E[Sm] < —¢] < 726/ Eita(bi=a:)”
Proof:
Let Zn = Sm — E[Sm] and Q =Y[7, (b — a:)?.

_E[X. 23" (b — ai)?
Pr{Sn; o E[Sng] Z 6} v Pr{an 2 6} S e—tcE [etz"'] = e—tén:';IE [el(xt"blxtl)] S e—t( exp ( Et:l( a ) ) = exp (l()(t))

8
t t
Markov Inequality Hoeffding Inequality

We minimize () in t to obtain optimal upper bound.

- § , —8¢ + 2t.
w(t)= Q) = AL

—32¢2 16€2 —0g® 2 & 2
P(ts) = + = — exp(¥(t.)) = exp (—26 /Y (bi —ai) )
5 T8¢ T 0 2 |

Similarly, we obtain the othercaseusingZ,, = —Z,,. =

=0=>—8¢+2t.Q=0=>t.=%.
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Lemma: Letsamples S={(x4,y1),(X2,¥2),---,(Xm,Ym)} be choseni.i.d. on {0,1} fromD ~ X x Y then

JPr [IR(h) = R(h)| > €] < 2exp(—2me®)
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Lemma: Letsamples S={(x4,y1),(X2,¥2),---,(Xm,Ym)} be choseni.i.d. on {0,1} fromD ~ X x Y then

JPr [IR(h) = R(h)| > €] < 2exp(—2me®)

Proof:

A — m .. 14 1
R(h) = — D lnwosen = 2 Xi =Sm  Xi = —lnsetan) € [O' _]
=] =1

m m
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Lemma: Letsamples S={(x4,y1),(X2,¥2),---,(Xm,Ym)} be choseni.i.d. on {0,1} fromD ~ X x Y then

JPr [IR(h) = R(h)| > €] < 2exp(—2me®)

Proof:
R(h) — i i lh(.r-);é(‘('l‘-) — i‘xi —— Sm -X"i — ilh(l")#(‘(l“) € |0. l
,'1 i=1 i w3 ‘=l " et L8

m m

By Hoeffding’s Inequality

D9
—2ce*m=

Pr{lfi’(h) — R(h)| > €} < 2(3—2'2/22';1“"‘“")2 —92¢ m  =2exp (—262771) -
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces #. Let #t be any learning algorithm that has
empirical generalization error R(hs) then for any h € # we have with probability at least 1 — §

o~ log |H| + log 2
<
R(h) < R(h) + \/ o
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces #. Let #t be any learning algorithm that has
empirical generalization error R(hs) then forany h € % we have with probability at least 1 — &

log |H| + log 2
2m

R(h) < R(h) + \/

Proof:
Pr{h € H,|R(h) — R(h)| > €} = Pr{h1 € HA|R(h1) — R(h1)| > €V .-+ V hyu€ H A |R(hy)) — R(hyzy)| > €}
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces #. Let #t be any learning algorithm that has
empirical generalization error R(hs) then forany h € % we have with probability at least 1 — &

i log |H| + log 2
<
R(h) < R(h) + \/ 5
Proof:
Pr{h € H,|R(h) — R(h)| > €} = Pr{h1 € HA|R(h1) — R(h1)| > €V .-+ V hyu€ H A |R(hy)) — R(hyzy)| > €}

|H|
= Z Pr{h; € H A |R(hi) — R(hi)| > €} < |H|2exp(—2me) < &
i=1
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces #. Let #t be any learning algorithm that has
empirical generalization error R(hs) then forany h € % we have with probability at least 1 — &

i log |H| + log 2
<
R(h) < R(h) + \/ 5
Proof:
Pr{h € H,|R(h) — R(h)| > €} = Pr{h1 € HA|R(h1) — R(h1)| > €V .-+ V hyu€ H A |R(hy)) — R(hyzy)| > €}

|H|
= Z Pr{h; € H A |R(hi) — R(hi)| > €} < |H|2exp(—2me) < &
i=1

= log(|H|) — 2me* < log (g) = 2me> > log (|H|) + log (%)
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces #. Let #t be any learning algorithm that has
empirical generalization error R(hs) then forany h € % we have with probability at least 1 — &

i log |H| + log 2
<
R(h) < R(h) + J 5
Proof:
Pr{h € H,|R(h) — R(h)| > €} = Pr{h1 € HA|R(h1) — R(h1)| > €V .-+ V hyu€ H A |R(hy)) — R(hyzy)| > €}

|H|
= Z: Pr{h; € H A |R(hi) — R(hi)| > €} < |H|2exp(—2me) < &
i=1

= log(|H|) — 2me* < log (g) = 2me> > log (|H]|) + log (%)

