Variational Formulation of Elliptic PDEs

Paul J. Atzberger
206D: Finite Element Methods
University of California Santa Barbara

Variational Formulation

Definition

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$
An inner-product is a symmetric bilinear form with the additional properties

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$
An inner-product is a symmetric bilinear form with the additional properties
iii $b(v, v) \geq 0, \forall v \in \mathcal{V}$

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$
An inner-product is a symmetric bilinear form with the additional properties
iii $b(v, v) \geq 0, \forall v \in \mathcal{V}$
iv $b(v, v)=0, \Longleftrightarrow v \equiv 0$.

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$
An inner-product is a symmetric bilinear form with the additional properties
iii $b(v, v) \geq 0, \forall v \in \mathcal{V}$
iv $b(v, v)=0, \Longleftrightarrow v \equiv 0$.

Examples:

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$
An inner-product is a symmetric bilinear form with the additional properties
iii $b(v, v) \geq 0, \forall v \in \mathcal{V}$
iv $b(v, v)=0, \Longleftrightarrow v \equiv 0$.

Examples:

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$
An inner-product is a symmetric bilinear form with the additional properties
iii $b(v, v) \geq 0, \forall v \in \mathcal{V}$
iv $b(v, v)=0, \Longleftrightarrow v \equiv 0$.

Examples:

$$
\mathrm{i} \mathcal{V}=\left\{w \mid w(x)=\sum_{k=1}^{n} c_{k} \phi_{k}(x)\right\}
$$

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$
An inner-product is a symmetric bilinear form with the additional properties
iii $b(v, v) \geq 0, \forall v \in \mathcal{V}$
iv $b(v, v)=0, \Longleftrightarrow v \equiv 0$.

Examples:

$$
\text { i } \mathcal{V}=\left\{w \mid w(x)=\sum_{k=1}^{n} c_{k} \phi_{k}(x)\right\} \text { where } u=\sum_{k=1}^{n} a_{k} \phi_{k}, v=\sum_{k=1}^{n} b_{k} \phi_{k}
$$

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$
An inner-product is a symmetric bilinear form with the additional properties
iii $b(v, v) \geq 0, \forall v \in \mathcal{V}$
iv $b(v, v)=0, \Longleftrightarrow v \equiv 0$.

Examples:

$$
\text { i } \mathcal{V}=\left\{w \mid w(x)=\sum_{k=1}^{n} c_{k} \phi_{k}(x)\right\} \text { where } u=\sum_{k=1}^{n} a_{k} \phi_{k}, v=\sum_{k=1}^{n} b_{k} \phi_{k} \text { we define } b(u, v)=\sum_{k} w_{k} a_{k} b_{k} .
$$

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$
An inner-product is a symmetric bilinear form with the additional properties
iii $b(v, v) \geq 0, \forall v \in \mathcal{V}$
iv $b(v, v)=0, \Longleftrightarrow v \equiv 0$.

Examples:

i $\mathcal{V}=\left\{w \mid w(x)=\sum_{k=1}^{n} c_{k} \phi_{k}(x)\right\}$ where $u=\sum_{k=1}^{n} a_{k} \phi_{k}, v=\sum_{k=1}^{n} b_{k} \phi_{k}$ we define $b(u, v)=\sum_{k} w_{k} a_{k} b_{k}$. When $w_{k}>0$ and ϕ_{k} are linearly independent this is an inner-product.

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$
An inner-product is a symmetric bilinear form with the additional properties
iii $b(v, v) \geq 0, \forall v \in \mathcal{V}$
iv $b(v, v)=0, \Longleftrightarrow v \equiv 0$.

Examples:

i $\mathcal{V}=\left\{w \mid w(x)=\sum_{k=1}^{n} c_{k} \phi_{k}(x)\right\}$ where $u=\sum_{k=1}^{n} a_{k} \phi_{k}, v=\sum_{k=1}^{n} b_{k} \phi_{k}$ we define $b(u, v)=\sum_{k} w_{k} a_{k} b_{k}$. When $w_{k}>0$ and ϕ_{k} are linearly independent this is an inner-product.
ii $\mathcal{V}=\mathbb{R}^{m}$ and $b(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$
An inner-product is a symmetric bilinear form with the additional properties
iii $b(v, v) \geq 0, \forall v \in \mathcal{V}$
iv $b(v, v)=0, \Longleftrightarrow v \equiv 0$.

Examples:

i $\mathcal{V}=\left\{w \mid w(x)=\sum_{k=1}^{n} c_{k} \phi_{k}(x)\right\}$ where $u=\sum_{k=1}^{n} a_{k} \phi_{k}, v=\sum_{k=1}^{n} b_{k} \phi_{k}$ we define $b(u, v)=\sum_{k} w_{k} a_{k} b_{k}$. When $w_{k}>0$ and ϕ_{k} are linearly independent this is an inner-product.
ii $\mathcal{V}=\mathbb{R}^{m}$ and $b(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
iii $\mathcal{V}=W_{2}^{k}(\Omega)$ with $\Omega \subset \mathbb{R}^{n}$

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:
i b is linear in both components, so $L_{v}[w]=b(v, w)$ and $L_{w}[v]=b(v, w)$ are both linear maps.
ii b is symmetric so $b(v, w)=b(w, v)$
An inner-product is a symmetric bilinear form with the additional properties
iii $b(v, v) \geq 0, \forall v \in \mathcal{V}$
iv $b(v, v)=0, \Longleftrightarrow v \equiv 0$.

Examples:

i $\mathcal{V}=\left\{w \mid w(x)=\sum_{k=1}^{n} c_{k} \phi_{k}(x)\right\}$ where $u=\sum_{k=1}^{n} a_{k} \phi_{k}, v=\sum_{k=1}^{n} b_{k} \phi_{k}$ we define $b(u, v)=\sum_{k} w_{k} a_{k} b_{k}$. When $w_{k}>0$ and ϕ_{k} are linearly independent this is an inner-product.
ii $\mathcal{V}=\mathbb{R}^{m}$ and $b(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
iii $\mathcal{V}=W_{2}^{k}(\Omega)$ with $\Omega \subset \mathbb{R}^{n}$ with $(u, v)_{m}=\sum_{|\alpha| \leq m}\left(\partial^{\alpha} u, \partial^{\alpha} u\right)_{L^{2}(\Omega)}$.

Variational Formulation

Definition

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{V}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{L}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{L}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{L}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\| \mathcal{V}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}.

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{L}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{L}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof:

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{L}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof:

Since $a(\cdot, \cdot)$ is coercive we have $a(v, v)=0 \rightarrow v \equiv 0$,

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\| \mathcal{V}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof:

Since $a(\cdot, \cdot)$ is coercive we have $a(v, v)=0 \rightarrow v \equiv 0$, so a is an inner-product and $\|v\|_{E}=\sqrt{a(v, v)}$ is a norm.

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\| \mathcal{V}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof:

Since $a(\cdot, \cdot)$ is coercive we have $a(v, v)=0 \rightarrow v \equiv 0$, so a is an inner-product and $\|v\|_{E}=\sqrt{a(v, v)}$ is a norm. We just need to show completeness.

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{V}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{V}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):
Suppose $\left\{v_{k}\right\}$ is a Cauchy sequence in $\left(V,\|\cdot\|_{E}\right)$,

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{V}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\left\{v_{k}\right\}$ is a Cauchy sequence in $\left(V,\|\cdot\|_{E}\right)$, then by coercivity $\left\{v_{k}\right\}$ is also Cauchy in $(\mathcal{H},\|\cdot\|)$.

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{V}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\left\{v_{k}\right\}$ is a Cauchy sequence in $\left(V,\|\cdot\|_{E}\right)$, then by coercivity $\left\{v_{k}\right\}$ is also Cauchy in $(\mathcal{H},\|\cdot\|)$. By completeness of \mathcal{H} there exists a $v \in \mathcal{H}$ so $v_{n} \rightarrow v$ in $\|\cdot\|_{H}$.

