Variational Formulation of Elliptic PDEs

Paul J. Atzberger

206D: Finite Element Methods University of California Santa Barbara

Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.

ii b is symmetric so b(v, w) = b(w, v)

A bilinear form $b(\cdot, \cdot)$ is a mapping $b : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

- i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
- ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

- i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
- ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties

iii $b(v, v) \geq 0, \forall v \in \mathcal{V}$

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

- i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
- ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties

iii
$$b(v, v) \ge 0, \forall v \in \mathcal{V}$$

iv $b(v, v) = 0, \iff v \equiv 0.$

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

- i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
- ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties

iii
$$b(v, v) \ge 0, \forall v \in \mathcal{V}$$

iv $b(v, v) = 0, \iff v \equiv 0.$

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

- i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
- ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties

iii
$$b(v, v) \ge 0, \forall v \in \mathcal{V}$$

iv $b(v, v) = 0, \iff v \equiv 0.$

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

- i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
- ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties

iii
$$b(v, v) \ge 0, \forall v \in \mathcal{V}$$

iv $b(v, v) = 0, \iff v \equiv 0.$

i
$$\mathcal{V} = \{w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x)\}$$

A bilinear form $b(\cdot, \cdot)$ is a mapping $b : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

- i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
- ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties

iii
$$b(v, v) \ge 0, \forall v \in \mathcal{V}$$

$\text{iv} \ b(v,v) = 0, \iff v \equiv 0.$

i
$$\mathcal{V} = \{w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x)\}$$
 where $u = \sum_{k=1}^{n} a_k \phi_k$, $v = \sum_{k=1}^{n} b_k \phi_k$

A bilinear form $b(\cdot, \cdot)$ is a mapping $b : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

- i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
- ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties

iii
$$b(v, v) \ge 0, \forall v \in \mathcal{V}$$

iv
$$b(v,v)=0, \iff v\equiv 0.$$

i
$$\mathcal{V} = \{w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x)\}$$
 where $u = \sum_{k=1}^{n} a_k \phi_k$, $v = \sum_{k=1}^{n} b_k \phi_k$ we define $b(u, v) = \sum_k w_k a_k b_k$.

A bilinear form $b(\cdot, \cdot)$ is a mapping $b : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

- i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
- ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties

iii
$$b(v,v) \ge 0, \ \forall v \in \mathcal{V}$$

iv
$$b(v,v) = 0$$
, $\iff v \equiv 0$.

Examples:

i $\mathcal{V} = \{w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x)\}$ where $u = \sum_{k=1}^{n} a_k \phi_k$, $v = \sum_{k=1}^{n} b_k \phi_k$ we define $b(u, v) = \sum_k w_k a_k b_k$. When $w_k > 0$ and ϕ_k are linearly independent this is an inner-product.

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

- i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
- ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties

iii
$$b(v,v) \ge 0, \ \forall v \in \mathcal{V}$$

iv
$$b(v,v) = 0$$
, $\iff v \equiv 0$.

Examples:

i $\mathcal{V} = \{w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x)\}$ where $u = \sum_{k=1}^{n} a_k \phi_k$, $v = \sum_{k=1}^{n} b_k \phi_k$ we define $b(u, v) = \sum_k w_k a_k b_k$. When $w_k > 0$ and ϕ_k are linearly independent this is an inner-product.

ii
$$\mathcal{V} = \mathbb{R}^m$$
 and $b(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

- i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
- ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties

iii
$$b(v,v) \ge 0, \ \forall v \in \mathcal{V}$$

iv
$$b(v,v)=0, \iff v\equiv 0.$$

Examples:

i $\mathcal{V} = \{w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x)\}$ where $u = \sum_{k=1}^{n} a_k \phi_k$, $v = \sum_{k=1}^{n} b_k \phi_k$ we define $b(u, v) = \sum_k w_k a_k b_k$. When $w_k > 0$ and ϕ_k are linearly independent this is an inner-product.

ii
$$\mathcal{V} = \mathbb{R}^m$$
 and $b(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

iii $\mathcal{V} = W_2^k(\Omega)$ with $\Omega \subset \mathbb{R}^n$

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

- i b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
- ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties

iii
$$b(v,v) \ge 0, \ \forall v \in \mathcal{V}$$

iv
$$b(v,v)=0, \iff v\equiv 0.$$

Examples:

i $\mathcal{V} = \{w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x)\}$ where $u = \sum_{k=1}^{n} a_k \phi_k$, $v = \sum_{k=1}^{n} b_k \phi_k$ we define $b(u, v) = \sum_k w_k a_k b_k$. When $w_k > 0$ and ϕ_k are linearly independent this is an inner-product.

ii
$$\mathcal{V} = \mathbb{R}^m$$
 and $b(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

iii $\mathcal{V} = W_2^k(\Omega)$ with $\Omega \subset \mathbb{R}^n$ with $(u, v)_m = \sum_{|\alpha| \le m} (\partial^{\alpha} u, \partial^{\alpha} u)_{L^2(\Omega)}$.

Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

 $|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \ \forall v,w \in \mathcal{V}.$

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

 $|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \ \forall v,w \in \mathcal{V}.$

Since *a* is linear this is equivalent to being **continuous**.

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

 $|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \ \forall v,w \in \mathcal{V}.$

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

 $|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \ \forall v,w \in \mathcal{V}.$

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq lpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

 $|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \forall v,w \in \mathcal{V}.$

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq lpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} .

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

 $|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \forall v,w \in \mathcal{V}.$

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq \alpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

 $|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \forall v,w \in \mathcal{V}.$

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq \alpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof:

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

 $|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \ \forall v,w \in \mathcal{V}.$

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq \alpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof:

Since $a(\cdot, \cdot)$ is coercive we have $a(v, v) = 0 \rightarrow v \equiv 0$,

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

 $|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \ \forall v,w \in \mathcal{V}.$

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq \alpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof:

Since $a(\cdot, \cdot)$ is coercive we have $a(v, v) = 0 \rightarrow v \equiv 0$, so a is an inner-product and $||v||_E = \sqrt{a(v, v)}$ is a norm.

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

 $|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \ \forall v,w \in \mathcal{V}.$

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq \alpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof:

Since $a(\cdot, \cdot)$ is coercive we have $a(v, v) = 0 \rightarrow v \equiv 0$, so *a* is an inner-product and $||v||_{\mathcal{E}} = \sqrt{a(v, v)}$ is a norm. We just need to show completeness.

Paul J. Atzberger, UCSB

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

```
|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \forall v,w \in \mathcal{V}.
```

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq lpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

```
|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \forall v,w \in \mathcal{V}.
```

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq lpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued): Suppose $\{v_k\}$ is a Cauchy sequence in $(V, \|\cdot\|_E)$,

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

```
|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \forall v,w \in \mathcal{V}.
```

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq lpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\{v_k\}$ is a Cauchy sequence in $(V, \|\cdot\|_E)$, then by coercivity $\{v_k\}$ is also Cauchy in $(\mathcal{H}, \|\cdot\|)$.