= m2> 2%2 (log(|'H|) + log (—))
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Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces #. Let #t be any learning algorithm that has
empirical generalization error R(hs) then forany h € % we have with probability at least 1 — &

i log |H| + log 2
<
R(h) < R(h) + J 5
Proof:
Pr{h € H,|R(h) — R(h)| > €} = Pr{h1 € HA|R(h1) — R(h1)| > €V .-+ V hyu€ H A |R(hy)) — R(hyzy)| > €}

|H|
= Z: Pr{h; € H A |R(hi) — R(hi)| > €} < |H|2exp(—2me) < &
i=1

= log(|H|) — 2me* < log (g) = 2me> > log (|H]|) + log (%)

= m2> 2%2 (log(|'H|) + log (—))

Sl o

- \/log(I'HI) + log (%)
- 2m
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Generalization Behaviors

Generalization Errorand Model Capacity

error 4 bound on generalization error

complexity term

training error

.
measure of capacity
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Generalization Behaviors

Generalization Errorand Model Capacity

error 4 bound on generalization error

complexity term

training error

-
measure of capacity

« Largermodel capacity often allows for smaller training error (model capacity ~ | #|).

« Complexity of # tends to hinder generalization to new inputs.
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Generalization Behaviors

Generalization Errorand Model Capacity

error 4 bound on generalization error Overfitting data
complexity term
training error
>
www.stackexchange

measure of capacity

« Largermodel capacity often allows for smaller training error (model capacity ~ | #|).

« Complexity of # tends to hinder generalization to new inputs.
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Generalization Behaviors

Generalization Errorand Model Capacity

error 4 bound on generalization error Overfitting data
complexity term
training error
-
www.stackexchange

measure of capacity

« Largermodel capacity often allows for smaller training error (model capacity ~ | #|).
« Complexity of # tends to hinder generalization to new inputs.

« Smallestgeneralization error arises intermediate trading-off in model complexity and training error.
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Generalization Behaviors
Generalization Errorand Model Capacity | fﬁ —1—/)
[

error 4 bound on generalization error Overfitting data

~ complexity term

training error

.
measure of capacity

www.stackexchange

« Largermodel capacity often allows for smaller training error (model capacity ~ | #|).
« Complexity of # tends to hinder generalization to new inputs.
« Smallestgeneralization error arises intermediate trading-offin model complexity and training error.

« Central challengein machinelearningis to find appropriate hypothesis classes for given learning tasks.



Minimax Rates and PAC-Learning

Minimax Rate

Vi (C) = hsl_n/t;() iu? Es.\s|=m [R(hs)]

& input space, Y output space, c(x): L = Y concept
C conceptclass, # hypothesis class.
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Minimax Rates and PAC-Learning

Minimax Rate

Vi (C) = hsl_n"ft() iuc? Es.\s|=m [R(hs)]

& input space, Y output space, c(x): L = Y concept
C conceptclass, # hypothesis class.

PAC-learningClassification:

Vi) =, it - swp Esisizm | P {hs(z) # (o)}
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Minimax Rates and PAC-Learning

Minimax Rate

Vi (C) = hsl-l.l./f;() SUP ESISl—m [R(hs)]

& input space, Y output space, c(x): L = Y concept
C conceptclass, # hypothesis class.

PAC-learningClassification:

VPAC(C)= inf sup Es. |S|=m [ Pr {hs(x) # c(:z:)}]
hs=A(:) D x ,ceC
A conceptclass Cis PAC-learnableif V,ﬁ"c C)=0.
More precisely, given e > 0, 3M = poly(1/¢) suchthat m = M, we have

VEAS(C) g
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Minimax Rates and PAC-Learning

Minimax Rate

Vi lC)=_ ‘Int sup Fgq.g1—m |[R(h
(€) hs=A(‘)Dx,cp€C i [ ( S)]

& input space, Y output space, c(x): L = Y concept
C conceptclass, # hypothesis class.