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{V}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\left\{v_{k}\right\}$ is a Cauchy sequence in $\left(V,\|\cdot\|_{E}\right)$, then by coercivity $\left\{v_{k}\right\}$ is also Cauchy in $(\mathcal{H},\|\cdot\|)$. By completeness of \mathcal{H} there exists a $v \in \mathcal{H}$ so $v_{n} \rightarrow v$ in $\|\cdot\|_{H}$. Since \mathcal{V} is closed in \mathcal{H} by def. of a subspace we have $v \in \mathcal{V}$.

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{V}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\left\{v_{k}\right\}$ is a Cauchy sequence in $\left(V,\|\cdot\|_{E}\right)$, then by coercivity $\left\{v_{k}\right\}$ is also Cauchy in $(\mathcal{H},\|\cdot\|)$. By completeness of \mathcal{H} there exists a $v \in \mathcal{H}$ so $v_{n} \rightarrow v$ in $\|\cdot\|_{H}$. Since \mathcal{V} is closed in \mathcal{H} by def. of a subspace we have $v \in \mathcal{V}$. Now $\left\|v-v_{k}\right\|_{E} \leq c\left\|v-v_{k}\right\|_{H}$ since a is bounded,

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{V}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\left\{v_{k}\right\}$ is a Cauchy sequence in $\left(V,\|\cdot\|_{E}\right)$, then by coercivity $\left\{v_{k}\right\}$ is also Cauchy in $(\mathcal{H},\|\cdot\|)$. By completeness of \mathcal{H} there exists a $v \in \mathcal{H}$ so $v_{n} \rightarrow v$ in $\|\cdot\|_{H}$. Since \mathcal{V} is closed in \mathcal{H} by def. of a subspace we have $v \in \mathcal{V}$. Now $\left\|v-v_{k}\right\|_{E} \leq c\left\|v-v_{k}\right\|_{H}$ since a is bounded, so v_{k} converges to v in $\|\cdot\|_{E}$ showing \mathcal{V} is complete.

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is bounded if there exists $C<\infty$ so that

$$
|a(v, w)| \leq C\|v\|_{\mathcal{V}}\|w\|_{\mathcal{V}}, \forall v, w \in \mathcal{V} .
$$

Since a is linear this is equivalent to being continuous.
A bilinear form $a(\cdot, \cdot)$ is coercive on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

$$
a(v, v) \geq \alpha\|v\|_{\mathcal{H}}^{2}
$$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\left\{v_{k}\right\}$ is a Cauchy sequence in $\left(V,\|\cdot\|_{E}\right)$, then by coercivity $\left\{v_{k}\right\}$ is also Cauchy in $(\mathcal{H},\|\cdot\|)$. By completeness of \mathcal{H} there exists a $v \in \mathcal{H}$ so $v_{n} \rightarrow v$ in $\|\cdot\|_{H}$. Since \mathcal{V} is closed in \mathcal{H} by def. of a subspace we have $v \in \mathcal{V}$. Now $\left\|v-v_{k}\right\|_{E} \leq c\left\|v-v_{k}\right\|_{H}$ since a is bounded, so v_{k} converges to v in $\|\cdot\|_{E}$ showing \mathcal{V} is complete.

Variational Formulation

Definition

Variational Formulation

Definition

A symmetric variational problem satifies the following

Variational Formulation

Definition

A symmetric variational problem satifies the following
i Given $F \in \mathcal{V}^{\prime}$, find u satisfying $a(u, v)=F[v], \quad \forall v \in \mathcal{V}, \quad(*)$
where

Variational Formulation

Definition

A symmetric variational problem satifies the following
i Given $F \in \mathcal{V}^{\prime}$, find u satisfying

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}, \quad(*)
$$

where
ii $(\mathcal{H},(\cdot, \cdot))$ is a Hilbert space,

Variational Formulation

Definition

A symmetric variational problem satifies the following
i Given $F \in \mathcal{V}^{\prime}$, find u satisfying

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}, \quad(*)
$$

where
ii $(\mathcal{H},(\cdot, \cdot))$ is a Hilbert space,
iii \mathcal{V} is a subspace of \mathcal{H},

Variational Formulation

Definition

A symmetric variational problem satifies the following
i Given $F \in \mathcal{V}^{\prime}$, find u satisfying

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}, \quad(*)
$$

where
ii $(\mathcal{H},(\cdot, \cdot))$ is a Hilbert space,
iii \mathcal{V} is a subspace of \mathcal{H},
iv $a(\cdot, \cdot)$ is a symmetric bilinear form that is bounded on \mathcal{H} and coercive on \mathcal{V}.

Variational Formulation

Definition

A symmetric variational problem satifies the following
i Given $F \in \mathcal{V}^{\prime}$, find u satisfying

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}, \quad(*)
$$

where
ii $(\mathcal{H},(\cdot, \cdot))$ is a Hilbert space,
iii \mathcal{V} is a subspace of \mathcal{H},
iv $a(\cdot, \cdot)$ is a symmetric bilinear form that is bounded on \mathcal{H} and coercive on \mathcal{V}.

Theorem

Variational Formulation

Definition

A symmetric variational problem satifies the following
i Given $F \in \mathcal{V}^{\prime}$, find u satisfying

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}, \quad(*)
$$

where
ii $(\mathcal{H},(\cdot, \cdot))$ is a Hilbert space,
iii \mathcal{V} is a subspace of \mathcal{H},
iv $a(\cdot, \cdot)$ is a symmetric bilinear form that is bounded on \mathcal{H} and coercive on \mathcal{V}.

Theorem

For the variational problem $(*)$, if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (*).

Variational Formulation

Symmetric Variational Problem

Given $F \in \mathcal{V}^{\prime}$, find u satisfying $a(u, v)=F[v], \quad \forall v \in \mathcal{V} \quad(*)$
ii. $(\mathcal{H},(\cdot, \cdot))$ Hilbert space, iii. \mathcal{V} is a subspace of \mathcal{H},
iv. a symmetric, bounded on \mathcal{H}, coercive on \mathcal{V}.

Theorem

For the variational problem $(*)$, if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (*).

Proof:

Variational Formulation

Symmetric Variational Problem

Given $F \in \mathcal{V}^{\prime}$, find u satisfying $a(u, v)=F[v], \quad \forall v \in \mathcal{V} \quad(*)$
ii. $(\mathcal{H},(\cdot, \cdot))$ Hilbert space, iii. \mathcal{V} is a subspace of \mathcal{H},
iv. a symmetric, bounded on \mathcal{H}, coercive on \mathcal{V}.

Theorem

For the variational problem $(*)$, if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (*).

Proof:

The conditions ensure that $a(\cdot, \cdot)$ is an inner-product on \mathcal{V} and that $(\mathcal{V}, a(\cdot, \cdot))$ is a Hilbert space.

Variational Formulation

Symmetric Variational Problem

Given $F \in \mathcal{V}^{\prime}$, find u satisfying $a(u, v)=F[v], \quad \forall v \in \mathcal{V} \quad(*)$
ii. $(\mathcal{H},(\cdot, \cdot))$ Hilbert space, iii. \mathcal{V} is a subspace of \mathcal{H},
iv. a symmetric, bounded on \mathcal{H}, coercive on \mathcal{V}.

Theorem

For the variational problem $(*)$, if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (*).

Proof:

The conditions ensure that $a(\cdot, \cdot)$ is an inner-product on \mathcal{V} and that $(\mathcal{V}, a(\cdot, \cdot))$ is a Hilbert space. By Riesz Representation Theorem, all bounded linear functionals have representative u in the inner-product.

Variational Formulation

Symmetric Variational Problem

Given $F \in \mathcal{V}^{\prime}$, find u satisfying $a(u, v)=F[v], \quad \forall v \in \mathcal{V} \quad(*)$
ii. $(\mathcal{H},(\cdot, \cdot))$ Hilbert space, iii. \mathcal{V} is a subspace of \mathcal{H},
iv. a symmetric, bounded on \mathcal{H}, coercive on \mathcal{V}.

