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Variational Formulation

Definition

A bilinear form b(·, ·) is a mapping b : V × V → R on a linear space V so that the following holds:

i b is linear in both components, so Lv [w ] = b(v ,w) and Lw [v ] = b(v ,w) are both linear maps.

ii b is symmetric so b(v ,w) = b(w , v)

An inner-product is a symmetric bilinear form with the additional properties

iii b(v , v) ≥ 0, ∀v ∈ V
iv b(v , v) = 0, ⇐⇒ v ≡ 0.

Examples:

i V = {w |w(x) =
∑n

k=1 ckφk(x)} where u =
∑n

k=1 akφk , v =
∑n

k=1 bkφk we define b(u, v) =
∑

k wkakbk .
When wk > 0 and φk are linearly independent this is an inner-product.

ii V = Rm and b(x, y) = x · y for x, y ∈ Rn.

iii V = W k
2 (Ω) with Ω ⊂ Rn with (u, v)m =

∑
|α|≤m(∂αu, ∂αu)L2(Ω).
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Variational Formulation

Definition

A bilinear form a(·, ·) is bounded if there exists C <∞ so that

|a(v ,w)| ≤ C‖v‖V‖w‖V , ∀v ,w ∈ V.

Since a is linear this is equivalent to being continuous.
A bilinear form a(·, ·) is coercive on V ⊂ H if there exists an α so that

a(v , v) ≥ α‖v‖2
H

Lemma
Consider V ⊂ H a linear subspace of a Hilbert space H. If a is continuous on H and coercive on V then the
space (V , a(·, ·)) is a Hilbert space.

Proof:
Since a(·, ·) is coercive we have a(v , v) = 0→ v ≡ 0, so a is an inner-product and ‖v‖E =

√
a(v , v) is a norm.

We just need to show completeness.
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A bilinear form a(·, ·) is coercive on V ⊂ H if there exists an α so that

a(v , v) ≥ α‖v‖2
H

Lemma
Consider V ⊂ H a linear subspace of a Hilbert space H. If a is continuous on H and coercive on V then the
space (V , a(·, ·)) is a Hilbert space.

Proof:
Since a(·, ·) is coercive we have a(v , v) = 0→ v ≡ 0, so a is an inner-product and ‖v‖E =

√
a(v , v) is a norm.

We just need to show completeness.
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Proof (continued):

Suppose {vk} is a Cauchy sequence in (V , ‖ · ‖E ), then by coercivity {vk} is also Cauchy in (H, ‖ · ‖). By
completeness of H there exists a v ∈ H so vn → v in ‖ · ‖H . Since V is closed in H by def. of a subspace we
have v ∈ V. Now ‖v − vk‖E ≤ c‖v − vk‖H since a is bounded, so vk converges to v in ‖ · ‖E showing V is
complete. �
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Variational Formulation

Definition

A symmetric variational problem satifies the following

i Given F ∈ V ′, find u satisfying

a(u, v) = F [v ], ∀v ∈ V, (∗)
where

ii (H, (·, ·)) is a Hilbert space,

iii V is a subspace of H,

iv a(·, ·) is a symmetric bilinear form that is bounded on H and coercive on V.

Theorem

For the variational problem (∗), if the conditions ii-iv hold then there exists a unique solution u ∈ V
solving (∗).
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Variational Formulation

Symmetric Variational Problem

Given F ∈ V ′, find u satisfying
a(u, v) = F [v ], ∀v ∈ V (∗)

ii. (H, (·, ·)) Hilbert space, iii. V is a subspace of H,
iv. a symmetric, bounded on H, coercive on V.

Theorem

For the variational problem (∗), if the conditions ii-iv hold then there exists a unique solution u ∈ V
solving (∗).

Proof:

The conditions ensure that a(·, ·) is an inner-product on V and that (V, a(·, ·)) is a Hilbert space.
By Riesz Representation Theorem, all bounded linear functionals have representative u in the
inner-product.
This implies there exists u satisfying (∗). �

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Variational Formulation

Symmetric Variational Problem

Given F ∈ V ′, find u satisfying
a(u, v) = F [v ], ∀v ∈ V (∗)

ii. (H, (·, ·)) Hilbert space, iii. V is a subspace of H,
iv. a symmetric, bounded on H, coercive on V.

Theorem

For the variational problem (∗), if the conditions ii-iv hold then there exists a unique solution u ∈ V
solving (∗).

Proof:
The conditions ensure that a(·, ·) is an inner-product on V and that (V, a(·, ·)) is a Hilbert space.

By Riesz Representation Theorem, all bounded linear functionals have representative u in the
inner-product.
This implies there exists u satisfying (∗). �

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Variational Formulation

Symmetric Variational Problem

Given F ∈ V ′, find u satisfying
a(u, v) = F [v ], ∀v ∈ V (∗)

ii. (H, (·, ·)) Hilbert space, iii. V is a subspace of H,
iv. a symmetric, bounded on H, coercive on V.

