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Technically, this might not always be a proper norm but is useful for analysis.

For each v € H™(Q2) we have ||V||m,n = ||V m-
For 1D, m > 2 by the Sobolev Embedding Theorem H™(Q) C C°(), where v has a continuous representative.
Denote by S, = S(75) the space generated by 7.

Definition

The interpolation associated with elements of S, having nodal variables N;[v] is the mapping

Ty : H"(2) — S, so that w|r, = [Zyv]7, satisfies Ni[w] = N;[v].

When Ni[v] = v(x;) and P = P; this is piecewise polynomial interpolation of the nodal values.
Goal: Obtain estimates of ||v — I,v||m,» in terms of ||v||¢,q and h with m < ¢.
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An open domain 2 is said to satisfy the cone condition with angle ¢ and radius r if at every point x € Q we
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B(xo, r) := {x € RY|||x — xo|| < r}, if for every x € Q the closed convex hull
of {x} J B is contained in Q.

Definition
For a bounded domain €2, the chunkiness parameter ~ is defined to be the ratio of the diameter dg of Q to the
largest radius rmax for which Q is star-shaped, v = dqo/rmax.

An open domain 2 is said to satisfy the cone condition with angle ¢ and radius r if at every point x € Q we
have x + Cg,r,e, C Q2 for some orientation e,.

Lemma

Consider an Q that is bounded and star-shaped with respect to B(xc, rc) and contained within B(xc, R). Then
Q satisfies an interior cone condition with radius r. and angle ¢ = 2arcsin (r/2R).
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Consider the interpolation operator Zs over s = t(t + 1)/2 points zi, z, . . ., s on Q which maps from
H* — P:_1 well-defined for polynomials of degree <t —1, t > 2.
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Consider the interpolation operator Zs over s = t(t + 1)/2 points zi, 2, . .., zs on Q which maps from
Ht — P;_1 well-defined for polynomials of degree < t — 1, t > 2. Assume the domain Q C R? has Lipschitz

continuous boundary and satisfies the cone condition. Then there exists a constant ¢ = ¢(, z1, . .., zs) so the

following bound holds
lu—Zsu||c < clule, Yue HY(Q).

Proof (continued):
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This would imply there exists a sequence {vx} in H*(Q) with k > 1
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Consider the interpolation operator Zs over s = t(t + 1)/2 points zi, 2, . .., zs on Q which maps from
Ht — P;_1 well-defined for polynomials of degree < t — 1, t > 2. Assume the domain Q C R? has Lipschitz
continuous boundary and satisfies the cone condition. Then there exists a constant ¢ = ¢(, z1, . .., zs) so the

following bound holds
lu—Zsu||c < clule, Yue HY(Q).

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that
Ivlle < clllvll], Yv € H(Q) fails for every positive c .
This would imply there exists a sequence {vx} in H*(Q) with k > 1
Iviclle = 1, Nllwell] < 1/
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Ht — P;_1 well-defined for polynomials of degree < t — 1, t > 2. Assume the domain Q C R? has Lipschitz
continuous boundary and satisfies the cone condition. Then there exists a constant ¢ = ¢(, z1, . .., zs) so the

following bound holds
lu—Zsu||c < clule, Yue HY(Q).

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that
Ivlle < clllvll], Yv € H(Q) fails for every positive c .
This would imply there exists a sequence {vx} in H*(Q) with k > 1
Iviclle = 1, Nllwell] < 1/

We can select a subseqeunce that converges in H'~*(Q) (Rellich Selection Theorem).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator Zs over s = t(t + 1)/2 points zi, 2, . .., zs on Q which maps from
Ht — P;_1 well-defined for polynomials of degree < t — 1, t > 2. Assume the domain Q C R? has Lipschitz
continuous boundary and satisfies the cone condition. Then there exists a constant ¢ = ¢(, z1, . .., zs) so the

following bound holds
lu—Zsu||c < clule, Yue HY(Q).