Theorem

For the variational problem $(*)$, if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving ($*$).

Proof:

The conditions ensure that $a(\cdot, \cdot)$ is an inner-product on \mathcal{V} and that $(\mathcal{V}, a(\cdot, \cdot))$ is a Hilbert space. By Riesz Representation Theorem, all bounded linear functionals have representative u in the inner-product.
This implies there exists u satisfying $(*)$.

Variational Formulation

Symmetric Variational Problem

Given $F \in \mathcal{V}^{\prime}$, find u satisfying $a(u, v)=F[v], \quad \forall v \in \mathcal{V} \quad(*)$
ii. $(\mathcal{H},(\cdot, \cdot))$ Hilbert space, iii. \mathcal{V} is a subspace of \mathcal{H},
iv. a symmetric, bounded on \mathcal{H}, coercive on \mathcal{V}.

Theorem

For the variational problem $(*)$, if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (*).

Proof:

The conditions ensure that $a(\cdot, \cdot)$ is an inner-product on \mathcal{V} and that $(\mathcal{V}, a(\cdot, \cdot))$ is a Hilbert space. By Riesz Representation Theorem, all bounded linear functionals have representative u in the inner-product.
This implies there exists u satisfying $(*)$.

Variational Formulation

Definition

Variational Formulation

Definition

The Ritz-Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

Variational Formulation

Definition

The Ritz-Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* *)
$$

Variational Formulation

Definition

The Ritz-Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* *)
$$

Theorem

Variational Formulation

Definition

The Ritz-Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* *)
$$

Theorem

For the Ritz-Galerkin approximation problem $(* *)$, if the conditions ii-iv hold then there exists a unique solution $u_{h} \in \mathcal{V}_{h}$ solving $(* *)$.

Variational Formulation

Definition

The Ritz-Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* *)
$$

Theorem

For the Ritz-Galerkin approximation problem $(* *)$, if the conditions ii-iv hold then there exists a unique solution $u_{h} \in \mathcal{V}_{h}$ solving $(* *)$.

Variational Formulation

Definition

The Ritz-Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* *)
$$

Theorem

For the Ritz-Galerkin approximation problem $(* *)$, if the conditions ii-iv hold then there exists a unique solution $u_{h} \in \mathcal{V}_{h}$ solving $(* *)$.

Proof:

Variational Formulation

Definition

The Ritz-Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* *)
$$

Theorem

For the Ritz-Galerkin approximation problem $(* *)$, if the conditions ii-iv hold then there exists a unique solution $u_{h} \in \mathcal{V}_{h}$ solving $(* *)$.

Proof:

This follows since $\left(\mathcal{V}_{h}, a(\cdot, \cdot)\right)$ is also a Hilbert space and we can again invoke the Riesz Representation Theorem to obtain representative u_{h} that satisfies $(* *)$.

Variational Formulation

Definition

The Ritz-Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* *)
$$

Theorem

For the Ritz-Galerkin approximation problem $(* *)$, if the conditions ii-iv hold then there exists a unique solution $u_{h} \in \mathcal{V}_{h}$ solving $(* *)$.

Proof:

This follows since $\left(\mathcal{V}_{h}, a(\cdot, \cdot)\right)$ is also a Hilbert space and we can again invoke the Riesz Representation Theorem to obtain representative u_{h} that satisfies $(* *)$.

Variational Formulation

Lemma (Galerkin Orthogonality):

Variational Formulation

Lemma (Galerkin Orthogonality):

Let u be solution of $(*)$ and u_{h} the solution of $(* *)$, then the following orthogonality condition holds

Variational Formulation

Lemma (Galerkin Orthogonality):

Let u be solution of $(*)$ and u_{h} the solution of $(* *)$, then the following orthogonality condition holds

$$
a\left(u-u_{h}, v\right)=0, \quad \forall v \in \mathcal{V}_{h} .
$$

Variational Formulation

Lemma (Galerkin Orthogonality):

Let u be solution of $(*)$ and u_{h} the solution of $(* *)$, then the following orthogonality condition holds

$$
a\left(u-u_{h}, v\right)=0, \quad \forall v \in \mathcal{V}_{h} .
$$

Proof:

Variational Formulation

Lemma (Galerkin Orthogonality):

Let u be solution of $(*)$ and u_{h} the solution of $(* *)$, then the following orthogonality condition holds

$$
a\left(u-u_{h}, v\right)=0, \quad \forall v \in \mathcal{V}_{h} .
$$

Proof: Consider

Variational Formulation

Lemma (Galerkin Orthogonality):

Let u be solution of $(*)$ and u_{h} the solution of $(* *)$, then the following orthogonality condition holds

$$
a\left(u-u_{h}, v\right)=0, \quad \forall v \in \mathcal{V}_{h}
$$

Proof:
Consider

$$
a(u, v)=F[v], \quad v \in \mathcal{V} \quad a\left(u_{h}, v\right)=F[v], \quad v \in \mathcal{V}_{h}
$$

Variational Formulation

Lemma (Galerkin Orthogonality):

Let u be solution of $(*)$ and u_{h} the solution of $(* *)$, then the following orthogonality condition holds

$$
a\left(u-u_{h}, v\right)=0, \quad \forall v \in \mathcal{V}_{h}
$$

Proof:

Consider

$$
a(u, v)=F[v], \quad v \in \mathcal{V} \quad a\left(u_{h}, v\right)=F[v], \quad v \in \mathcal{V}_{h}
$$

Subtracting the equations we have

Variational Formulation

Lemma (Galerkin Orthogonality):

Let u be solution of $(*)$ and u_{h} the solution of $(* *)$, then the following orthogonality condition holds

$$
a\left(u-u_{h}, v\right)=0, \quad \forall v \in \mathcal{V}_{h}
$$

Proof:

Consider

$$
a(u, v)=F[v], \quad v \in \mathcal{V} \quad a\left(u_{h}, v\right)=F[v], \quad v \in \mathcal{V}_{h}
$$

Subtracting the equations we have

$$
a\left(u-u_{h}, v\right)=0, \quad v \in \mathcal{V}_{h}
$$

Variational Formulation

Lemma (Galerkin Orthogonality):

Let u be solution of $(*)$ and u_{h} the solution of $(* *)$, then the following orthogonality condition holds

$$
a\left(u-u_{h}, v\right)=0, \quad \forall v \in \mathcal{V}_{h}
$$

Proof:

Consider

$$
a(u, v)=F[v], \quad v \in \mathcal{V} \quad a\left(u_{h}, v\right)=F[v], \quad v \in \mathcal{V}_{h}
$$

Subtracting the equations we have

$$
a\left(u-u_{h}, v\right)=0, \quad v \in \mathcal{V}_{h}
$$

Variational Formulation

Lemma:

Variational Formulation

Lemma:

The solution of $(* *)$ for $u_{h} \in \mathcal{V}_{h}$ satisfies $\left\|u-u_{h}\right\|_{E}=\min _{v \in \mathcal{V}_{h}}\|u-v\|_{E}$.

Variational Formulation

Lemma:

The solution of $(* *)$ for $u_{h} \in \mathcal{V}_{h}$ satisfies $\left\|u-u_{h}\right\|_{E}=\min _{v \in \mathcal{V}_{h}}\|u-v\|_{E}$.

Lemma (Rayleigh-Ritz Method):

Variational Formulation

Lemma:

The solution of $(* *)$ for $u_{h} \in \mathcal{V}_{h}$ satisfies $\left\|u-u_{h}\right\|_{E}=\min _{v \in \mathcal{V}_{h}}\|u-v\|_{E}$.

Lemma (Rayleigh-Ritz Method):

For the symmetric variational problem $(* *)$ the u_{h} minimizes the quadratic energy functional over all $v \in \mathcal{V}_{h}$ given by

Variational Formulation

Lemma:

The solution of $(* *)$ for $u_{h} \in \mathcal{V}_{h}$ satisfies $\left\|u-u_{h}\right\|_{E}=\min _{v \in \mathcal{V}_{h}}\|u-v\|_{E}$.

