Name: \qquad

Practice Problems: Introduction to Numerical Analysis, 104B
 Professor: Paul J. Atzberger

Scoring:

Problem1: \qquad

Problem2: \qquad

Problem3: \qquad

Directions: Answer each question carefully and be sure to show all of your work. You are permitted to use a calculator but please be sure to show intermediate steps in your calculations. If you have any questions please feel free to ask.

Problem 1: One-step Methods for Ordinary Differential Equation (ODEs).
Consider the ODE

$$
\begin{aligned}
y^{\prime} & =f(y, t) \\
y(0) & =y_{0}
\end{aligned}
$$

approximated by a one-step method

$$
\begin{aligned}
w_{0} & =y_{0} \\
w_{n+1} & =w_{n}+h \phi\left(t_{n}, w_{n}\right) .
\end{aligned}
$$

(a) What are sufficient conditions on f so that the ODE is well-posed over the time $t \in[a, b]$?
(b) Euler's Method approximates the ODE by

$$
\begin{aligned}
w_{0} & =y_{0} \\
w_{n+1} & =w_{n}+h f\left(t_{n}, w_{n}\right) .
\end{aligned}
$$

What is the truncation error for Euler's Method? For $\tau_{i+1}(h)=O\left(h^{\ell}\right)$ what is the order ℓ ?
(c) In the case that $f(t, y)=\lambda y$ with $\lambda<0$ what condition must be satisfied by h in order for Euler's Method to be asymptotically stable? Give the condition when $\lambda=-2$.
(d) The Trapezoidal Method approximates the ODE by

$$
\begin{aligned}
w_{0} & =y_{0} \\
w_{n+1} & =w_{n}+\frac{h}{2}\left(f\left(t_{n+1}, w_{n+1}\right)+f\left(t_{n}, w_{n}\right)\right) .
\end{aligned}
$$

In this case what condition must be satisfied by h in order for the Trapezoidal Method to be asymptotically stable? Give the condition when $\lambda=-2$.

Problem 2: Runge-Kutta Methods for Ordinary Differential Equation (ODEs).
Consider the two-stage Runge-Kutta Method with Tableau

(a) In the case that $f(t, y)=-y+t$ give the first time-step $y\left(t_{1}\right)$ approximation that is generated by using the Runge-Kutta Method when $h=0.1$ and $t_{0}=0, y(0)=0$.
(b) In the case that $f(t, y)=\lambda y$ with $\lambda<0$ what condition must be satisfied by h in order for Runge-Kutta Method to be asymptotically stable? Give the condition when $\lambda=-2$.

Problem 3: Multi-step Methods for Ordinary Differential Equation (ODEs).
Consider a Multistep Method that approximates the ODE by

$$
\begin{aligned}
w_{n+1} & =a_{m} w_{n}+\cdots+a_{0} w_{n-m+1} \\
& +h\left[b_{m+1} f\left(t_{n+1}, w_{n+1}\right)+b_{m} f\left(t_{n}, w_{n}\right)+\cdots++b_{0} f\left(t_{n-m+1}, w_{n-m+1}\right)\right] \\
w_{0} & =\alpha_{0}, w_{1}=\alpha_{1}
\end{aligned}
$$

(a) Consider the Two-Step Adams-Bashforth Method with $a_{m}=1, a_{m-1}=0$, and $b_{m+1}=$ $0, b_{m}=\frac{3}{2}, b_{m-1}=-\frac{1}{2}$. In the case that $f(t, y)=-y+t$ give the time-step $y\left(t_{2}\right)$ approximation that is generated by using this Multistep Method with $\alpha_{0}=0, \alpha_{1}=0.1$ when $h=0.1, t_{0}=0$.
(b) In the prototype problem with $f(t, y)=0$, what condition must be satisfied in order for the Two-Step Adams-Bashforth Method to be stable?
(c) Consider the Two-Step Adams-Moulten Method with $a_{m}=1, a_{m-1}=0$, and $b_{m+1}=$ $\frac{5}{12}, b_{m}=\frac{8}{12}, b_{m-1}=-\frac{1}{12}$. In the prototype problem with $f(t, y)=0$ what condition must be satisfied in order for the method to be stable?