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that
Ivlle < clllvll], Yv € H(Q) fails for every positive c .
This would imply there exists a sequence {vx} in H*(Q) with k > 1
Iviclle = 1, Nllwell] < 1/

We can select a subseqeunce that converges in H'™*(Q) (Rellich Selection Theorem). WLOG, assume the
sequence vy itself converges.
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Bramble-Hilbert Lemma

Consider the interpolation operator Zs over s = t(t + 1)/2 points zi, 2, . .., zs on Q which maps from
Ht — P;_1 well-defined for polynomials of degree < t — 1, t > 2. Assume the domain Q C R? has Lipschitz
continuous boundary and satisfies the cone condition. Then there exists a constant ¢ = ¢(, z1, . .., zs) so the

following bound holds
lu—Zsu||c < clule, Yue HY(Q).

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that
Ivlle < clllvll], Yv € H(Q) fails for every positive c .
This would imply there exists a sequence {vx} in H*(Q) with k > 1
Iviclle = 1, Nllwell] < 1/

We can select a subseqeunce that converges in H'™*(Q) (Rellich Selection Theorem). WLOG, assume the
sequence vy itself converges. Since |vk|: — 0, we have by Cauchy sequence that
Vi = velle < llvic = velle—x + ([vide + [vele)*.
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Consider the interpolation operator Zs over s = t(t + 1)/2 points zi, 2, . .., zs on Q which maps from
Ht — P;_1 well-defined for polynomials of degree < t — 1, t > 2. Assume the domain Q C R? has Lipschitz
continuous boundary and satisfies the cone condition. Then there exists a constant ¢ = ¢(, z1, . .., zs) so the

following bound holds
lu—Zsu||c < clule, Yue HY(Q).

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that
Ivlle < clllvll], Yv € H(Q) fails for every positive c .
This would imply there exists a sequence {vx} in H*(Q) with k > 1
Iviclle = 1, Nllwell] < 1/

We can select a subseqeunce that converges in H'™*(Q) (Rellich Selection Theorem). WLOG, assume the
sequence vy itself converges. Since |vk|: — 0, we have by Cauchy sequence that
vk — velle < |Ivk — Velle—1 + (Jvk|e + |vel¢)?. This shows that vy is also a Cauchy sequence in H'(2).
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Bramble-Hilbert Lemma

Consider the interpolation operator Zs over s = t(t + 1)/2 points zi, 2, . .., zs on Q which maps from
Ht — P;_1 well-defined for polynomials of degree < t — 1, t > 2. Assume the domain Q C R? has Lipschitz
continuous boundary and satisfies the cone condition. Then there exists a constant ¢ = ¢(, z1, . .., zs) so the
following bound holds

lu—Zsu||c < clule, Yue HY(Q).

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that
Ivlle < clllvll], Yv € H(Q) fails for every positive c .
This would imply there exists a sequence {vx} in H*(Q) with k > 1
Ivielle = 1, [[lwelll < 1/k.

We can select a subseqeunce that converges in H'~'(Q) (Rellich Selection Theorem). WLOG, assume the
sequence vy itself converges. Since |vk|: — 0, we have by Cauchy sequence that

vk — velle < |Ivk — Velle—1 + (|Vk|e + |ve|¢)?. This shows that vy is also a Cauchy sequence in H'(Q). By
completeness there exists a v* € H'(Q2).
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Consider the interpolation operator Zs over s = t(t + 1)/2 points zi, 2, . .., zs on Q which maps from
Ht — P;_1 well-defined for polynomials of degree < t — 1, t > 2. Assume the domain Q C R? has Lipschitz
continuous boundary and satisfies the cone condition. Then there exists a constant ¢ = ¢(, z1, . .., zs) so the
following bound holds

lu—Zsu||c < clule, Yue HY(Q).

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that
Ivlle < clllvll], Yv € H(Q) fails for every positive c .
This would imply there exists a sequence {vx} in H*(Q) with k > 1
Ivielle = 1, [[lwelll < 1/k.

We can select a subseqeunce that converges in H'~'(Q) (Rellich Selection Theorem). WLOG, assume the
sequence vy itself converges. Since |vk|: — 0, we have by Cauchy sequence that

vk — velle < |Ivk — Velle—1 + (|Vk|e + |ve|¢)?. This shows that vy is also a Cauchy sequence in H'(Q). By
completeness there exists a v* € H'(Q). By continuity we have

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Approximation by Finite Elements
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Consider the interpolation operator Zs over s = t(t + 1)/2 points zi, 2, . .., zs on Q which maps from
Ht — P;_1 well-defined for polynomials of degree < t — 1, t > 2. Assume the domain Q C R? has Lipschitz
continuous boundary and satisfies the cone condition. Then there exists a constant ¢ = ¢(, z1, . .., zs) so the
following bound holds

lu—Zsu||c < clule, Yue HY(Q).