Lemma (Rayleigh-Ritz Method):

For the symmetric variational problem $(* *)$ the u_{h} minimizes the quadratic energy functional over all $v \in \mathcal{V}_{h}$ given by

$$
E[v]=a(v, v)-2 F[v] .
$$

Variational Formulation

Definition

Variational Formulation

Definition

A non-symmetric variational problem satifies the following

Variational Formulation

Definition

A non-symmetric variational problem satifies the following
i Given $F \in \mathcal{V}^{\prime}$, find u satisfying

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}, \quad(* * *)
$$

where

Variational Formulation

Definition

A non-symmetric variational problem satifies the following
i Given $F \in \mathcal{V}^{\prime}$, find u satisfying

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}, \quad(* * *)
$$

where
ii $(\mathcal{H},(\cdot, \cdot))$ is a Hilbert space,

Variational Formulation

Definition

A non-symmetric variational problem satifies the following
i Given $F \in \mathcal{V}^{\prime}$, find u satisfying

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}, \quad(* * *)
$$

where
ii $(\mathcal{H},(\cdot, \cdot))$ is a Hilbert space,
iii \mathcal{V} is a subspace of \mathcal{H},

Variational Formulation

Definition

A non-symmetric variational problem satifies the following
i Given $F \in \mathcal{V}^{\prime}$, find u satisfying

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}, \quad(* * *)
$$

where
ii $(\mathcal{H},(\cdot, \cdot))$ is a Hilbert space,
iii \mathcal{V} is a subspace of \mathcal{H},
iv $a(\cdot, \cdot)$ is a bilinear form (not-necessarily symmetric)

Variational Formulation

Definition

A non-symmetric variational problem satifies the following
i Given $F \in \mathcal{V}^{\prime}$, find u satisfying

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}, \quad(* * *)
$$

where
ii $(\mathcal{H},(\cdot, \cdot))$ is a Hilbert space,
iii \mathcal{V} is a subspace of \mathcal{H},
iv $a(\cdot, \cdot)$ is a bilinear form (not-necessarily symmetric)
v a is bounded on \mathcal{H} and coercive on \mathcal{V}.

Variational Formulation

Definition

Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* * *)
$$

Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* * *)
$$

We ideally would like to know the following

Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* * *)
$$

We ideally would like to know the following
1 Does a solution exist? Is the solution unique?

Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* * *)
$$

We ideally would like to know the following
1 Does a solution exist? Is the solution unique?
2 What error estimates hold for u_{h} in approximating u ?

Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* * *)
$$

We ideally would like to know the following
1 Does a solution exist? Is the solution unique?
2 What error estimates hold for u_{h} in approximating u ?
3 What conditions might result in non-symmetric bilinear forms?

Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* * *)
$$

We ideally would like to know the following
1 Does a solution exist? Is the solution unique?
2 What error estimates hold for u_{h} in approximating u ?
3 What conditions might result in non-symmetric bilinear forms?

Example:

Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* * *)
$$

We ideally would like to know the following
1 Does a solution exist? Is the solution unique?
2 What error estimates hold for u_{h} in approximating u ?
3 What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$
-u^{\prime \prime}+u^{\prime}+u=f, x \in[0,1], \quad u^{\prime}(0)=u^{\prime}(1)=0 .
$$

Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* * *)
$$

We ideally would like to know the following
1 Does a solution exist? Is the solution unique?
2 What error estimates hold for u_{h} in approximating u ?
3 What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$
-u^{\prime \prime}+u^{\prime}+u=f, x \in[0,1], \quad u^{\prime}(0)=u^{\prime}(1)=0 .
$$

A weak formulation is on $\mathcal{V}=H^{1}([0,1]), F[v]=(f, v)$, with

Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* * *)
$$

We ideally would like to know the following
1 Does a solution exist? Is the solution unique?
2 What error estimates hold for u_{h} in approximating u ?
3 What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$
-u^{\prime \prime}+u^{\prime}+u=f, x \in[0,1], \quad u^{\prime}(0)=u^{\prime}(1)=0 .
$$

A weak formulation is on $\mathcal{V}=H^{1}([0,1]), F[v]=(f, v)$, with $a(u, v)=\int_{0}^{1} u^{\prime} v^{\prime}+u^{\prime} v+u v d x$,

Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ and $F \in \mathcal{V}^{\prime}$. The problem is to find $u_{h} \in \mathcal{V}_{h}$ so that

$$
a\left(u_{h}, v\right)=F[v], \quad \forall v \in \mathcal{V}_{h}, \quad(* * *)
$$

We ideally would like to know the following
1 Does a solution exist? Is the solution unique?
2 What error estimates hold for u_{h} in approximating u ?
3 What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$
-u^{\prime \prime}+u^{\prime}+u=f, x \in[0,1], \quad u^{\prime}(0)=u^{\prime}(1)=0 .
$$

A weak formulation is on $\mathcal{V}=H^{1}([0,1]), F[v]=(f, v)$, with $a(u, v)=\int_{0}^{1} u^{\prime} v^{\prime}+u^{\prime} v+u v d x$, which is not symmetric given $u^{\prime} v$.

Variational Formulation

Definition (Contraction Mapping)

Variational Formulation

Definition (Contraction Mapping)
A contraction map is any mapping T on a function space \mathcal{V} that satisfies for some $M<1$

Variational Formulation

Definition (Contraction Mapping)

A contraction map is any mapping T on a function space \mathcal{V} that satisfies for some $M<1$

$$
\left\|T v_{1}-T v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\| .
$$

Variational Formulation

Definition (Contraction Mapping)

A contraction map is any mapping T on a function space \mathcal{V} that satisfies for some $M<1$

$$
\left\|T v_{1}-T v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\| .
$$

A fixed point u of T is any function satisfying

Variational Formulation

Definition (Contraction Mapping)

A contraction map is any mapping T on a function space \mathcal{V} that satisfies for some $M<1$

$$
\left\|T v_{1}-T v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\| .
$$

A fixed point u of T is any function satisfying

$$
u=T u .
$$

Variational Formulation

Definition (Contraction Mapping)
A contraction map is any mapping T on a function space \mathcal{V} that satisfies for some $M<1$

$$
\left\|T v_{1}-T v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\| .
$$

A fixed point u of T is any function satisfying

$$
u=T u .
$$

Lemma (Fix Point Theorem)

Variational Formulation

Definition (Contraction Mapping)

A contraction map is any mapping T on a function space \mathcal{V} that satisfies for some $M<1$

$$
\left\|T v_{1}-T v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\| .
$$

A fixed point u of T is any function satisfying

$$
u=T u .
$$

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof:

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof:

We show uniqueness first, then existence.

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof:

We show uniqueness first, then existence. Suppose $T v_{1}=v_{1}$ and $T v_{2}=v_{2}$, then by the contraction principle

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof:

We show uniqueness first, then existence. Suppose $T v_{1}=v_{1}$ and $T v_{2}=v_{2}$, then by the contraction principle

$$
\left\|T v_{1}-T v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\|
$$

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof:

We show uniqueness first, then existence. Suppose $T v_{1}=v_{1}$ and $T v_{2}=v_{2}$, then by the contraction principle

$$
\left\|T v_{1}-T v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\|
$$

where $0 \leq M<1$.

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof:

We show uniqueness first, then existence. Suppose $T v_{1}=v_{1}$ and $T v_{2}=v_{2}$, then by the contraction principle

$$
\left\|T v_{1}-T v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\|
$$

where $0 \leq M<1$. By the fix-point property

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof:

We show uniqueness first, then existence. Suppose $T v_{1}=v_{1}$ and $T v_{2}=v_{2}$, then by the contraction principle

$$
\left\|T v_{1}-T v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\|
$$

where $0 \leq M<1$. By the fix-point property

$$
\left\|v_{1}-v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\| .
$$

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof:

We show uniqueness first, then existence. Suppose $T v_{1}=v_{1}$ and $T v_{2}=v_{2}$, then by the contraction principle

$$
\left\|T v_{1}-T v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\|
$$

where $0 \leq M<1$. By the fix-point property

$$
\left\|v_{1}-v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\| .
$$

This implies $\left\|v_{1}-v_{2}\right\|=0 \rightarrow v_{1}=v_{2}$.