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

```
|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \forall v,w \in \mathcal{V}.
```

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq lpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\{v_k\}$ is a Cauchy sequence in $(V, \|\cdot\|_{\mathcal{E}})$, then by coercivity $\{v_k\}$ is also Cauchy in $(\mathcal{H}, \|\cdot\|)$. By completeness of \mathcal{H} there exists a $v \in \mathcal{H}$ so $v_n \to v$ in $\|\cdot\|_{\mathcal{H}}$.

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

```
|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \forall v,w \in \mathcal{V}.
```

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq lpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\{v_k\}$ is a Cauchy sequence in $(V, \|\cdot\|_E)$, then by coercivity $\{v_k\}$ is also Cauchy in $(\mathcal{H}, \|\cdot\|)$. By completeness of \mathcal{H} there exists a $v \in \mathcal{H}$ so $v_n \to v$ in $\|\cdot\|_{\mathcal{H}}$. Since \mathcal{V} is closed in \mathcal{H} by def. of a subspace we have $v \in \mathcal{V}$.

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

```
|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \forall v,w \in \mathcal{V}.
```

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq \alpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\{v_k\}$ is a Cauchy sequence in $(V, \|\cdot\|_E)$, then by coercivity $\{v_k\}$ is also Cauchy in $(\mathcal{H}, \|\cdot\|)$. By completeness of \mathcal{H} there exists a $v \in \mathcal{H}$ so $v_n \to v$ in $\|\cdot\|_{\mathcal{H}}$. Since \mathcal{V} is closed in \mathcal{H} by def. of a subspace we have $v \in \mathcal{V}$. Now $\|v - v_k\|_E \leq c \|v - v_k\|_H$ since *a* is bounded,

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

```
|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \forall v,w \in \mathcal{V}.
```

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq lpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\{v_k\}$ is a Cauchy sequence in $(V, \|\cdot\|_E)$, then by coercivity $\{v_k\}$ is also Cauchy in $(\mathcal{H}, \|\cdot\|)$. By completeness of \mathcal{H} there exists a $v \in \mathcal{H}$ so $v_n \to v$ in $\|\cdot\|_H$. Since \mathcal{V} is closed in \mathcal{H} by def. of a subspace we have $v \in \mathcal{V}$. Now $\|v - v_k\|_E \leq c \|v - v_k\|_H$ since *a* is bounded, so v_k converges to *v* in $\|\cdot\|_E$ showing \mathcal{V} is complete.

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

```
|a(v,w)| \leq C ||v||_{\mathcal{V}} ||w||_{\mathcal{V}}, \forall v,w \in \mathcal{V}.
```

Since *a* is linear this is equivalent to being **continuous**. A bilinear form $a(\cdot, \cdot)$ is **coercive** on $\mathcal{V} \subset \mathcal{H}$ if there exists an α so that

 $a(\mathbf{v},\mathbf{v}) \geq lpha \|\mathbf{v}\|_{\mathcal{H}}^2$

Lemma

Consider $\mathcal{V} \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H} . If *a* is continuous on \mathcal{H} and coercive on \mathcal{V} then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\{v_k\}$ is a Cauchy sequence in $(V, \|\cdot\|_E)$, then by coercivity $\{v_k\}$ is also Cauchy in $(\mathcal{H}, \|\cdot\|)$. By completeness of \mathcal{H} there exists a $v \in \mathcal{H}$ so $v_n \to v$ in $\|\cdot\|_H$. Since \mathcal{V} is closed in \mathcal{H} by def. of a subspace we have $v \in \mathcal{V}$. Now $\|v - v_k\|_E \leq c \|v - v_k\|_H$ since *a* is bounded, so v_k converges to *v* in $\|\cdot\|_E$ showing \mathcal{V} is complete.

Variational Formulation

Definition

A symmetric variational problem satifies the following

A symmetric variational problem satifies the following

i Given $F \in \mathcal{V}'$, find *u* satisfying $a(u, v) = F[v], \forall v \in \mathcal{V}, (*)$

where

A symmetric variational problem satifies the following

- i Given $F \in \mathcal{V}'$, find u satisfying $a(u,v) = F[v], \ \forall v \in \mathcal{V}, \ (*)$ where
- ii $(\mathcal{H}, (\cdot, \cdot))$ is a Hilbert space,

A symmetric variational problem satifies the following

- i Given $F\in \mathcal{V}'$, find u satisfying $a(u,v)=F[v], \ \forall v\in \mathcal{V}, \ (*)$ where
- ii $(\mathcal{H}, (\cdot, \cdot))$ is a Hilbert space,
- iii $\, \mathcal{V} \, \, \text{is a subspace of} \, \, \mathcal{H}, \,$

A symmetric variational problem satifies the following

i Given $F \in \mathcal{V}'$, find *u* satisfying

$$a(u,v) = F[v], \forall v \in \mathcal{V}, (*)$$

where

ii $(\mathcal{H}, (\cdot, \cdot))$ is a Hilbert space,

iii $\, \mathcal{V} \, \, \text{is a subspace of} \, \, \mathcal{H}, \,$

iv $a(\cdot, \cdot)$ is a symmetric bilinear form that is bounded on \mathcal{H} and coercive on \mathcal{V} .

A symmetric variational problem satifies the following

i Given $F \in \mathcal{V}'$, find *u* satisfying

$$a(u,v) = F[v], \forall v \in \mathcal{V}, (*)$$

where

ii $(\mathcal{H}, (\cdot, \cdot))$ is a Hilbert space,

iii $\, \mathcal{V} \, \, \text{is a subspace of} \, \, \mathcal{H}, \,$

iv $a(\cdot, \cdot)$ is a symmetric bilinear form that is bounded on \mathcal{H} and coercive on \mathcal{V} .

Theorem

A symmetric variational problem satifies the following

i Given $F \in \mathcal{V}'$, find *u* satisfying

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}, \ (*)$$

where

ii $(\mathcal{H}, (\cdot, \cdot))$ is a Hilbert space,

iii \mathcal{V} is a subspace of \mathcal{H} ,

iv $a(\cdot, \cdot)$ is a symmetric bilinear form that is bounded on \mathcal{H} and coercive on \mathcal{V} .

Theorem

For the variational problem (*), if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (*).

Given $F \in \mathcal{V}'$, find *u* satisfying $a(u, v) = F[v], \quad \forall v \in \mathcal{V} \quad (*)$ ii. $(\mathcal{H}, (\cdot, \cdot))$ Hilbert space, iii. \mathcal{V} is a subspace of \mathcal{H} , iv. *a* symmetric, bounded on \mathcal{H} , coercive on \mathcal{V} .