PAC-learningClassification:
V,I,::AC C)= inf sup FEg.s1=m [ Pr {hg(x) # c(x ]
© =, jnf s Esisim | Pr {hs(z) # c(z)}
A conceptclass Cis PAC-learnableif V. (C) = 0.
More precisely, given € > 0, 3M = poly(1/¢) such that m = M, we have

VEAS(C) g

Theorem (PAC Learning €-> Minimax): Fora conceptclass €
the minimax rate converges to zero with polynomial sampling complexity
if and only if the conceptclass € is PAC-learnable.

Machine Learning: Foundations and Applications



Minimax Rates and PAC-Learning

Minimax Rate and PAC-Learning Classification V"*“(C) = 12f sup Eg.isi=m [R(hs = A(S)]
Dx ,ceC

Theorem (PAC Learning €-> Minimax):
Given € > 0, V/4¢(¢) < ¢ with m > poly(1/¢) holdsif and only if there is an algorithm # so that

givene > 0,8 > O'SP,S.,. {R(hs) <€} >1—46 for m > poly(1/e,1/5) holds.

Machine Learning: Foundations and Applications
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Minimax Rates and PAC-Learning

Minimax Rate and PAC-Learning Classification V"*“(C) =

inf sup ES :|S|=m [R(hs — .A(S)]
AD Dy ,ceC

Theorem (PAC Learning €-> Minimax):
Given € > 0, V/4¢(¢) < ¢ with m > poly(1/¢) holdsif and only if there is an algorithm # so that
givene > 0,8 > O'SPIS'" {R(hs) <€} >1—4 for m > poly(1/e,1/5) holds.

Proof: (i) = (1) follows readily.

We show (ii) = (i)

Paul J. Atzberger, http://atzberger.org/
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Minimax Rates and PAC-Learning

Minimax Rate and PAC-Learning Classification V"*“(C) =

inf sup ES :|S|=m [R(hs — .A(S)]
AD Dy ,ceC

Theorem (PAC Learning €-> Minimax):

Given € > 0, V/4¢(¢) < ¢ with m > poly(1/¢) holdsif and only if there is an algorithm # so that
givene > 0,8 > O'SPIS'" {R(hs) <€} >1—4 for m > poly(1/e,1/5) holds.

Proof: (i) = (1) follows readily.

We show (ii) = (i)

R(hs) = Pr. {hs(X) # e(X)}
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Minimax Rates and PAC-Learning

Minimax Rate and PAC-Leaming Classification V" (C) = 12f Dsup Es.isj=m [R(hs = A(S))
X ¢c€C

Theorem (PAC Learning €-> Minimax):

Given € > 0, v/'4¢(¢) < e with m > poly(1/¢) holdsif and only if there is an algorithm # so that

givene > 0,8 > O’SPISm {R(hs) <€} >1—4 for m > poly(l/e,1/5) holds.
Proof: (i) = (ii) follows readily.
We show (ii) = (i)

R(hs) = Pr {hs(X) # c(X)}

Given (ii) we have JAst. givene > 0,5 = ¢/2, IM = poly (1, %) st.forDy €M, c €C,

Prs.pm {R(A(S)) <€} >1-6 = Prs.pm {R(A(S)) > €} < 6, m > M.
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Minimax Rates and PAC-Learning

Minimax Rate and PAC-Leaming Classification V" (C) = 12f Dsup Es.isj=m [R(hs = A(S))
X ¢c€C

Theorem (PAC Learning €-> Minimax):

Given € > 0, vP4¢(¢) < ¢ with m > poly(1/¢) holdsif and only if there is an algorithm s so that

givene > 0,8 > O,SPgm {R(hs) <€} >1—4§ for m > poly(1/e,1/d) holds.
Proof: (i) = (ii) follows readily.
We show (ii) = (i)