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof:

We show uniqueness first, then existence. Suppose $T v_{1}=v_{1}$ and $T v_{2}=v_{2}$, then by the contraction principle

$$
\left\|T v_{1}-T v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\|
$$

where $0 \leq M<1$. By the fix-point property

$$
\left\|v_{1}-v_{2}\right\| \leq M\left\|v_{1}-v_{2}\right\| .
$$

This implies $\left\|v_{1}-v_{2}\right\|=0 \rightarrow v_{1}=v_{2}$.
We next show existence.

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof (continued):

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof (continued):

For a given $v_{0} \in \mathcal{V}$ define the generated sequence as $v_{k+1}=T v_{k}$. This satisfies

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof (continued):

For a given $v_{0} \in \mathcal{V}$ define the generated sequence as $v_{k+1}=T v_{k}$. This satisfies

$$
\left\|v_{k}-v_{k-1}\right\| \leq M^{k-1}\left\|v_{1}-v_{0}\right\| .
$$

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof (continued):

For a given $v_{0} \in \mathcal{V}$ define the generated sequence as $v_{k+1}=T v_{k}$. This satisfies

$$
\left\|v_{k}-v_{k-1}\right\| \leq M^{k-1}\left\|v_{1}-v_{0}\right\|
$$

For any $N>n$ we have

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof (continued):

For a given $v_{0} \in \mathcal{V}$ define the generated sequence as $v_{k+1}=T v_{k}$. This satisfies

$$
\left\|v_{k}-v_{k-1}\right\| \leq M^{k-1}\left\|v_{1}-v_{0}\right\|
$$

For any $N>n$ we have
$\left\|v_{N}-v_{n}\right\|=\left\|\sum_{k=n+1}^{N} v_{k}-v_{k-1}\right\|$

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof (continued):

For a given $v_{0} \in \mathcal{V}$ define the generated sequence as $v_{k+1}=T v_{k}$. This satisfies

$$
\left\|v_{k}-v_{k-1}\right\| \leq M^{k-1}\left\|v_{1}-v_{0}\right\| .
$$

For any $N>n$ we have
$\left\|v_{N}-v_{n}\right\|=\left\|\sum_{k=n+1}^{N} v_{k}-v_{k-1}\right\| \leq\left\|v_{1}-v_{0}\right\| \sum_{k=n+1}^{N} M^{k-1}$

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof (continued):

For a given $v_{0} \in \mathcal{V}$ define the generated sequence as $v_{k+1}=T v_{k}$. This satisfies

$$
\left\|v_{k}-v_{k-1}\right\| \leq M^{k-1}\left\|v_{1}-v_{0}\right\| .
$$

For any $N>n$ we have
$\left\|v_{N}-v_{n}\right\|=\left\|\sum_{k=n+1}^{N} v_{k}-v_{k-1}\right\| \leq\left\|v_{1}-v_{0}\right\| \sum_{k=n+1}^{N} M^{k-1} \leq \frac{M^{n}}{1-M}\left\|v_{1}-v_{0}\right\|$

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof (continued):

For a given $v_{0} \in \mathcal{V}$ define the generated sequence as $v_{k+1}=T v_{k}$. This satisfies

$$
\left\|v_{k}-v_{k-1}\right\| \leq M^{k-1}\left\|v_{1}-v_{0}\right\| .
$$

For any $N>n$ we have
$\left\|v_{N}-v_{n}\right\|=\left\|\sum_{k=n+1}^{N} v_{k}-v_{k-1}\right\| \leq\left\|v_{1}-v_{0}\right\| \sum_{k=n+1}^{N} M^{k-1} \leq \frac{M^{n}}{1-M}\left\|v_{1}-v_{0}\right\| \leq \frac{M^{n}}{1-M}\left\|T v_{0}-v_{0}\right\|$.

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof (continued):

For a given $v_{0} \in \mathcal{V}$ define the generated sequence as $v_{k+1}=T v_{k}$. This satisfies

$$
\left\|v_{k}-v_{k-1}\right\| \leq M^{k-1}\left\|v_{1}-v_{0}\right\| .
$$

For any $N>n$ we have
$\left\|v_{N}-v_{n}\right\|=\left\|\sum_{k=n+1}^{N} v_{k}-v_{k-1}\right\| \leq\left\|v_{1}-v_{0}\right\| \sum_{k=n+1}^{N} M^{k-1} \leq \frac{M^{n}}{1-M}\left\|v_{1}-v_{0}\right\| \leq \frac{M^{n}}{1-M}\left\|T v_{0}-v_{0}\right\|$.
This shows $\left\{v_{k}\right\}$ forms a Cauchy sequence and by completeness we have there exists $v^{*} \in \mathcal{V}$ so that

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof (continued):

For a given $v_{0} \in \mathcal{V}$ define the generated sequence as $v_{k+1}=T v_{k}$. This satisfies

$$
\left\|v_{k}-v_{k-1}\right\| \leq M^{k-1}\left\|v_{1}-v_{0}\right\| .
$$

For any $N>n$ we have
$\left\|v_{N}-v_{n}\right\|=\left\|\sum_{k=n+1}^{N} v_{k}-v_{k-1}\right\| \leq\left\|v_{1}-v_{0}\right\| \sum_{k=n+1}^{N} M^{k-1} \leq \frac{M^{n}}{1-M}\left\|v_{1}-v_{0}\right\| \leq \frac{M^{n}}{1-M}\left\|T v_{0}-v_{0}\right\|$.
This shows $\left\{v_{k}\right\}$ forms a Cauchy sequence and by completeness we have there exists $v^{*} \in \mathcal{V}$ so that

$$
v^{*}=\lim _{n \rightarrow \infty} v_{n}=\lim _{n \rightarrow \infty} T v_{n}=T\left(\lim _{n \rightarrow \infty} v_{n}\right)=T v^{*}
$$

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof (continued):

For a given $v_{0} \in \mathcal{V}$ define the generated sequence as $v_{k+1}=T v_{k}$. This satisfies

$$
\left\|v_{k}-v_{k-1}\right\| \leq M^{k-1}\left\|v_{1}-v_{0}\right\|
$$

For any $N>n$ we have
$\left\|v_{N}-v_{n}\right\|=\left\|\sum_{k=n+1}^{N} v_{k}-v_{k-1}\right\| \leq\left\|v_{1}-v_{0}\right\| \sum_{k=n+1}^{N} M^{k-1} \leq \frac{M^{n}}{1-M}\left\|v_{1}-v_{0}\right\| \leq \frac{M^{n}}{1-M}\left\|T v_{0}-v_{0}\right\|$.
This shows $\left\{v_{k}\right\}$ forms a Cauchy sequence and by completeness we have there exists $v^{*} \in \mathcal{V}$ so that

$$
v^{*}=\lim _{n \rightarrow \infty} v_{n}=\lim _{n \rightarrow \infty} T v_{n}=T\left(\lim _{n \rightarrow \infty} v_{n}\right)=T v^{*}
$$

This establishes existence of a fixed point for T.

Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u=T u$.