Theorem

For the variational problem (*), if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (*).

Proof:

Given $F \in \mathcal{V}'$, find *u* satisfying $a(u, v) = F[v], \quad \forall v \in \mathcal{V} \quad (*)$ ii. $(\mathcal{H}, (\cdot, \cdot))$ Hilbert space, iii. \mathcal{V} is a subspace of \mathcal{H} , iv. *a* symmetric, bounded on \mathcal{H} , coercive on \mathcal{V} .

Theorem

For the variational problem (*), if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (*).

Proof:

The conditions ensure that $a(\cdot, \cdot)$ is an inner-product on \mathcal{V} and that $(\mathcal{V}, a(\cdot, \cdot))$ is a Hilbert space.

Given $F \in \mathcal{V}'$, find *u* satisfying $a(u, v) = F[v], \quad \forall v \in \mathcal{V} \quad (*)$ ii. $(\mathcal{H}, (\cdot, \cdot))$ Hilbert space, iii. \mathcal{V} is a subspace of \mathcal{H} , iv. *a* symmetric, bounded on \mathcal{H} , coercive on \mathcal{V} .

Theorem

For the variational problem (*), if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (*).

Proof:

The conditions ensure that $a(\cdot, \cdot)$ is an inner-product on \mathcal{V} and that $(\mathcal{V}, a(\cdot, \cdot))$ is a Hilbert space. By Riesz Representation Theorem, all bounded linear functionals have representative u in the inner-product.

Given $F \in \mathcal{V}'$, find *u* satisfying $a(u, v) = F[v], \quad \forall v \in \mathcal{V} \quad (*)$ ii. $(\mathcal{H}, (\cdot, \cdot))$ Hilbert space, iii. \mathcal{V} is a subspace of \mathcal{H} , iv. *a* symmetric, bounded on \mathcal{H} , coercive on \mathcal{V} .

Theorem

For the variational problem (*), if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (*).

Proof:

The conditions ensure that $a(\cdot, \cdot)$ is an inner-product on \mathcal{V} and that $(\mathcal{V}, a(\cdot, \cdot))$ is a Hilbert space. By Riesz Representation Theorem, all bounded linear functionals have representative u in the inner-product.

```
This implies there exists u satisfying (*).
```

Given $F \in \mathcal{V}'$, find *u* satisfying $a(u, v) = F[v], \quad \forall v \in \mathcal{V} \quad (*)$ ii. $(\mathcal{H}, (\cdot, \cdot))$ Hilbert space, iii. \mathcal{V} is a subspace of \mathcal{H} , iv. *a* symmetric, bounded on \mathcal{H} , coercive on \mathcal{V} .

Theorem

For the variational problem (*), if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (*).

Proof:

The conditions ensure that $a(\cdot, \cdot)$ is an inner-product on \mathcal{V} and that $(\mathcal{V}, a(\cdot, \cdot))$ is a Hilbert space. By Riesz Representation Theorem, all bounded linear functionals have representative u in the inner-product.

This implies there exists u satisfying (*).

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (**)$

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \ \forall v \in \mathcal{V}_h, \ (**)$

Theorem

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \ \forall v \in \mathcal{V}_h, \ (**)$

Theorem

For the Ritz-Galerkin approximation problem (**), if the conditions ii-iv hold then there exists a unique solution $u_h \in \mathcal{V}_h$ solving (**).

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \ \forall v \in \mathcal{V}_h, \ (**)$

Theorem

For the Ritz-Galerkin approximation problem (**), if the conditions ii-iv hold then there exists a unique solution $u_h \in \mathcal{V}_h$ solving (**).

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (**)$

Theorem

For the Ritz-Galerkin approximation problem (**), if the conditions ii-iv hold then there exists a unique solution $u_h \in \mathcal{V}_h$ solving (**).

Proof:

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \ \forall v \in \mathcal{V}_h, \ (**)$

Theorem

For the Ritz-Galerkin approximation problem (**), if the conditions ii-iv hold then there exists a unique solution $u_h \in \mathcal{V}_h$ solving (**).

Proof:

This follows since $(\mathcal{V}_h, a(\cdot, \cdot))$ is also a Hilbert space and we can again invoke the Riesz Representation Theorem to obtain representative u_h that satisfies (**).

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \ \forall v \in \mathcal{V}_h, \ (**)$

Theorem

For the Ritz-Galerkin approximation problem (**), if the conditions ii-iv hold then there exists a unique solution $u_h \in \mathcal{V}_h$ solving (**).

Proof:

This follows since $(\mathcal{V}_h, a(\cdot, \cdot))$ is also a Hilbert space and we can again invoke the Riesz Representation Theorem to obtain representative u_h that satisfies (**).

Let u be solution of (*) and u_h the solution of (**), then the following orthogonality condition holds

Let u be solution of (*) and u_h the solution of (**), then the following orthogonality condition holds

 $a(u-u_h,v)=0, \ \forall v\in \mathcal{V}_h.$

Let u be solution of (*) and u_h the solution of (**), then the following orthogonality condition holds

$$a(u-u_h,v)=0, \ \forall v\in \mathcal{V}_h.$$

Proof:

Let u be solution of (*) and u_h the solution of (**), then the following orthogonality condition holds

$$a(u-u_h,v)=0, \ \forall v\in \mathcal{V}_h.$$

Proof: Consider

Let u be solution of (*) and u_h the solution of (**), then the following orthogonality condition holds

$$a(u-u_h,v)=0, \ \ \forall v\in \mathcal{V}_h.$$

Proof: Consider

$$a(u,v) = F[v], v \in \mathcal{V}$$
 $a(u_h,v) = F[v], v \in \mathcal{V}_h$

Let u be solution of (*) and u_h the solution of (**), then the following orthogonality condition holds

$$a(u-u_h,v)=0, \ \forall v\in \mathcal{V}_h.$$

Proof:

Consider

$$a(u,v) = F[v], v \in \mathcal{V}$$
 $a(u_h,v) = F[v], v \in \mathcal{V}_h$

Subtracting the equations we have

Let u be solution of (*) and u_h the solution of (**), then the following orthogonality condition holds

 $a(u-u_h,v)=0, \ \forall v\in \mathcal{V}_h.$

Proof:

Consider

$$a(u,v) = F[v], v \in \mathcal{V}$$
 $a(u_h,v) = F[v], v \in \mathcal{V}_h$

Subtracting the equations we have

$$a(u-u_h,v)=0, v \in \mathcal{V}_h.$$

Let u be solution of (*) and u_h the solution of (**), then the following orthogonality condition holds

 $a(u-u_h,v)=0, \ \forall v\in \mathcal{V}_h.$

Proof:

Consider

$$a(u,v) = F[v], v \in \mathcal{V}$$
 $a(u_h,v) = F[v], v \in \mathcal{V}_h$

Subtracting the equations we have

 $a(u-u_h,v)=0, \ v\in \mathcal{V}_h.$

The solution of (**) for $u_h \in \mathcal{V}_h$ satisfies $||u - u_h||_E = \min_{v \in \mathcal{V}_h} ||u - v||_E$.