R(hs) = Pr {hs(X) # c(X)}

Given (ii) we have IAst. givene > 0,5 = ¢/2, IM = poly (1, %) st.forDy €M, c €C,

Prs~pm {R(A(S)) <e}>1-6 = Prs.pm {R(.A(S)) - K« 6, m > M.
We obtain the bound

~

Es.|S=m [I?(A(S))] < szl)m{R .,Zl S) < e} G-rJ\PNI {I? ) > e} 1<e+d< e—f—le =

lol A
m
|
M
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Minimax Rates and PAC-Learning

Minimax Rate and PAC-Leaming Classification V" (C) = 12f Dsup Es.isj=m [R(hs = A(S))
X ¢c€C

Theorem (PAC Learning €-> Minimax):

Given € > 0, vP4¢(¢) < ¢ with m > poly(1/¢) holdsif and only if there is an algorithm s so that

givene > 0,8 > O,SPgm {R(hs) <€} >1—4§ for m > poly(1/e,1/d) holds.
Proof: (i) = (ii) follows readily.
We show (ii) = (i)

R(hs) = Pr {hs(X) # c(X)}

Given (ii) we have IAst. givene > 0,5 = ¢/2, IM = poly (1, %) st.forDy €M, c €C,

Prs.pm {R(A(S)) <e}>1-6= Prs~Dm{R(.A(S)) > €} < 6, m > M.

We obtain the bound
Es.is|=m [I?(A(S))] &£ SPII)”‘{R .,Zl S)<e}-e+ \Pl {I? ) > e} 1<e+d<e+ —1-6 = ge = ¢

m > poly(1/€)
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Minimax Rates and PAC-Learning

Minimax Rate and PAC-Leaming Classification V"“(C) = inf sup Eg,sj= [R(hs = A(S)]

A Dy ,ceC

Theorem (PAC Learning €-> Minimax):

Given € > 0, vP4¢(¢) < ¢ with m > poly(1/¢) holdsif and only if there is an algorithm s so that

givene > 0,8 > O,SPgm {R(hs) <€} >1—4§ for m > poly(1/e,1/d) holds.
Proof: (i) = (ii) follows readily.
We show (ii) = (i)

R(hs) = Pr {hs(X) # o(X)}

Given (i) we have 3As.t. given e > 0, § = ¢/2, 3M = poly (1, 1) sit.forDy €D, ¢ €C,

Prs~om {R(A(S)) < €} > 16 = Prs.om {R(A(S)) > €} < 6, m > M.

We obtain the bound
Es:sj=m [R(A(S))] < SPll)m{I? .,;1 S)<e€}-e+ \Pl {I? ) > e} 1<e+d<e+ 1e = ge = ¢
Vil (o) B
m > poly(1/€)

= YPAC 0, as m— 0.
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Minimax Rates and Learning Tasks

PAC-LearningClassification

VaAS ()= inf Es.si=m | Pr_{h
W) =, inf | sw Bsisiem | Pr {hs(@) # e(x))]

Non-parameteric Regression

NR(py _ B 2
VARE) =, inf | sup Bsysiem |(hs(@) — c())’]

Agnostic PAC-Learning

A-PAC — inf et s B /
VATPAC(C) = int | sup_Essiom |R(hs) - inf ()
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Minimax Rates and Learning Tasks

PAC-LearningClassification

yPAC ) =  inf Es.s1—m | Pr {h
W) =, inf | sw Bsisiem | Pr {hs(@) # e(x))]

Non-parameteric Regression

NR(C)= inf Es.s|= — c(x))?
VAR@) =, inf | swp Bsisiom |(hs(@) — c(@))’]

Agnostic PAC-Learning

A-PAC - inf et s B /
VATPAC(C) = int | sup_Essiom |R(hs) - inf ()

Comparison of learning problems:
Case:C c {x1}*

WP C) S VA HEY S VT 5(C)
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Minimax Rates and Learning Tasks

PAC-LearningClassification

yPAC ) =  inf Es.s1—m | Pr {h
W) =, inf | sw Bsisiem | Pr {hs(@) # e(x))]

Non-parameteric Regression

NR(C)= inf Es.s|= — c(x))?
VAR@) =, inf | swp Bsisiom |(hs(@) — c(@))’]