Proof (continued):

For a given $v_{0} \in \mathcal{V}$ define the generated sequence as $v_{k+1}=T v_{k}$. This satisfies

$$
\left\|v_{k}-v_{k-1}\right\| \leq M^{k-1}\left\|v_{1}-v_{0}\right\|
$$

For any $N>n$ we have
$\left\|v_{N}-v_{n}\right\|=\left\|\sum_{k=n+1}^{N} v_{k}-v_{k-1}\right\| \leq\left\|v_{1}-v_{0}\right\| \sum_{k=n+1}^{N} M^{k-1} \leq \frac{M^{n}}{1-M}\left\|v_{1}-v_{0}\right\| \leq \frac{M^{n}}{1-M}\left\|T v_{0}-v_{0}\right\|$.
This shows $\left\{v_{k}\right\}$ forms a Cauchy sequence and by completeness we have there exists $v^{*} \in \mathcal{V}$ so that

$$
v^{*}=\lim _{n \rightarrow \infty} v_{n}=\lim _{n \rightarrow \infty} T v_{n}=T\left(\lim _{n \rightarrow \infty} v_{n}\right)=T v^{*}
$$

This establishes existence of a fixed point for T.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot)$), a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Significance: This establishes for variational problems the existence and uniqueness of the solution u.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Significance: This establishes for variational problems the existence and uniqueness of the solution u. Implications: Also shows for the Galerkin approximations for the finite-dimensional problems the existence and uniqueness of solution u_{h}.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Proof:

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Proof:

Define the operator $A u$ which has action on a function $v \in \mathcal{V}$ as $A u[v]=a(u, v)$.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Proof:

Define the operator $A u$ which has action on a function $v \in \mathcal{V}$ as $A u[v]=a(u, v)$.
Properties of a imply $A u$ is linear, bounded, and has norm $\|A u\|_{\mathcal{V}^{\prime}} \leq C\|u\|_{\mathcal{V}}<\infty$, so $A u \in \mathcal{V}^{\prime}$.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Proof:

Define the operator $A u$ which has action on a function $v \in \mathcal{V}$ as $A u[v]=a(u, v)$.
Properties of a imply $A u$ is linear, bounded, and has norm $\|A u\|_{\mathcal{V}^{\prime}} \leq C\|u\|_{\mathcal{V}}<\infty$, so $A u \in \mathcal{V}^{\prime}$.
Riesz Representation Theorem implies $\phi \in \mathcal{V}^{\prime}$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v]=(\tau \phi, v)$.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space ($V,(\cdot, \cdot)$), a continuous, coercive bilinear form a($\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Proof:

Define the operator $A u$ which has action on a function $v \in \mathcal{V}$ as $A u[v]=a(u, v)$.
Properties of a imply $A u$ is linear, bounded, and has norm $\|A u\|_{\mathcal{V}^{\prime}} \leq C\|u\|_{\mathcal{V}}<\infty$, so $A u \in \mathcal{V}^{\prime}$.
Riesz Representation Theorem implies $\phi \in \mathcal{V}^{\prime}$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v]=(\tau \phi, v)$.
The variational problem requires u such that $A u[v]=F[v], \forall v \in \mathcal{V}$.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space ($V,(\cdot, \cdot)$), a continuous, coercive bilinear form a($\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Proof:

Define the operator $A u$ which has action on a function $v \in \mathcal{V}$ as $A u[v]=a(u, v)$.
Properties of a imply $A u$ is linear, bounded, and has norm $\|A u\|_{\mathcal{V}^{\prime}} \leq C\|u\|_{\mathcal{V}}<\infty$, so $A u \in \mathcal{V}^{\prime}$.
Riesz Representation Theorem implies $\phi \in \mathcal{V}^{\prime}$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v]=(\tau \phi, v)$.
The variational problem requires u such that $A u[v]=F[v], \forall v \in \mathcal{V}$.
We show $\tau A u=\tau F$ in \mathcal{V}, which implies solution to the variational problem holds.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space ($V,(\cdot, \cdot)$), a continuous, coercive bilinear form a($\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Proof:

Define the operator $A u$ which has action on a function $v \in \mathcal{V}$ as $A u[v]=a(u, v)$.
Properties of a imply $A u$ is linear, bounded, and has norm $\|A u\|_{\mathcal{V}^{\prime}} \leq C\|u\|_{\mathcal{V}}<\infty$, so $A u \in \mathcal{V}^{\prime}$.
Riesz Representation Theorem implies $\phi \in \mathcal{V}^{\prime}$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v]=(\tau \phi, v)$.
The variational problem requires u such that $A u[v]=F[v], \forall v \in \mathcal{V}$.
We show $\tau A u=\tau F$ in \mathcal{V}, which implies solution to the variational problem holds.
We do this using a contraction mapping principle for $T[v]:=v-\rho(\tau A v-\tau F)$.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Proof:

Define the operator $A u$ which has action on a function $v \in \mathcal{V}$ as $A u[v]=a(u, v)$.
Properties of a imply $A u$ is linear, bounded, and has norm $\|A u\|_{\mathcal{V}^{\prime}} \leq C\|u\|_{\mathcal{V}}<\infty$, so $A u \in \mathcal{V}^{\prime}$.
Riesz Representation Theorem implies $\phi \in \mathcal{V}^{\prime}$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v]=(\tau \phi, v)$.
The variational problem requires u such that $A u[v]=F[v], \forall v \in \mathcal{V}$.
We show $\tau A u=\tau F$ in \mathcal{V}, which implies solution to the variational problem holds.
We do this using a contraction mapping principle for $T[v]:=v-\rho(\tau A v-\tau F)$. The fixed point theorem yields $T u=u-\rho(\tau A u-\tau F)=u$.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Proof:

Define the operator $A u$ which has action on a function $v \in \mathcal{V}$ as $A u[v]=a(u, v)$.
Properties of a imply $A u$ is linear, bounded, and has norm $\|A u\|_{\mathcal{V}^{\prime}} \leq C\|u\|_{\mathcal{V}}<\infty$, so $A u \in \mathcal{V}^{\prime}$.
Riesz Representation Theorem implies $\phi \in \mathcal{V}^{\prime}$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v]=(\tau \phi, v)$.
The variational problem requires u such that $A u[v]=F[v], \forall v \in \mathcal{V}$.
We show $\tau A u=\tau F$ in \mathcal{V}, which implies solution to the variational problem holds.
We do this using a contraction mapping principle for $T[v]:=v-\rho(\tau A v-\tau F)$. The fixed point theorem yields $T u=u-\rho(\tau A u-\tau F)=u$. This implies $\tau A u-\tau F=0$.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space ($V,(\cdot, \cdot)$), a continuous, coercive bilinear form a($\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Proof:

Define the operator $A u$ which has action on a function $v \in \mathcal{V}$ as $A u[v]=a(u, v)$.
Properties of a imply $A u$ is linear, bounded, and has norm $\|A u\|_{\mathcal{V}^{\prime}} \leq C\|u\|_{\mathcal{V}}<\infty$, so $A u \in \mathcal{V}^{\prime}$.
Riesz Representation Theorem implies $\phi \in \mathcal{V}^{\prime}$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v]=(\tau \phi, v)$.
The variational problem requires u such that $A u[v]=F[v], \forall v \in \mathcal{V}$.
We show $\tau A u=\tau F$ in \mathcal{V}, which implies solution to the variational problem holds.
We do this using a contraction mapping principle for $T[v]:=v-\rho(\tau A v-\tau F)$. The fixed point theorem yields $T u=u-\rho(\tau A u-\tau F)=u$. This implies $\tau A u-\tau F=0$.
We now show that such a $\rho \neq 0$ exists making T a contraction map.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \forall v \in \mathcal{V}
$$

Proof (continued):

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \forall v \in \mathcal{V}
$$

Proof (continued):
For any $v_{1}, v_{2} \in \mathcal{V}$, let $v=v_{1}-v_{2}$, then

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

For any $v_{1}, v_{2} \in \mathcal{V}$, let $v=v_{1}-v_{2}$, then

$$
\left\|T v_{1}-T v_{2}\right\|^{2}=\left\|v_{1}-v_{2}-\rho\left(\tau A v_{1}-\tau A v_{2}\right)\right\|^{2}
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

For any $v_{1}, v_{2} \in \mathcal{V}$, let $v=v_{1}-v_{2}$, then

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & =\left\|v_{1}-v_{2}-\rho\left(\tau A v_{1}-\tau A v_{2}\right)\right\|^{2} \\
& =\|v-\rho(\tau A v)\|^{2}, \quad(\tau, A \text { are linear })
\end{aligned}
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V} .
$$