The solution of (**) for $u_h \in \mathcal{V}_h$ satisfies $||u - u_h||_E = \min_{v \in \mathcal{V}_h} ||u - v||_E$.

Lemma (Rayleigh-Ritz Method):

The solution of (**) for $u_h \in \mathcal{V}_h$ satisfies $||u - u_h||_E = \min_{v \in \mathcal{V}_h} ||u - v||_E$.

Lemma (Rayleigh-Ritz Method):

For the symmetric variational problem (**) the u_h minimizes the quadratic energy functional over all $v \in \mathcal{V}_h$ given by

Lemma:

The solution of (**) for
$$u_h \in \mathcal{V}_h$$
 satisfies $||u - u_h||_E = \min_{v \in \mathcal{V}_h} ||u - v||_E$.

Lemma (Rayleigh-Ritz Method):

For the symmetric variational problem (**) the u_h minimizes the quadratic energy functional over all $v \in \mathcal{V}_h$ given by

$$E[v] = a(v, v) - 2F[v].$$

A non-symmetric variational problem satifies the following

A non-symmetric variational problem satifies the following

```
i Given F \in \mathcal{V}', find u satisfying
a(u, v) = F[v], \forall v \in \mathcal{V}, (* * *)
```

where

A non-symmetric variational problem satifies the following

```
i Given F \in \mathcal{V}', find u satisfying
a(u,v) = F[v], \ \forall v \in \mathcal{V}, \ (***)
```

where

```
ii (\mathcal{H}, (\cdot, \cdot)) is a Hilbert space,
```

A non-symmetric variational problem satifies the following

```
i Given F \in \mathcal{V}', find u satisfying
a(u,v) = F[v], \ \forall v \in \mathcal{V}, \ (***)
```

where

```
ii (\mathcal{H}, (\cdot, \cdot)) is a Hilbert space,
```

iii \mathcal{V} is a subspace of \mathcal{H} ,

A non-symmetric variational problem satifies the following

```
i Given F \in \mathcal{V}', find u satisfying
a(u, v) = F[v], \forall v \in \mathcal{V}, (* * *)
```

where

```
ii (\mathcal{H}, (\cdot, \cdot)) is a Hilbert space,
```

iii \mathcal{V} is a subspace of \mathcal{H} ,

```
iv a(\cdot, \cdot) is a bilinear form (not-necessarily symmetric)
```

A non-symmetric variational problem satifies the following

```
i Given F \in \mathcal{V}', find u satisfying
a(u, v) = F[v], \forall v \in \mathcal{V}, (* * *)
```

where

```
ii (\mathcal{H}, (\cdot, \cdot)) is a Hilbert space,
```

iii \mathcal{V} is a subspace of \mathcal{H} ,

iv $a(\cdot, \cdot)$ is a bilinear form (not-necessarily symmetric)

v *a* is bounded on \mathcal{H} and coercive on \mathcal{V} .

Variational Formulation

Definition

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \forall v \in \mathcal{V}_h, (***)$

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \forall v \in \mathcal{V}_h, (***)$

We ideally would like to know the following

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \ \forall v \in \mathcal{V}_h, \ (***)$

We ideally would like to know the following

1 Does a solution exist? Is the solution unique?

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \ \forall v \in \mathcal{V}_h, \ (***)$

We ideally would like to know the following

- 1 Does a solution exist? Is the solution unique?
- 2 What error estimates hold for u_h in approximating u?

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (***)$

We ideally would like to know the following

- 1 Does a solution exist? Is the solution unique?
- 2 What error estimates hold for u_h in approximating u?
- 3 What conditions might result in non-symmetric bilinear forms?

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (***)$

We ideally would like to know the following

- 1 Does a solution exist? Is the solution unique?
- 2 What error estimates hold for u_h in approximating u?
- 3 What conditions might result in non-symmetric bilinear forms?

Example:

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h,v)=F[v], \ \forall v\in \mathcal{V}_h, \ (***)$

We ideally would like to know the following

- 1 Does a solution exist? Is the solution unique?
- 2 What error estimates hold for u_h in approximating u?
- 3 What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$-u'' + u' + u = f, x \in [0,1], u'(0) = u'(1) = 0.$$

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \ \forall v \in \mathcal{V}_h, \ (***)$

We ideally would like to know the following

- 1 Does a solution exist? Is the solution unique?
- 2 What error estimates hold for u_h in approximating u?
- 3 What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$-u'' + u' + u = f, x \in [0,1], u'(0) = u'(1) = 0.$$

A weak formulation is on $\mathcal{V} = H^1([0,1])$, F[v] = (f, v), with

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \ \forall v \in \mathcal{V}_h, \ (***)$

We ideally would like to know the following

- 1 Does a solution exist? Is the solution unique?
- 2 What error estimates hold for u_h in approximating u?
- 3 What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$-u'' + u' + u = f, x \in [0, 1], u'(0) = u'(1) = 0.$$

A weak formulation is on $\mathcal{V} = H^1([0,1])$, F[v] = (f, v), with $a(u, v) = \int_0^1 u'v' + u'v + uvdx$,

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

 $a(u_h, v) = F[v], \ \forall v \in \mathcal{V}_h, \ (***)$

We ideally would like to know the following

- 1 Does a solution exist? Is the solution unique?
- 2 What error estimates hold for u_h in approximating u?
- 3 What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$-u'' + u' + u = f, x \in [0, 1], u'(0) = u'(1) = 0.$$

A weak formulation is on $\mathcal{V} = H^1([0,1])$, F[v] = (f, v), with $a(u, v) = \int_0^1 u'v' + u'v + uvdx$, which is not symmetric given u'v.

A contraction map is any mapping T on a function space V that satisfies for some M < 1

A contraction map is any mapping T on a function space V that satisfies for some M < 1

 $||Tv_1 - Tv_2|| \le M ||v_1 - v_2||.$

A contraction map is any mapping T on a function space $\mathcal V$ that satisfies for some M < 1

$$|Tv_1 - Tv_2|| \le M ||v_1 - v_2||.$$

A fixed point u of T is any function satisfying

A contraction map is any mapping T on a function space V that satisfies for some M < 1

$$|Tv_1 - Tv_2|| \le M ||v_1 - v_2||.$$

A fixed point u of T is any function satisfying

u = Tu.

A contraction map is any mapping T on a function space V that satisfies for some M < 1

$$|Tv_1 - Tv_2|| \le M ||v_1 - v_2||.$$

A fixed point u of T is any function satisfying

u = Tu.