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that
Ivlle < clllvll], Yv € H(Q) fails for every positive c .
This would imply there exists a sequence {vx} in H*(Q) with k > 1
Ivielle = 1, [[lwelll < 1/k.

We can select a subseqeunce that converges in H'~'(Q) (Rellich Selection Theorem). WLOG, assume the
sequence vy itself converges. Since |vk|: — 0, we have by Cauchy sequence that

vk — velle < |Ivk — Velle—1 + (|Vk|e + |ve|¢)?. This shows that vy is also a Cauchy sequence in H'(Q). By
completeness there exists a v* € H'(Q). By continuity we have

Iville =1 and [[|v7][| = 0.
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Bramble-Hilbert Lemma

Consider the interpolation operator Z; over s = t(t + 1)/2 points zi, 2, . .., Zs on Q which maps from H* — P,
well-defined for polynomials of degree < t — 1. Assume the domain Q C R? has Lipschitz continuous boundary
and satisfies the cone condition. Then there exists a constant ¢ = ¢(€, z1, . . ., zs) so the following bound holds

lu—Zsu|| < clule, Yue HY(Q).

Proof (continued): By completeness there exists a v* € H*(Q2). By continuity we have
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Consider the interpolation operator Z; over s = t(t + 1)/2 points zi, 2, . .., Zs on Q which maps from H* — P,
well-defined for polynomials of degree < t — 1. Assume the domain Q C R? has Lipschitz continuous boundary
and satisfies the cone condition. Then there exists a constant ¢ = ¢(€, z1, . . ., zs) so the following bound holds

lu—Zsu|| < clule, Yue HY(Q).

Proof (continued): By completeness there exists a v* € H*(Q2). By continuity we have
Iville =1 and [[|v7][| = 0.

This implies that [v*|; = 0 which implies v* is a polynomial in P;_;.
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Consider the interpolation operator Z; over s = t(t + 1)/2 points zi, 2, . .., Zs on Q which maps from H* — P,
well-defined for polynomials of degree < t — 1. Assume the domain Q C R? has Lipschitz continuous boundary
and satisfies the cone condition. Then there exists a constant ¢ = ¢(€, z1, . . ., zs) so the following bound holds

lu—Zsu|| < clule, Yue HY(Q).

Proof (continued): By completeness there exists a v* € H*(Q2). By continuity we have
Iville =1 and [[|v7][| = 0.

This implies that [v*|; = 0 which implies v* is a polynomial in P:_1. Since v*(z)) = 0 we have the null
polynomial v* = 0.
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Consider the interpolation operator Z; over s = t(t + 1)/2 points zi, 2, . .., Zs on Q which maps from H* — P,
well-defined for polynomials of degree < t — 1. Assume the domain Q C R? has Lipschitz continuous boundary
and satisfies the cone condition. Then there exists a constant ¢ = ¢(€, z1, . . ., zs) so the following bound holds

lu—Zsu|| < clule, Yue HY(Q).

Proof (continued): By completeness there exists a v* € H*(Q2). By continuity we have
Iville =1 and [[|v7][| = 0.

This implies that [v*|; = 0 which implies v* is a polynomial in P:_1. Since v*(z)) = 0 we have the null
polynomial v* = 0.

The v* needing to be null polynomial gives a contradiction.
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Consider the interpolation operator Z; over s = t(t + 1)/2 points zi, 2, . .., Zs on Q which maps from H* — P,
well-defined for polynomials of degree < t — 1. Assume the domain Q C R? has Lipschitz continuous boundary
and satisfies the cone condition. Then there exists a constant ¢ = ¢(€, z1, . . ., zs) so the following bound holds

lu—Zsu|| < clule, Yue HY(Q).

Proof (continued): By completeness there exists a v* € H*(Q2). By continuity we have
Iville =1 and [[|v7][| = 0.