Proof (continued):

For any $v_{1}, v_{2} \in \mathcal{V}$, let $v=v_{1}-v_{2}$, then

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & =\left\|v_{1}-v_{2}-\rho\left(\tau A v_{1}-\tau A v_{2}\right)\right\|^{2} \\
& =\|v-\rho(\tau A v)\|^{2}, \quad(\tau, A \text { are linear }) \\
& =\|v\|^{2}-2 \rho(\tau A v, v)+\rho^{2}\|\tau A v\|^{2}
\end{aligned}
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

For any $v_{1}, v_{2} \in \mathcal{V}$, let $v=v_{1}-v_{2}$, then

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & =\left\|v_{1}-v_{2}-\rho\left(\tau A v_{1}-\tau A v_{2}\right)\right\|^{2} \\
& =\|v-\rho(\tau A v)\|^{2}, \quad(\tau, A \text { are linear) } \\
& =\|v\|^{2}-2 \rho(\tau A v, v)+\rho^{2}\|\tau A v\|^{2} \\
& =\|v\|^{2}-2 \rho A v[v]+\rho^{2} A v[\tau A v], \quad(\text { definition of } \tau)
\end{aligned}
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

For any $v_{1}, v_{2} \in \mathcal{V}$, let $v=v_{1}-v_{2}$, then

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & =\left\|v_{1}-v_{2}-\rho\left(\tau A v_{1}-\tau A v_{2}\right)\right\|^{2} \\
& =\|v-\rho(\tau A v)\|^{2}, \quad(\tau, A \text { are linear) } \\
& =\|v\|^{2}-2 \rho(\tau A v, v)+\rho^{2}\|\tau A v\|^{2} \\
& \left.=\|v\|^{2}-2 \rho A v[v]+\rho^{2} A v[\tau A v], \quad \text { (definition of } \tau\right), \\
& \left.=\|v\|^{2}-2 \rho a(v, v)+\rho^{2} a(v, \tau A v), \quad \text { (definition of } A\right),
\end{aligned}
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

For any $v_{1}, v_{2} \in \mathcal{V}$, let $v=v_{1}-v_{2}$, then

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & =\left\|v_{1}-v_{2}-\rho\left(\tau A v_{1}-\tau A v_{2}\right)\right\|^{2} \\
& =\|v-\rho(\tau A v)\|^{2}, \quad(\tau, A \text { are linear) } \\
& =\|v\|^{2}-2 \rho(\tau A v, v)+\rho^{2}\|\tau A v\|^{2} \\
& \left.=\|v\|^{2}-2 \rho A v[v]+\rho^{2} A v[\tau A v], \quad \text { (definition of } \tau\right), \\
& =\|v\|^{2}-2 \rho a(v, v)+\rho^{2} a(v, \tau A v), \quad \text { (definition of } A \text {), } \\
& \leq\|v\|^{2}-2 \rho\|v\|^{2}+\rho^{2} C\|v\|\|\tau A v\|, \quad \text { (cocercivity and continuity of } A \text {), }
\end{aligned}
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

For any $v_{1}, v_{2} \in \mathcal{V}$, let $v=v_{1}-v_{2}$, then

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & =\left\|v_{1}-v_{2}-\rho\left(\tau A v_{1}-\tau A v_{2}\right)\right\|^{2} \\
& =\|v-\rho(\tau A v)\|^{2}, \quad(\tau, A \text { are linear) } \\
& =\|v\|^{2}-2 \rho(\tau A v, v)+\rho^{2}\|\tau A v\|^{2} \\
& \left.=\|v\|^{2}-2 \rho A v[v]+\rho^{2} A v[\tau A v], \quad \text { (definition of } \tau\right), \\
& \left.=\|v\|^{2}-2 \rho a(v, v)+\rho^{2} a(v, \tau A v), \quad \text { (definition of } A\right), \\
& \left.\leq\|v\|^{2}-2 \rho\|v\|^{2}+\rho^{2} C\|v\|\|\tau A v\|, \quad \text { (cocercivity and continuity of } A\right), \\
& \leq\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\|v\|^{2}(A \text { bounded, } \tau \text { isometric) }
\end{aligned}
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

$$
\left\|T v_{1}-T v_{2}\right\|^{2} \leq\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\|v\|^{2}(A \text { bounded, } \tau \text { isometric })
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & \leq\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\|v\|^{2}(A \text { bounded, } \tau \text { isometric }) \\
& =\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\left\|v_{1}-v_{2}\right\|^{2}
\end{aligned}
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & \leq\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\|v\|^{2}(A \text { bounded, } \tau \text { isometric }) \\
& =\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\left\|v_{1}-v_{2}\right\|^{2} \\
& =M^{2}\left\|v_{1}-v_{2}\right\|^{2} .
\end{aligned}
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & \leq\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\|v\|^{2}(A \text { bounded, } \tau \text { isometric }) \\
& =\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\left\|v_{1}-v_{2}\right\|^{2} \\
& =M^{2}\left\|v_{1}-v_{2}\right\|^{2} .
\end{aligned}
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & \leq\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\|v\|^{2}(A \text { bounded, } \tau \text { isometric }) \\
& =\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\left\|v_{1}-v_{2}\right\|^{2} \\
& =M^{2}\left\|v_{1}-v_{2}\right\|^{2} .
\end{aligned}
$$

We need

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & \leq\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\|v\|^{2}(A \text { bounded, } \tau \text { isometric }) \\
& =\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\left\|v_{1}-v_{2}\right\|^{2} \\
& =M^{2}\left\|v_{1}-v_{2}\right\|^{2} .
\end{aligned}
$$

We need

$$
1-2 \rho \alpha+\rho^{2} C^{2}<1
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & \leq\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\|v\|^{2}(A \text { bounded, } \tau \text { isometric }) \\
& =\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\left\|v_{1}-v_{2}\right\|^{2} \\
& =M^{2}\left\|v_{1}-v_{2}\right\|^{2} .
\end{aligned}
$$

We need

$$
\begin{equation*}
1-2 \rho \alpha+\rho^{2} C^{2}<1 \rightarrow \rho\left(\rho C^{2}-2 \alpha\right)<0 \tag{1}
\end{equation*}
$$

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & \leq\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\|v\|^{2}(A \text { bounded, } \tau \text { isometric }) \\
& =\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\left\|v_{1}-v_{2}\right\|^{2} \\
& =M^{2}\left\|v_{1}-v_{2}\right\|^{2} .
\end{aligned}
$$

We need

$$
\begin{equation*}
1-2 \rho \alpha+\rho^{2} C^{2}<1 \rightarrow \rho\left(\rho C^{2}-2 \alpha\right)<0 \tag{1}
\end{equation*}
$$

This is satisfied for $\rho \in\left(0,2 \alpha / C^{2}\right)$ giving $M<1$.

Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space $(V,(\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}^{\prime}$, there exists a unique $u \in \mathcal{V}$ so that

$$
a(u, v)=F[v], \quad \forall v \in \mathcal{V}
$$

Proof (continued):

$$
\begin{aligned}
\left\|T v_{1}-T v_{2}\right\|^{2} & \leq\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\|v\|^{2}(A \text { bounded, } \tau \text { isometric }) \\
& =\left(1-2 \rho \alpha+\rho^{2} C^{2}\right)\left\|v_{1}-v_{2}\right\|^{2} \\
& =M^{2}\left\|v_{1}-v_{2}\right\|^{2} .
\end{aligned}
$$

We need

$$
\begin{equation*}
1-2 \rho \alpha+\rho^{2} C^{2}<1 \rightarrow \rho\left(\rho C^{2}-2 \alpha\right)<0 . \tag{1}
\end{equation*}
$$

This is satisfied for $\rho \in\left(0,2 \alpha / C^{2}\right)$ giving $M<1$. By the contraction principle we obtain the results.