Lemma (Fix Point Theorem)

A contraction map is any mapping T on a function space V that satisfies for some M < 1

$$|Tv_1 - Tv_2| \le M ||v_1 - v_2||.$$

A fixed point u of T is any function satisfying

u = Tu.

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof:

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof:

We show uniqueness first, then existence.

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof:

We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof:

We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$||Tv_1 - Tv_2|| \le M ||v_1 - v_2||$$

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof:

We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$||Tv_1 - Tv_2|| \le M ||v_1 - v_2||$$

where $0 \le M < 1$.

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof:

We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$|Tv_1 - Tv_2|| \le M ||v_1 - v_2||$$

where $0 \le M < 1$. By the fix-point property

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof:

We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$|Tv_1 - Tv_2| \le M ||v_1 - v_2||$$

where $0 \le M < 1$. By the fix-point property

$$||v_1 - v_2|| \le M ||v_1 - v_2||.$$

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof:

We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$|Tv_1 - Tv_2|| \le M ||v_1 - v_2||$$

where $0 \le M < 1$. By the fix-point property

$$||v_1 - v_2|| \le M ||v_1 - v_2||.$$

This implies $||v_1 - v_2|| = 0 \rightarrow v_1 = v_2$.

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof:

We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$|Tv_1 - Tv_2|| \le M ||v_1 - v_2||$$

where $0 \le M < 1$. By the fix-point property

$$||v_1 - v_2|| \le M ||v_1 - v_2||.$$

This implies $||v_1 - v_2|| = 0 \rightarrow v_1 = v_2$.

We next show existence.

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof (continued):

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \le M^{k-1} \|v_1 - v_0\|.$$

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \le M^{k-1} \|v_1 - v_0\|.$$

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \le M^{k-1} \|v_1 - v_0\|.$$

$$\|v_N - v_n\| = \left\|\sum_{k=n+1}^N v_k - v_{k-1}\right\|$$

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \le M^{k-1} \|v_1 - v_0\|.$$

$$\|v_N - v_n\| = \left\|\sum_{k=n+1}^N v_k - v_{k-1}\right\| \le \|v_1 - v_0\|\sum_{k=n+1}^N M^{k-1}$$

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \le M^{k-1} \|v_1 - v_0\|.$$

$$\|v_N - v_n\| = \left\|\sum_{k=n+1}^N v_k - v_{k-1}\right\| \le \|v_1 - v_0\|\sum_{k=n+1}^N M^{k-1} \le \frac{M^n}{1-M}\|v_1 - v_0\|$$

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \le M^{k-1} \|v_1 - v_0\|.$$

$$\|v_N - v_n\| = \left\|\sum_{k=n+1}^N v_k - v_{k-1}\right\| \le \|v_1 - v_0\|\sum_{k=n+1}^N M^{k-1} \le \frac{M^n}{1-M}\|v_1 - v_0\| \le \frac{M^n}{1-M}\|Tv_0 - v_0\|.$$

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \le M^{k-1} \|v_1 - v_0\|.$$

For any N > n we have

$$\|v_N - v_n\| = \left\|\sum_{k=n+1}^N v_k - v_{k-1}\right\| \le \|v_1 - v_0\| \sum_{k=n+1}^N M^{k-1} \le \frac{M^n}{1-M} \|v_1 - v_0\| \le \frac{M^n}{1-M} \|Tv_0 - v_0\|.$$

This shows $\{v_k\}$ forms a Cauchy sequence and by completeness we have there exists $v^* \in \mathcal{V}$ so that

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \le M^{k-1} \|v_1 - v_0\|.$$

For any N > n we have

$$\|v_N - v_n\| = \left\|\sum_{k=n+1}^N v_k - v_{k-1}\right\| \le \|v_1 - v_0\| \sum_{k=n+1}^N M^{k-1} \le \frac{M^n}{1-M} \|v_1 - v_0\| \le \frac{M^n}{1-M} \|Tv_0 - v_0\|.$$

This shows $\{v_k\}$ forms a Cauchy sequence and by completeness we have there exists $v^* \in \mathcal{V}$ so that

$$v^* = \lim_{n \to \infty} v_n = \lim_{n \to \infty} Tv_n = T\left(\lim_{n \to \infty} v_n\right) = Tv^*.$$

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \le M^{k-1} \|v_1 - v_0\|.$$

For any N > n we have

$$\|v_N - v_n\| = \left\|\sum_{k=n+1}^N v_k - v_{k-1}\right\| \le \|v_1 - v_0\| \sum_{k=n+1}^N M^{k-1} \le \frac{M^n}{1-M} \|v_1 - v_0\| \le \frac{M^n}{1-M} \|Tv_0 - v_0\|.$$

This shows $\{v_k\}$ forms a Cauchy sequence and by completeness we have there exists $v^* \in \mathcal{V}$ so that

$$v^* = \lim_{n \to \infty} v_n = \lim_{n \to \infty} Tv_n = T\left(\lim_{n \to \infty} v_n\right) = Tv^*.$$

This establishes existence of a fixed point for T.

Paul J. Atzberger, UCSB

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying u = Tu.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \le M^{k-1} \|v_1 - v_0\|.$$

For any N > n we have

$$\|v_N - v_n\| = \left\|\sum_{k=n+1}^N v_k - v_{k-1}\right\| \le \|v_1 - v_0\| \sum_{k=n+1}^N M^{k-1} \le \frac{M^n}{1-M} \|v_1 - v_0\| \le \frac{M^n}{1-M} \|Tv_0 - v_0\|.$$

This shows $\{v_k\}$ forms a Cauchy sequence and by completeness we have there exists $v^* \in \mathcal{V}$ so that

$$v^* = \lim_{n \to \infty} v_n = \lim_{n \to \infty} Tv_n = T\left(\lim_{n \to \infty} v_n\right) = Tv^*.$$

This establishes existence of a fixed point for T.

Paul J. Atzberger, UCSB

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

 $a(u,v) = F[v], \forall v \in \mathcal{V}.$

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u, v) = F[v], \forall v \in \mathcal{V}.$$

Significance: This establishes for variational problems the existence and uniqueness of the solution u.

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u, v) = F[v], \forall v \in \mathcal{V}.$$

Significance: This establishes for variational problems the **existence** and **uniqueness** of the solution u. **Implications:** Also shows for the Galerkin approximations for the finite-dimensional problems the existence and uniqueness of solution u_h .

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

 $a(u,v) = F[v], \forall v \in \mathcal{V}.$

Proof:

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

 $a(u,v) = F[v], \forall v \in \mathcal{V}.$

Proof:

Define the operator Au which has action on a function $v \in V$ as Au[v] = a(u, v).