This implies that [v*|; = 0 which implies v* is a polynomial in P:_1. Since v*(z)) = 0 we have the null
polynomial v* = 0.

The v* needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false.
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Proof (continued): By completeness there exists a v* € H*(Q2). By continuity we have
Iville =1 and [[|v7][| = 0.

This implies that [v*|; = 0 which implies v* is a polynomial in P:_1. Since v*(z)) = 0 we have the null
polynomial v* = 0.

The v* needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false.
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This implies that [v*|; = 0 which implies v* is a polynomial in P:_1. Since v*(z)) = 0 we have the null
polynomial v* = 0.
The v* needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false.

Therefore,
[vile < clllvlll, Vv e H'(Q).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator Z; over s = t(t + 1)/2 points zi, 2, . .., Zs on Q which maps from H* — P,
well-defined for polynomials of degree < t — 1. Assume the domain Q C R? has Lipschitz continuous boundary
and satisfies the cone condition. Then there exists a constant ¢ = ¢(€, z1, . . ., zs) so the following bound holds
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This implies that [v*|; = 0 which implies v* is a polynomial in P:_1. Since v*(z)) = 0 we have the null
polynomial v* = 0.

The v* needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false.

Therefore,
[vile < clllvlll, Vv e H'(Q).
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Approximation by Finite Elements

Bramble-Hilbert Lemma I:

Let Q C R? be domain with Lipschitz continuous boundary. Suppose t > 2 and L is a bounded linear mapping
of H*(2) into a normed linear space Z. If P,_1 C ker(L), then there exists a constant ¢ = c(Q)||L|| > 0, so that

ILv]|z < c|v|¢, forall v € H(Q).

Proof:
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Bramble-Hilbert Lemma I:

Let Q C R? be domain with Lipschitz continuous boundary. Suppose t > 2 and L is a bounded linear mapping
of H*(2) into a normed linear space Z. If P,_1 C ker(L), then there exists a constant ¢ = c(Q)||L|| > 0, so that

ILv]|z < c|v|¢, forall v € H(Q).

Proof:
Let Zp : H*(2) — P:—1 be the interpolation operator.
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Let Q C R? be domain with Lipschitz continuous boundary. Suppose t > 2 and L is a bounded linear mapping
of H*(2) into a normed linear space Z. If P,_1 C ker(L), then there exists a constant ¢ = c(Q)||L|| > 0, so that

ILv]|z < c|v|¢, forall v € H(Q).

Proof:
Let Zp : H*(2) — P¢—1 be the interpolation operator. Using the first BH-Lemma and fact Z,(v) € ker(L) we
have
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Let Q C R? be domain with Lipschitz continuous boundary. Suppose t > 2 and L is a bounded linear mapping
of H*(2) into a normed linear space Z. If P,_1 C ker(L), then there exists a constant ¢ = c(Q)||L|| > 0, so that

ILv]|z < c|v|¢, forall v € H(Q).

Proof:
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of H*(2) into a normed linear space Z. If P,_1 C ker(L), then there exists a constant ¢ = c(Q)||L|| > 0, so that
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Theorem for Triangulations
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Theorem for Triangulations

Consider 75, a shape-regular triangulation of Q.
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
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Approximation by Finite Elements

Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that

lu— Zhu|lmp < ch"""|ulea Yu e HY(Q), 0<m<t.
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.
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Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem.
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Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
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Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, X € [0, h]}.
Given v € H(T{*") we have v(x, y) = w(hx, hy),
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Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
Given v € H'(T{*") we have v(x,y) = w(hx, hy), so %v = hl*lg%w with |a| < t.
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This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
Given v € H'(T{*") we have v(x,y) = w(hx, hy), so *v = hl*l9>w with |a| < t. Now

Wwlimr, = > Iwlir,

<m
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lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
Given v € H'(T{*") we have v(x,y) = w(hx, hy), so *v = hl*l9>w with |a| < t. Now

Wi, = Y wihn, = S0 A

<m L<m
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
Given v € H'(T{*") we have v(x,y) = w(hx, hy), so *v = hl*l9>w with |a| < t. Now

2 2 —20+42 2 —2 2 2
Wiz, = D Iwler, =3 b VI e < B2 V]I7, e
<m L<m

Mi Tref
1
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
Given v € H'(T{*") we have v(x,y) = w(hx, hy), so *v = hl*l9>w with |a| < t. Now