Theorem

For the variational problem (∗), if the conditions ii-iv hold then there exists a unique solution u ∈ V
solving (∗).

Proof:
The conditions ensure that a(·, ·) is an inner-product on V and that (V, a(·, ·)) is a Hilbert space.
By Riesz Representation Theorem, all bounded linear functionals have representative u in the
inner-product.

This implies there exists u satisfying (∗). �

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Variational Formulation

Symmetric Variational Problem

Given F ∈ V ′, find u satisfying
a(u, v) = F [v ], ∀v ∈ V (∗)

ii. (H, (·, ·)) Hilbert space, iii. V is a subspace of H,
iv. a symmetric, bounded on H, coercive on V.

Theorem

For the variational problem (∗), if the conditions ii-iv hold then there exists a unique solution u ∈ V
solving (∗).

Proof:
The conditions ensure that a(·, ·) is an inner-product on V and that (V, a(·, ·)) is a Hilbert space.
By Riesz Representation Theorem, all bounded linear functionals have representative u in the
inner-product.
This implies there exists u satisfying (∗).

�

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Variational Formulation

Symmetric Variational Problem

Given F ∈ V ′, find u satisfying
a(u, v) = F [v ], ∀v ∈ V (∗)

ii. (H, (·, ·)) Hilbert space, iii. V is a subspace of H,
iv. a symmetric, bounded on H, coercive on V.

Theorem

For the variational problem (∗), if the conditions ii-iv hold then there exists a unique solution u ∈ V
solving (∗).

Proof:
The conditions ensure that a(·, ·) is an inner-product on V and that (V, a(·, ·)) is a Hilbert space.
By Riesz Representation Theorem, all bounded linear functionals have representative u in the
inner-product.
This implies there exists u satisfying (∗). �

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Variational Formulation

Definition

The Ritz-Galerkin Approximation is based on a finite-dimensional subspace Vh ⊂ V and F ∈ V ′. The
problem is to find uh ∈ Vh so that

a(uh, v) = F [v ], ∀v ∈ Vh, (∗∗)

Theorem

For the Ritz-Galerkin approximation problem (∗∗), if the conditions ii-iv hold then there exists a unique
solution uh ∈ Vh solving (∗∗).

Proof:
This follows since (Vh, a(·, ·)) is also a Hilbert space and we can again invoke the Riesz Representation
Theorem to obtain representative uh that satisfies (∗∗). �
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Variational Formulation

Lemma (Galerkin Orthogonality):

Let u be solution of (∗) and uh the solution of (∗∗), then the following orthogonality condition holds

a(u − uh, v) = 0, ∀v ∈ Vh.

Proof:
Consider

a(u, v) = F [v ], v ∈ V a(uh, v) = F [v ], v ∈ Vh
Subtracting the equations we have

a(u − uh, v) = 0, v ∈ Vh. �
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Variational Formulation

Lemma:

The solution of (∗∗) for uh ∈ Vh satisfies ‖u − uh‖E = minv∈Vh ‖u − v‖E .

Lemma (Rayleigh-Ritz Method):

For the symmetric variational problem (∗∗) the uh minimizes the quadratic energy functional over all
v ∈ Vh given by

E [v ] = a(v , v)− 2F [v ].
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Variational Formulation

Definition

A non-symmetric variational problem satifies the following

i Given F ∈ V ′, find u satisfying

a(u, v) = F [v ], ∀v ∈ V, (∗ ∗ ∗)
where

ii (H, (·, ·)) is a Hilbert space,

iii V is a subspace of H,

iv a(·, ·) is a bilinear form (not-necessarily symmetric)

v a is bounded on H and coercive on V.
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Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace Vh ⊂ V and F ∈ V ′. The
problem is to find uh ∈ Vh so that

a(uh, v) = F [v ], ∀v ∈ Vh, (∗ ∗ ∗)

We ideally would like to know the following

1 Does a solution exist? Is the solution unique?

2 What error estimates hold for uh in approximating u?

3 What conditions might result in non-symmetric bilinear forms?

Example:
Consider PDE

−u′′ + u′ + u = f , x ∈ [0, 1], u′(0) = u′(1) = 0.

A weak formulation is on V = H1([0, 1]), F [v ] = (f , v), with

a(u, v) =
∫ 1

0
u′v ′ + u′v + uvdx , which is not symmetric given u′v .
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Variational Formulation

Definition (Contraction Mapping)

A contraction map is any mapping T on a function space V that satisfies for some M < 1

‖Tv1 − Tv2‖ ≤ M‖v1 − v2‖.

A fixed point u of T is any function satisfying

u = Tu.

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u = Tu.
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u = Tu.