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

 $a(u,v) = F[v], \forall v \in \mathcal{V}.$

Proof:

Define the operator Au which has action on a function $v \in \mathcal{V}$ as Au[v] = a(u, v). Properties of a imply Au is linear, bounded, and has norm $||Au||_{\mathcal{V}'} \leq C||u||_{\mathcal{V}} < \infty$, so $Au \in \mathcal{V}'$.

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

 $a(u,v) = F[v], \quad \forall v \in \mathcal{V}.$

Proof:

Define the operator Au which has action on a function $v \in \mathcal{V}$ as Au[v] = a(u, v). Properties of a imply Au is linear, bounded, and has norm $||Au||_{\mathcal{V}'} \leq C ||u||_{\mathcal{V}} < \infty$, so $Au \in \mathcal{V}'$. Riesz Representation Theorem implies $\phi \in \mathcal{V}'$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v] = (\tau \phi, v)$.

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

 $a(u,v) = F[v], \forall v \in \mathcal{V}.$

Proof:

Define the operator Au which has action on a function $v \in \mathcal{V}$ as Au[v] = a(u, v). Properties of a imply Au is linear, bounded, and has norm $||Au||_{\mathcal{V}'} \leq C||u||_{\mathcal{V}} < \infty$, so $Au \in \mathcal{V}'$. Riesz Representation Theorem implies $\phi \in \mathcal{V}'$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v] = (\tau \phi, v)$. The variational problem requires u such that $Au[v] = F[v], \forall v \in \mathcal{V}$.

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

 $a(u,v) = F[v], \quad \forall v \in \mathcal{V}.$

Proof:

Define the operator Au which has action on a function $v \in \mathcal{V}$ as Au[v] = a(u, v). Properties of a imply Au is linear, bounded, and has norm $||Au||_{\mathcal{V}'} \leq C ||u||_{\mathcal{V}} < \infty$, so $Au \in \mathcal{V}'$. Riesz Representation Theorem implies $\phi \in \mathcal{V}'$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v] = (\tau \phi, v)$. The variational problem requires u such that $Au[v] = F[v], \forall v \in \mathcal{V}$. We show $\tau Au = \tau F$ in \mathcal{V} , which implies solution to the variational problem holds.

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

 $a(u,v) = F[v], \forall v \in \mathcal{V}.$

Proof:

Define the operator Au which has action on a function $v \in \mathcal{V}$ as Au[v] = a(u, v). Properties of a imply Au is linear, bounded, and has norm $||Au||_{\mathcal{V}'} \leq C||u||_{\mathcal{V}} < \infty$, so $Au \in \mathcal{V}'$. Riesz Representation Theorem implies $\phi \in \mathcal{V}'$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v] = (\tau \phi, v)$. The variational problem requires u such that $Au[v] = F[v], \forall v \in \mathcal{V}$. We show $\tau Au = \tau F$ in \mathcal{V} , which implies solution to the variational problem holds. We do this using a contraction mapping principle for $T[v] := v - \rho(\tau Av - \tau F)$.

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

 $a(u,v) = F[v], \quad \forall v \in \mathcal{V}.$

Proof:

Define the operator Au which has action on a function $v \in \mathcal{V}$ as Au[v] = a(u, v). Properties of a imply Au is linear, bounded, and has norm $||Au||_{\mathcal{V}'} \leq C||u||_{\mathcal{V}} < \infty$, so $Au \in \mathcal{V}'$. Riesz Representation Theorem implies $\phi \in \mathcal{V}'$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v] = (\tau \phi, v)$. The variational problem requires u such that Au[v] = F[v], $\forall v \in \mathcal{V}$. We show $\tau Au = \tau F$ in \mathcal{V} , which implies solution to the variational problem holds. We do this using a contraction mapping principle for $T[v] := v - \rho(\tau Av - \tau F)$. The fixed point theorem yields $Tu = u - \rho(\tau Au - \tau F) = u$.

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

 $a(u,v) = F[v], \forall v \in \mathcal{V}.$

Proof:

Define the operator Au which has action on a function $v \in \mathcal{V}$ as Au[v] = a(u, v). Properties of a imply Au is linear, bounded, and has norm $||Au||_{\mathcal{V}'} \leq C||u||_{\mathcal{V}} < \infty$, so $Au \in \mathcal{V}'$. Riesz Representation Theorem implies $\phi \in \mathcal{V}'$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v] = (\tau \phi, v)$. The variational problem requires u such that Au[v] = F[v], $\forall v \in \mathcal{V}$. We show $\tau Au = \tau F$ in \mathcal{V} , which implies solution to the variational problem holds. We do this using a contraction mapping principle for $T[v] := v - \rho(\tau Av - \tau F)$. The fixed point theorem yields $Tu = u - \rho(\tau Au - \tau F) = u$. This implies $\tau Au - \tau F = 0$.

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

 $a(u,v) = F[v], \quad \forall v \in \mathcal{V}.$

Proof:

Define the operator Au which has action on a function $v \in \mathcal{V}$ as Au[v] = a(u, v). Properties of a imply Au is linear, bounded, and has norm $||Au||_{\mathcal{V}'} \leq C||u||_{\mathcal{V}} < \infty$, so $Au \in \mathcal{V}'$. Riesz Representation Theorem implies $\phi \in \mathcal{V}'$ there exists $\tau \phi \in \mathcal{V}$ so that $\phi[v] = (\tau \phi, v)$. The variational problem requires u such that Au[v] = F[v], $\forall v \in \mathcal{V}$. We show $\tau Au = \tau F$ in \mathcal{V} , which implies solution to the variational problem holds. We do this using a contraction mapping principle for $T[v] := v - \rho(\tau Av - \tau F)$. The fixed point theorem yields $Tu = u - \rho(\tau Au - \tau F) = u$. This implies $\tau Au - \tau F = 0$. We now show that such a $\rho \neq 0$ exists making T a contraction map.

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u, v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

For any $v_1, v_2 \in \mathcal{V}$, let $v = v_1 - v_2$, then

 $\|Tv_1 - Tv_2\|^2 = \|v_1 - v_2 - \rho(\tau Av_1 - \tau Av_2)\|^2$

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

$$\begin{aligned} \| \mathbf{T} \mathbf{v}_1 - \mathbf{T} \mathbf{v}_2 \|^2 &= \| \mathbf{v}_1 - \mathbf{v}_2 - \rho(\tau A \mathbf{v}_1 - \tau A \mathbf{v}_2) \|^2 \\ &= \| \mathbf{v} - \rho(\tau A \mathbf{v}) \|^2, \ (\tau, A \text{ are linear}) \end{aligned}$$

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

$$\|Tv_1 - Tv_2\|^2 = \|v_1 - v_2 - \rho(\tau Av_1 - \tau Av_2)\|^2$$

= $\|v - \rho(\tau Av)\|^2$, $(\tau, A \text{ are linear})$
= $\|v\|^2 - 2\rho(\tau Av, v) + \rho^2 \|\tau Av\|^2$