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$.

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$. For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter.

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$. For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or ($* * *$). For the bilinear form a($\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\| \nu \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\nu} .
$$

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$. For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\| \nu \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\nu} .
$$

Significance: This shows the solution u_{h} obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm.

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or ($* * *$). For the bilinear form a($\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\| \nu \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\nu} .
$$

Significance: This shows the solution u_{h} obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods.

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or ($* * *$). For the bilinear form a($\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\| \nu \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\nu} .
$$

Significance: This shows the solution u_{h} obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm.
This will become the basis for further estimates on the accuracy of Finite Element Methods.
Proof:

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or ($* * *$). For the bilinear form a($\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\nu} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\nu} .
$$

Significance: This shows the solution u_{h} obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm.
This will become the basis for further estimates on the accuracy of Finite Element Methods.
Proof:
By subtracting the variational problems for the exact and Galerkin approximation we obtain

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or ($* * *$). For the bilinear form a($\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\| \nu \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\nu} .
$$

Significance: This shows the solution u_{h} obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm.
This will become the basis for further estimates on the accuracy of Finite Element Methods.
Proof:
By subtracting the variational problems for the exact and Galerkin approximation we obtain

$$
a\left(u-u_{h}, v\right)=0 \forall v \in \mathcal{V}_{h} .
$$

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or ($* * *$). For the bilinear form a($\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\| \nu \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\nu} .
$$

Significance: This shows the solution u_{h} obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm.
This will become the basis for further estimates on the accuracy of Finite Element Methods.
Proof:
By subtracting the variational problems for the exact and Galerkin approximation we obtain

$$
a\left(u-u_{h}, v\right)=0 \forall v \in \mathcal{V}_{h}
$$

For all $v \in \mathcal{V}_{h}$ we have

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or ($* * *$). For the bilinear form a($\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\nu} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\nu} .
$$

Significance: This shows the solution u_{h} obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm.
This will become the basis for further estimates on the accuracy of Finite Element Methods.
Proof:
By subtracting the variational problems for the exact and Galerkin approximation we obtain

$$
a\left(u-u_{h}, v\right)=0 \forall v \in \mathcal{V}_{h} .
$$

For all $v \in \mathcal{V}_{h}$ we have

$$
\alpha\left\|u-u_{h}\right\|_{\mathcal{V}}^{2} \leq a\left(u-u_{h}, u-u_{h}\right) \text { (by coercivity) }
$$

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or ($* * *$). For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\mathcal{V}} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\nu} .
$$

Proof (continued):

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or ($* * *$). For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\nu} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\nu} .
$$

Proof (continued):

$$
\alpha\left\|u-u_{h}\right\|_{\mathcal{V}}^{2} \leq a\left(u-u_{h}, u-u_{h}\right) \text { (by coercivity) }
$$

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or ($* * *$). For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\nu} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\nu} .
$$

Proof (continued):

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|_{\mathcal{V}}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \text { (by coercivity) } \\
& =a\left(u-u_{h}, u-v\right)+a\left(u-u_{h}, v-u_{h}\right)
\end{aligned}
$$

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or ($* * *$). For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\nu} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\nu} .
$$

Proof (continued):

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|_{\mathcal{V}}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \quad(\text { by coercivity }) \\
& =a\left(u-u_{h}, u-v\right)+a\left(u-u_{h}, v-u_{h}\right) \\
& =a\left(u-u_{h}, u-v\right), \quad\left(\text { since } v-u_{h} \in \mathcal{V}_{h}\right)
\end{aligned}
$$

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$. For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\mathcal{V}} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\mathcal{V}} .
$$

Proof (continued):

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|_{\mathcal{V}}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \quad \text { (by coercivity) } \\
& =a\left(u-u_{h}, u-v\right)+a\left(u-u_{h}, v-u_{h}\right) \\
& =a\left(u-u_{h}, u-v\right), \quad\left(\text { since } v-u_{h} \in \mathcal{V}_{h}\right) \\
& \leq C\left\|u-u_{h}\right\| \mathcal{V}\|u-v\| \mathcal{V} \quad \text { (by continuity) } .
\end{aligned}
$$

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$. For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\mathcal{V}} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\mathcal{V}} .
$$

Proof (continued):

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|_{\mathcal{V}}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \quad \text { (by coercivity) } \\
& =a\left(u-u_{h}, u-v\right)+a\left(u-u_{h}, v-u_{h}\right) \\
& =a\left(u-u_{h}, u-v\right), \quad\left(\text { since } v-u_{h} \in \mathcal{V}_{h}\right) \\
& \leq C\left\|u-u_{h}\right\| \mathcal{V}\|u-v\| \mathcal{V} \quad \text { (by continuity) } .
\end{aligned}
$$

By dividing through we obtain for all $v \in \mathcal{V}_{h}$

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$. For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\mathcal{V}} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\mathcal{V}}
$$

Proof (continued):

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|_{\mathcal{V}}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \quad \text { (by coercivity) } \\
& =a\left(u-u_{h}, u-v\right)+a\left(u-u_{h}, v-u_{h}\right) \\
& =a\left(u-u_{h}, u-v\right), \quad\left(\text { since } v-u_{h} \in \mathcal{V}_{h}\right) \\
& \leq C\left\|u-u_{h}\right\| \mathcal{V}\|u-v\| \mathcal{V} \quad \text { (by continuity) } .
\end{aligned}
$$

By dividing through we obtain for all $v \in \mathcal{V}_{h}$

$$
\left\|u-u_{h}\right\|_{\mathcal{V}} \leq \frac{C}{\alpha}\|u-v\|_{\mathcal{V}} .
$$

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$. For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\mathcal{V}} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\mathcal{V}}
$$

Proof (continued):

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$. For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\mathcal{V}} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\mathcal{V}}
$$

Proof (continued): By dividing through we obtain for all $v \in \mathcal{V}_{h}$

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$. For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\mathcal{V}} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\mathcal{V}}
$$

Proof (continued): By dividing through we obtain for all $v \in \mathcal{V}_{h}$

$$
\left\|u-u_{h}\right\| \mathcal{V} \leq \frac{C}{\alpha}\|u-v\| \mathcal{V}
$$

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$. For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\mathcal{V}} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\mathcal{V}}
$$

Proof (continued): By dividing through we obtain for all $v \in \mathcal{V}_{h}$

$$
\left\|u-u_{h}\right\| \mathcal{V} \leq \frac{C}{\alpha}\|u-v\| \mathcal{V}
$$

This implies (since \mathcal{V}_{h} is closed)

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$. For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\mathcal{V}} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\mathcal{V}}
$$

Proof (continued): By dividing through we obtain for all $v \in \mathcal{V}_{h}$

$$
\left\|u-u_{h}\right\| \mathcal{V} \leq \frac{C}{\alpha}\|u-v\| \mathcal{V}
$$

This implies (since \mathcal{V}_{h} is closed)

$$
\left\|u-u_{h}\right\| \mathcal{V} \leq \frac{C}{\alpha} \inf _{v \in \mathcal{V}_{h}}\|u-v\| \mathcal{V} .=\frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\| \mathcal{V} .
$$

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems $(*)$ or $(* * *)$. For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\left\|u-u_{h}\right\|_{\mathcal{V}} \leq \frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\|_{\mathcal{V}}
$$

Proof (continued): By dividing through we obtain for all $v \in \mathcal{V}_{h}$

$$
\left\|u-u_{h}\right\| \mathcal{V} \leq \frac{C}{\alpha}\|u-v\| \mathcal{V}
$$

This implies (since \mathcal{V}_{h} is closed)

$$
\left\|u-u_{h}\right\| \mathcal{V} \leq \frac{C}{\alpha} \inf _{v \in \mathcal{V}_{h}}\|u-v\| \mathcal{V} .=\frac{C}{\alpha} \min _{v \in \mathcal{V}_{h}}\|u-v\| \mathcal{V} .
$$