2 2 —20+42 2 —2 2 2
Wiz, = D Iwler, =3 b VI e < B2 V]I7, e
<m L<m
Ve = / (@
|a|=¢ T
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
Given v € H'(T{*") we have v(x,y) = w(hx, hy), so *v = hl*l9>w with |a| < t. Now

Iwlitr, = Do wlhm = D h Il e < h VI, e
<m L<m
I Z/ (0°v)? dx" = Z/ W (9°v)? h™2dx
L ot el e T
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
Given v € H'(T{*") we have v(x,y) = w(hx, hy), so *v = hl*l9>w with |a| < t. Now

Wiz, = D Iwler, =3 b VI e < B2 V]I7, e
<m L<m

Ve = D / (0°v)?dx = > / K (0%v)? h2dx = W |wli 7,
|a|=¢ Tlref |a|=¢ Th
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
Given v € H'(T{*") we have v(x,y) = w(hx, hy), so *v = hl*l9>w with |a| < t. Now

Wiz, = D Iwler, =3 b VI e < B2 V]I7, e
<m L<m

Ve = D / (0°v)?dx = > / K (0%v)? h2dx = W |wli 7,
|a|=¢ Tlref |a|=¢ Th

Now let w = u — Z,u then we obtain
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
Given v € H'(T{*") we have v(x,y) = w(hx, hy), so *v = hl*l9>w with |a| < t. Now

Wiz, = D Iwler, =3 b VI e < B2 V]I7, e
<m L<m

Ve = D / (0°v)?dx = > / K (0%v)? h2dx = W |wli 7,
|a|=¢ Tlref |a|=¢ Th

Now let w = u — Z,u then we obtain

lu = Zhullm, 7, < B~ H|u = Thull , ryer
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
Given v € H'(T{*") we have v(x,y) = w(hx, hy), so *v = hl*l9>w with |a| < t. Now

Wiz, = D Iwler, =3 b VI e < B2 V]I7, e
<m L<m

Ve = D / (0°v)?dx = > / K (0%v)? h2dx = W |wli 7,
|a|=¢ Tlref |a|=¢ Th

Now let w = u — Z,u then we obtain

lu = Zotllm 7, < B~ = Tyt rer < B 1 = Ty e
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
Given v € H'(T{*") we have v(x,y) = w(hx, hy), so *v = hl*l9>w with |a| < t. Now

Wiz, = D Iwler, =3 b VI e < B2 V]I7, e
<m L<m

Ve = D / (0°v)?dx = > / K (0%v)? h2dx = W |wli 7,
|a|=¢ Tlref |a|=¢ Th

Now let w = u — Z,u then we obtain
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Theorem for Triangulations

Consider Tj, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(€.k, t) such that
lu— Zht||mp < ch™"|uleo Yu € HY(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t > 2 and suppose T = hT{ = {(x,y) | y < %, %X € [0, h]}.
Given v € H'(T{*") we have v(x,y) = w(hx, hy), so *v = hl*l9>w with |a| < t. Now

Iwlimr, = Do Iwlen = B2 er <22V, e,
<m L<m
Ve = D / (@) = / K0 v)? h2dx = B2 |wlf 7.
|a|=¢ Tlre |a|=¢ Th
Now let w = u — Z,u then we obtain
lu—Tptllm7, <h " u = Zht|| g, gper < A= u = Thully grer < h’"’“clu\t,rlref < h"clule 7, L

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Approximation by Finite Elements

Transformation Formula

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0

FR = xo+ BX (B non-singular linear operator)
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0

FR = xo+ BX (B non-singular linear operator)

If v.e H™(RQ), then ¥ := v o F € H™(2) and there exists constant ¢ = c({2, m) so that
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0

FR = xo+ BX (B non-singular linear operator)
If v.e H™(RQ), then ¥ := v o F € H™(2) and there exists constant ¢ = c({2, m) so that

19 ma < cllBI"| det BI™/2|v|ma.
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0

FR = xo+ BX (B non-singular linear operator)
If v.e H™(RQ), then ¥ := v o F € H™(2) and there exists constant ¢ = c({2, m) so that

19 ma < cllBI"| det BI™/2|v|ma.