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

$$\begin{aligned} \|Tv_1 - Tv_2\|^2 &= \|v_1 - v_2 - \rho(\tau A v_1 - \tau A v_2)\|^2 \\ &= \|v - \rho(\tau A v)\|^2, \quad (\tau, A \text{ are linear}) \\ &= \|v\|^2 - 2\rho(\tau A v, v) + \rho^2 \|\tau A v\|^2 \\ &= \|v\|^2 - 2\rho A v[v] + \rho^2 A v[\tau A v], \quad (\text{definition of } \tau) , \end{aligned}$$

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

$$\begin{aligned} \|Tv_1 - Tv_2\|^2 &= \|v_1 - v_2 - \rho(\tau A v_1 - \tau A v_2)\|^2 \\ &= \|v - \rho(\tau A v)\|^2, \quad (\tau, A \text{ are linear}) \\ &= \|v\|^2 - 2\rho(\tau A v, v) + \rho^2 \|\tau A v\|^2 \\ &= \|v\|^2 - 2\rho A v[v] + \rho^2 A v[\tau A v], \quad (\text{definition of } \tau), \\ &= \|v\|^2 - 2\rho a(v, v) + \rho^2 a(v, \tau A v), \quad (\text{definition of } A). \end{aligned}$$

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

$$\begin{split} \|Tv_{1} - Tv_{2}\|^{2} &= \|v_{1} - v_{2} - \rho(\tau A v_{1} - \tau A v_{2})\|^{2} \\ &= \|v - \rho(\tau A v)\|^{2}, \ (\tau, A \text{ are linear}) \\ &= \|v\|^{2} - 2\rho(\tau A v, v) + \rho^{2}\|\tau A v\|^{2} \\ &= \|v\|^{2} - 2\rho A v[v] + \rho^{2} A v[\tau A v], \ (\text{definition of } \tau), \\ &= \|v\|^{2} - 2\rho a(v, v) + \rho^{2} a(v, \tau A v), \ (\text{definition of } A), \\ &\leq \|v\|^{2} - 2\rho \|v\|^{2} + \rho^{2} C \|v\| \|\tau A v\|, \ (\text{coccrevity and continuity of } A), \end{split}$$

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

For any $v_1, v_2 \in \mathcal{V}$, let $v = v_1 - v_2$, then $\|Tv_1 - Tv_2\|^2 = \|v_1 - v_2 - \rho(\tau A v_1 - \tau A v_2)\|^2$ $= \|v\|^2 - 2\rho(\tau A v, v) + \rho^2 \|\tau A v\|^2$ $= \|v\|^2 - 2\rho A v[v] + \rho^2 A v[\tau A v], \quad (\text{definition of } \tau),$ $= \|v\|^2 - 2\rho a(v, v) + \rho^2 a(v, \tau A v), \quad (\text{definition of } A),$ $\leq \|v\|^2 - 2\rho \|v\|^2 + \rho^2 C \|v\| \|\tau A v\|, \quad (\text{cocercivity and continuity of } A),$ $< (1 - 2\rho\alpha + \rho^2 C^2) \|v\|^2 \quad (A \text{ bounded}, \ \tau \text{ isometric})$

Paul J. Atzberger, UCSB

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

$$\| \mathcal{T} \mathbf{v}_1 - \mathcal{T} \mathbf{v}_2 \|^2 \leq (1 - 2
ho lpha +
ho^2 \mathcal{C}^2) \| \mathbf{v} \|^2$$
 (A bounded, au isometric)

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

$$\| T v_1 - T v_2 \|^2 \leq (1 - 2\rho\alpha + \rho^2 C^2) \| v \|^2 \text{ (A bounded, } \tau \text{ isometric)} = (1 - 2\rho\alpha + \rho^2 C^2) \| v_1 - v_2 \|^2$$

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

$$\begin{aligned} \| T v_1 - T v_2 \|^2 &\leq (1 - 2\rho\alpha + \rho^2 C^2) \| v \|^2 \text{ (A bounded, } \tau \text{ isometric)} \\ &= (1 - 2\rho\alpha + \rho^2 C^2) \| v_1 - v_2 \|^2 \\ &= M^2 \| v_1 - v_2 \|^2. \end{aligned}$$

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

$$\begin{aligned} \| T v_1 - T v_2 \|^2 &\leq (1 - 2\rho\alpha + \rho^2 C^2) \| v \|^2 \text{ (A bounded, } \tau \text{ isometric)} \\ &= (1 - 2\rho\alpha + \rho^2 C^2) \| v_1 - v_2 \|^2 \\ &= M^2 \| v_1 - v_2 \|^2. \end{aligned}$$

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

$$\begin{aligned} \| T v_1 - T v_2 \|^2 &\leq (1 - 2\rho\alpha + \rho^2 C^2) \| v \|^2 \text{ (A bounded, } \tau \text{ isometric)} \\ &= (1 - 2\rho\alpha + \rho^2 C^2) \| v_1 - v_2 \|^2 \\ &= M^2 \| v_1 - v_2 \|^2. \end{aligned}$$

We need

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

$$\begin{aligned} \| T v_1 - T v_2 \|^2 &\leq (1 - 2\rho\alpha + \rho^2 C^2) \| v \|^2 \text{ (A bounded, } \tau \text{ isometric)} \\ &= (1 - 2\rho\alpha + \rho^2 C^2) \| v_1 - v_2 \|^2 \\ &= M^2 \| v_1 - v_2 \|^2. \end{aligned}$$

We need

$$1 - 2\rho\alpha + \rho^2 C^2 < 1$$

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

$$\begin{aligned} \| T v_1 - T v_2 \|^2 &\leq (1 - 2\rho\alpha + \rho^2 C^2) \| v \|^2 \text{ (A bounded, } \tau \text{ isometric)} \\ &= (1 - 2\rho\alpha + \rho^2 C^2) \| v_1 - v_2 \|^2 \\ &= M^2 \| v_1 - v_2 \|^2. \end{aligned}$$

We need

$$1-2
holpha+
ho^2 \mathcal{C}^2 < 1
ightarrow
ho \left(
ho \mathcal{C}^2-2lpha
ight) < 0.$$

(1)

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

$$\begin{aligned} \| T v_1 - T v_2 \|^2 &\leq (1 - 2\rho\alpha + \rho^2 C^2) \| v \|^2 \text{ (A bounded, } \tau \text{ isometric)} \\ &= (1 - 2\rho\alpha + \rho^2 C^2) \| v_1 - v_2 \|^2 \\ &= M^2 \| v_1 - v_2 \|^2. \end{aligned}$$

We need

$$1 - 2\rho\alpha + \rho^2 C^2 < 1 \rightarrow \rho \left(\rho C^2 - 2\alpha\right) < 0.$$

This is satisfied for $\rho \in (0, 2\alpha/C^2)$ giving M < 1.

