Name:

Practice Problems: Introduction to Numerical Analysis, 104B Professor: Paul J. Atzberger

Scoring:

Problem1: _____

Problem2: _____

Problem3: _____

Directions: Answer each question carefully and be sure to show all of your work. You are permitted to use a calculator but please be sure to show intermediate steps in your calculations. If you have any questions please feel free to ask.

Problem 1: One-step Methods for Ordinary Differential Equation (ODEs).

Consider the ODE

$$y' = f(y,t)$$
$$y(0) = y_0$$

approximated by a one-step method

$$w_0 = y_0$$

 $w_{n+1} = w_n + h\phi(t_n, w_n).$

(a) What are sufficient conditions on f so that the ODE is well-posed over the time $t \in [a, b]$?

(b) Euler's Method approximates the ODE by

$$w_0 = y_0$$

 $w_{n+1} = w_n + hf(t_n, w_n).$

What is the truncation error for Euler's Method? For $\tau_{i+1}(h) = O(h^{\ell})$ what is the order ℓ ?

(c) In the case that $f(t, y) = \lambda y$ with $\lambda < 0$ what condition must be satisfied by h in order for Euler's Method to be asymptotically stable? Give the condition when $\lambda = -2$.

(d) The Trapezoidal Method approximates the ODE by

$$w_0 = y_0$$

$$w_{n+1} = w_n + \frac{h}{2} \left(f(t_{n+1}, w_{n+1}) + f(t_n, w_n) \right).$$

In this case what condition must be satisfied by h in order for the Trapezoidal Method to be asymptotically stable? Give the condition when $\lambda = -2$.

Problem 2: Runge-Kutta Methods for Ordinary Differential Equation (ODEs).

Consider the two-stage Runge-Kutta Method with Tableau

$$\begin{array}{c|c} 0 \\ 1 \\ \frac{1}{2} \\ \frac{1}{2} \\ \end{array}$$

(a) In the case that f(t, y) = -y + t give the first time-step $y(t_1)$ approximation that is generated by using the Runge-Kutta Method when h = 0.1 and $t_0 = 0, y(0) = 0$.

(b) In the case that $f(t, y) = \lambda y$ with $\lambda < 0$ what condition must be satisfied by h in order for Runge-Kutta Method to be asymptotically stable? Give the condition when $\lambda = -2$.

Problem 3: Multi-step Methods for Ordinary Differential Equation (ODEs). Consider a Multistep Method that approximates the ODE by

$$w_{n+1} = a_m w_n + \dots + a_0 w_{n-m+1} + h \left[b_{m+1} f(t_{n+1}, w_{n+1}) + b_m f(t_n, w_n) + \dots + b_0 f(t_{n-m+1}, w_{n-m+1}) \right]. w_0 = \alpha_0, w_1 = \alpha_1.$$

(a) Consider the Two-Step Adams-Bashforth Method with $a_m = 1$, $a_{m-1} = 0$, and $b_{m+1} = 0$, $b_m = \frac{3}{2}$, $b_{m-1} = -\frac{1}{2}$. In the case that f(t, y) = -y+t give the time-step $y(t_2)$ approximation that is generated by using this Multistep Method with $\alpha_0 = 0$, $\alpha_1 = 0.1$ when h = 0.1, $t_0 = 0$.

(b) In the prototype problem with f(t, y) = 0, what condition must be satisfied in order for the Two-Step Adams-Bashforth Method to be stable?

(c) Consider the Two-Step Adams-Moulten Method with $a_m = 1$, $a_{m-1} = 0$, and $b_{m+1} = \frac{5}{12}$, $b_m = \frac{8}{12}$, $b_{m-1} = -\frac{1}{12}$. In the prototype problem with f(t, y) = 0 what condition must be satisfied in order for the method to be stable?