Proof (continued):

For a given v0 ∈ V define the generated sequence as vk+1 = Tvk . This satisfies

‖vk − vk−1‖ ≤ Mk−1‖v1 − v0‖.

For any N > n we have

‖vN − vn‖ =

∥∥∥∥∥
N∑

k=n+1

vk − vk−1

∥∥∥∥∥ ≤ ‖v1 − v0‖
N∑

k=n+1

Mk−1 ≤ Mn

1−M
‖v1 − v0‖ ≤

Mn

1−M
‖Tv0 − v0‖.

This shows {vk} forms a Cauchy sequence and by completeness we have there exists v∗ ∈ V so that

v∗ = lim
n→∞

vn = lim
n→∞

Tvn = T
(

lim
n→∞

vn
)

= Tv∗.

This establishes existence of a fixed point for T . �
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V , (·, ·)), a continuous, coercive bilinear form a(·, ·) (not necessarily symmetric),
and F ∈ V ′, there exists a unique u ∈ V so that

a(u, v) = F [v ], ∀v ∈ V.

Significance: This establishes for variational problems the existence and uniqueness of the solution u.
Implications: Also shows for the Galerkin approximations for the finite-dimensional problems the
existence and uniqueness of solution uh.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V , (·, ·)), a continuous, coercive bilinear form a(·, ·) (not necessarily symmetric),
and F ∈ V ′, there exists a unique u ∈ V so that

a(u, v) = F [v ], ∀v ∈ V.

Proof:

Define the operator Au which has action on a function v ∈ V as Au[v ] = a(u, v).
Properties of a imply Au is linear, bounded, and has norm ‖Au‖V′ ≤ C‖u‖V <∞, so Au ∈ V ′.
Riesz Representation Theorem implies φ ∈ V ′ there exists τφ ∈ V so that φ[v ] = (τφ, v).
The variational problem requires u such that Au[v ] = F [v ], ∀v ∈ V.
We show τAu = τF in V, which implies solution to the variational problem holds.
We do this using a contraction mapping principle for T [v ] := v − ρ(τAv − τF ). The fixed point
theorem yields Tu = u − ρ(τAu − τF ) = u. This implies τAu − τF = 0.
We now show that such a ρ 6= 0 exists making T a contraction map.
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Proof (continued):

For any v1, v2 ∈ V, let v = v1 − v2, then

‖Tv1 − Tv2‖2 = ‖v1 − v2 − ρ(τAv1 − τAv2)‖2

= ‖v − ρ(τAv)‖2, (τ,A are linear)

= ‖v‖2 − 2ρ(τAv , v) + ρ2‖τAv‖2

= ‖v‖2 − 2ρAv [v ] + ρ2Av [τAv ], (definition of τ) ,

= ‖v‖2 − 2ρa(v , v) + ρ2a(v , τAv), (definition of A) ,

≤ ‖v‖2 − 2ρ‖v‖2 + ρ2C‖v‖‖τAv‖, (cocercivity and continuity of A) ,

≤
(
1− 2ρα + ρ2C 2

)
‖v‖2 (A bounded, τ isometric)
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)
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= M2‖v1 − v2‖2.

We need

1− 2ρα + ρ2C 2 < 1→ ρ
(
ρC 2 − 2α

)
< 0. (1)

This is satisfied for ρ ∈ (0, 2α/C 2) giving M < 1. By the contraction principle we obtain the results. �
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Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (∗) or (∗ ∗ ∗).

For the bilinear form a(·, ·), let
C denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The
following error bound holds for the Galerkin approximation

‖u − uh‖V ≤
C

α
min
v∈Vh
‖u − v‖V .

Significance: This shows the solution uh obtain from the Galerkin approximation is bounded by all
approximations in the space V when measuring errors in the Hilbert-space norm.
This will become the basis for further estimates on the accuracy of Finite Element Methods.
Proof:
By subtracting the variational problems for the exact and Galerkin approximation we obtain

a(u − uh, v) = 0 ∀v ∈ Vh.
For all v ∈ Vh we have

α‖u − uh‖2
V ≤ a(u − uh, u − uh) (by coercivity)
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Proof (continued):

α‖u − uh‖2
V ≤ a(u − uh, u − uh) (by coercivity)

= a(u − uh, u − v) + a(u − uh, v − uh)

= a(u − uh, u − v), (since v − uh ∈ Vh)

≤ C‖u − uh‖V‖u − v‖V (by continuity) .

By dividing through we obtain for all v ∈ Vh

‖u − uh‖V ≤
C

α
‖u − v‖V .
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By dividing through we obtain for all v ∈ Vh

‖u − uh‖V ≤
C

α
‖u − v‖V .

This implies (since Vh is closed)

‖u − uh‖V ≤
C

α
inf

v∈Vh
‖u − v‖V . =

C

α
min
v∈Vh
‖u − v‖V .
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