(1)

Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in \mathcal{V}'$, there exists a unique $u \in \mathcal{V}$ so that

$$a(u,v) = F[v], \ \forall v \in \mathcal{V}.$$

Proof (continued):

$$\begin{aligned} \| T v_1 - T v_2 \|^2 &\leq (1 - 2\rho\alpha + \rho^2 C^2) \| v \|^2 \text{ (A bounded, } \tau \text{ isometric)} \\ &= (1 - 2\rho\alpha + \rho^2 C^2) \| v_1 - v_2 \|^2 \\ &= M^2 \| v_1 - v_2 \|^2. \end{aligned}$$

We need

$$1 - 2\rho\alpha + \rho^2 C^2 < 1 \to \rho \left(\rho C^2 - 2\alpha\right) < 0.$$
(1)

This is satisfied for $\rho \in (0, 2\alpha/C^2)$ giving M < 1. By the contraction principle we obtain the results.

Paul J. Atzberger, UCSB

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (***).

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter.

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Significance: This shows the solution u_h obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm.

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Significance: This shows the solution u_h obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods.

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Significance: This shows the solution u_h obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods. **Proof:**

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Significance: This shows the solution u_h obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods. **Proof:**

By subtracting the variational problems for the exact and Galerkin approximation we obtain

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Significance: This shows the solution u_h obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods. **Proof:**

By subtracting the variational problems for the exact and Galerkin approximation we obtain

$$a(u-u_h,v)=0 \ \forall v \in \mathcal{V}_h.$$

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Significance: This shows the solution u_h obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods. **Proof:**

By subtracting the variational problems for the exact and Galerkin approximation we obtain

$$a(u-u_h, v) = 0 \ \forall v \in \mathcal{V}_h.$$

For all $v \in \mathcal{V}_h$ we have

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Significance: This shows the solution u_h obtain from the Galerkin approximation is bounded by all approximations in the space \mathcal{V} when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods. **Proof:**

By subtracting the variational problems for the exact and Galerkin approximation we obtain

$$a(u-u_h,v)=0 \ \forall v \in \mathcal{V}_h.$$

For all $v \in \mathcal{V}_h$ we have

$$lpha \|u-u_h\|_{\mathcal{V}}^2 \le a(u-u_h,u-u_h)$$
 (by coercivity)

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq rac{C}{lpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

$$lpha \|u-u_h\|_{\mathcal{V}}^2 \le a(u-u_h,u-u_h)$$
 (by coercivity)

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq rac{C}{lpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

$$lpha \|u - u_h\|_{\mathcal{V}}^2 \leq a(u - u_h, u - u_h) \text{ (by coercivity)} = a(u - u_h, u - v) + a(u - u_h, v - u_h)$$

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq rac{C}{lpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

$$\begin{aligned} \alpha \|u - u_h\|_{\mathcal{V}}^2 &\leq a(u - u_h, u - u_h) \text{ (by coercivity)} \\ &= a(u - u_h, u - v) + a(u - u_h, v - u_h) \\ &= a(u - u_h, u - v), \text{ (since } v - u_h \in \mathcal{V}_h) \end{aligned}$$

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq rac{C}{lpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

$$\begin{split} \alpha \|u - u_h\|_{\mathcal{V}}^2 &\leq a(u - u_h, u - u_h) \text{ (by coercivity)} \\ &= a(u - u_h, u - v) + a(u - u_h, v - u_h) \\ &= a(u - u_h, u - v), \text{ (since } v - u_h \in \mathcal{V}_h) \\ &\leq C \|u - u_h\|_{\mathcal{V}} \|u - v\|_{\mathcal{V}} \text{ (by continuity)}. \end{split}$$

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq rac{C}{lpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Proof (continued):

$$\begin{split} \alpha \|u - u_h\|_{\mathcal{V}}^2 &\leq a(u - u_h, u - u_h) \text{ (by coercivity)} \\ &= a(u - u_h, u - v) + a(u - u_h, v - u_h) \\ &= a(u - u_h, u - v), \text{ (since } v - u_h \in \mathcal{V}_h) \\ &\leq C \|u - u_h\|_{\mathcal{V}} \|u - v\|_{\mathcal{V}} \text{ (by continuity)}. \end{split}$$

By dividing through we obtain for all $v \in \mathcal{V}_h$

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{lpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Proof (continued):

$$\begin{split} \alpha \|u - u_h\|_{\mathcal{V}}^2 &\leq a(u - u_h, u - u_h) \text{ (by coercivity)} \\ &= a(u - u_h, u - v) + a(u - u_h, v - u_h) \\ &= a(u - u_h, u - v), \text{ (since } v - u_h \in \mathcal{V}_h) \\ &\leq C \|u - u_h\|_{\mathcal{V}} \|u - v\|_{\mathcal{V}} \text{ (by continuity)}. \end{split}$$

By dividing through we obtain for all $v \in \mathcal{V}_h$

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\|u-v\|_{\mathcal{V}}.$$

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{lpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{lpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Proof (continued): By dividing through we obtain for all $v \in \mathcal{V}_h$

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{lpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Proof (continued): By dividing through we obtain for all $v \in \mathcal{V}_h$

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\|u-v\|_{\mathcal{V}}.$$

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{lpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Proof (continued): By dividing through we obtain for all $v \in \mathcal{V}_h$

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\|u-v\|_{\mathcal{V}}.$$

This implies (since V_h is closed)

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{lpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Proof (continued): By dividing through we obtain for all $v \in \mathcal{V}_h$

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{lpha}\|u-v\|_{\mathcal{V}}$$

This implies (since \mathcal{V}_h is closed)

$$\|u-u_h\|_{\mathcal{V}} \leq \frac{C}{\alpha} \inf_{v \in \mathcal{V}_h} \|u-v\|_{\mathcal{V}} = \frac{C}{\alpha} \min_{v \in \mathcal{V}_h} \|u-v\|_{\mathcal{V}}.$$

Suppose we have the conditions hold for the variational problems (*) or (* * *). For the bilinear form $a(\cdot, \cdot)$, let *C* denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{lpha}\min_{v\in\mathcal{V}_h}\|u-v\|_{\mathcal{V}}.$$

Proof (continued): By dividing through we obtain for all $v \in \mathcal{V}_h$

$$\|u-u_h\|_{\mathcal{V}}\leq \frac{C}{\alpha}\|u-v\|_{\mathcal{V}}$$

This implies (since \mathcal{V}_h is closed)

$$\|u-u_h\|_{\mathcal{V}} \leq \frac{C}{\alpha} \inf_{v \in \mathcal{V}_h} \|u-v\|_{\mathcal{V}} = \frac{C}{\alpha} \min_{v \in \mathcal{V}_h} \|u-v\|_{\mathcal{V}}.$$