Agnostic PAC-Learning

A-PAC - inf et s B /
VATPAC(C) = int | sup_Essiom |R(hs) - inf ()

Comparison of learning problems:
Case:C c {x1}*
U (W Bl (o B Vo 2 (1
Case:C C RY
Vs (G £ VA-5(C)
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Image Classification

Statistical Learning Theory e SHET . EABE

Machine Learning Algorithms and Tasks K
« Guaranteed performance forunknown distributions D, requires we have e -
some restriction on the hypothesis class # and conceptclass €. - _"'“" Eﬂlﬁ

. : ' : Robotics / Controls
« There is no general learning algorithm that works for all possible tasks. u

b

+ These assertions correspondto so-called “No Free Lunch Theorems.”

+ Toachieve good performance learning algorithms must make some use of
knowledge / mathematical structure ofthe specific task.

New Scientist
Delta, MIT and Cornell (Steven Collins)

Forecasting

washingtonpost.com



Statistical Learning Theory

No Free Lunch Theorem

Theorem: Letconceptclass be all binary functions, € = U = {all functions f(z): X — {0,1}},
where Zis discrete space of finite binary sequences{{0,1}", N € N} = {(z4,2,,...,2\), z; € {0,1}}.
For the universal conceptclass U we have VEACE)-A0 .

Therefore, U is not PAC-Learnable.
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Statistical Learning Theory

No Free Lunch Theorem

Theorem: Letconceptclass be all binary functions, € = U = {all functions f(z): X — {0,1}},
where Zis discrete space of finite binary sequences{{0,1}", N € N} = {(z4,2,,...,2\), z; € {0,1}}.
For the universal conceptclass U we have V),“(C)-40 .

Therefore, U is not PAC-Learnable.

Proof:
Fora given sample size, let X' ¢ ) ofbinary sequencess.t. |X| = 2n.

Let D, ~ uniform distribution over all functionsf : X’ — {0.1}. Note |[Y*| = 2" when X € {0.1}*".
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Statistical Learning Theory

No Free Lunch Theorem

Theorem: Letconceptclass be all binary functions, € = U = {all functions f(z): X — {0,1}},
where Zis discrete space of finite binary sequences{{0,1}", N € N} = {(z4,2,,...,2\), z; € {0,1}}.
For the universal conceptclass U we have V),“(C)-40 .
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where Zis discrete space of finite binary sequences{{0,1}", N € N} = {(z4,2,,...,2\), z; € {0,1}}.
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Therefore, U is not PAC-Learnable.

Proof:

Fora given sample size, let X' ¢ ) ofbinary sequencess.t. |X| = 2n.
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Significance: If the hypothesis class #, target concept class C are
too general and the distribution Dq is unknown then there is no
guarantees on algorithmic performance on the tasks.

This means no generic all purpose learning algorithms exist.
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tasks and develop associated well-suited learning algorithms.

Support Vector Machines Neural Networks

Image Classification

wrere St EHEE o~ HIENEN S -

soncrse ISR SNBSS

SEERE AR

Tml VEyERW
FETHMErEe P
M~ &S RS
SE<HsBnga'm
EEESEEDANE
ENEENEREE
=S
dELGREESTSG
Abdslistif Abdelisttah Blog

Robotics Controllers
u

g1

New Scientist
Delta, MIT and Cornell (Steven Collins)

washingtonpost.com



Image Classification

Statistical Learning Theory e SHET . EABE

No Free Lunch Theorem

« Significance: If the hypothesis class #, target concept class C are
too general and the distribution Dq is unknown then there is no
guarantees on algorithmic performance on the tasks.

SESEREE:

Ad'uﬂ""zﬂlﬁ
« This means no generic all purpose learning algorithms exist. Robotics Controllers
v
« Must utilize some knowledge or structure of the tasks to be solved. ’%
« Central goal of this course is to consider wide variety of specific /ﬁ( L L
tasks and develop associated well-suited learning algorithms. N‘S' g

. . Delta, MIT and Cornell (Steven Collins)
Support Vector Machines Neural Networks Clustering Methods o S
a0 Forecasting

washingtonpost.com



4 ’l?;f.'h'
A

Ny 72



http://atzberger.org/