Proof:
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0

FR = xo+ BX (B non-singular linear operator)
If v.e H™(RQ), then ¥ := v o F € H™(2) and there exists constant ¢ = c({2, m) so that

|91 < cllBII™| det BI™2|v|ma.

Proof:
By the chain rule we have for directions 1, ... ym that
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0

FR = xo+ BX (B non-singular linear operator)
If v.e H™(RQ), then ¥ := v o F € H™(2) and there exists constant ¢ = c({2, m) so that

|91 < cllBII™| det BI™2|v|ma.

Proof:
By the chain rule we have for directions 1, ... ym that

D" U(X) (1, - -+, Im) = D™v(x) (B, - .., BYm).
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0

FR = xo+ BX (B non-singular linear operator)
If v.e H™(RQ), then ¥ := v o F € H™(2) and there exists constant ¢ = c({2, m) so that

|91 < cllBII™| det BI™2|v|ma.

Proof:
By the chain rule we have for directions 1, ... ym that

D"9(£)($1, -+, Im) = D"v(x)(BS1, - ., BIm)-
This gives |[D™0||gom < ||B]|"||D™v||Rom.
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0

FR = xo+ BX (B non-singular linear operator)
If v.e H™(RQ), then ¥ := v o F € H™(2) and there exists constant ¢ = c({2, m) so that

|91 < cllBII™| det BI™2|v|ma.

Proof:
By the chain rule we have for directions 1, ... ym that

D"(X) (91, Im) = D"v(x)(BS1, - ., BYm).
This gives ||D"V||gem < ||B||"||D™v||gem. The derivatives are estimated by 8j, ...d;,v = D"v(ey, ..., €i,) to
obtain
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0

FR = xo+ BX (B non-singular linear operator)
If v.e H™(RQ), then ¥ := v o F € H™(2) and there exists constant ¢ = c({2, m) so that

|91 < cllBII™| det BI™2|v|ma.

Proof:
By the chain rule we have for directions 1, ... ym that

D"(X) (91, Im) = D"v(x)(BS1, - ., BYm).
This gives ||D"V||gem < ||B||"||D™v||gem. The derivatives are estimated by 8j, ...d;,v = D"v(ey, ..., €i,) to
obtain
> et <a” max |00
o] =rm al=m
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0

FR = xo+ BX (B non-singular linear operator)
If v.e H™(RQ), then ¥ := v o F € H™(2) and there exists constant ¢ = c({2, m) so that

|91 < cllBII™| det BI™2|v|ma.

Proof:
By the chain rule we have for directions 1, ... ym that

D"0(R)(J1,- -5 9m) = D"v(x)(Br, - .., BIm).

This gives ||[D™V||gom < ||B||™||D™v||gom. The derivatives are estimated by 0j, ...d;,v = D"v(e;,..

obtain
E |0%0)* < n™ |m‘ax |0%0)> < n™||D™V|?
«@|l=m

lal=m

., &i,) to
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Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0

FR = xo+ BX (B non-singular linear operator)
If v.e H™(RQ), then ¥ := v o F € H™(2) and there exists constant ¢ = c({2, m) so that

|91 < cllBII™| det BI™2|v|ma.

Proof:
By the chain rule we have for directions 1, ... ym that

D"0(R)(J1,- -5 9m) = D"v(x)(Br, - .., BIm).

This gives ||[D™V||gom < ||B||™||D™v||gom. The derivatives are estimated by 0j, ...d;,v = D"v(e;,..

obtain
S 1079 < n" max (00 < " D07 < " B ID" P
ol|l=m

lal=m
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | Q-0

FR = xo+ BX (B non-singular linear operator)

If v.e H™(RQ), then ¥ := v o F € H™(2) and there exists constant ¢ = c({2, m) so that

|91 < cllBII™| det BI™2|v|ma.

Proof:
By the chain rule we have for directions 1, ... ym that

D"(X) (91, Im) = D"v(x)(BS1, - ., BYm).
This gives ||D"V||gem < ||B||"||D™v||gem. The derivatives are estimated by 8j, ...d;,v = D"v(ey, ..., €i,) to
obtain

> 1% <a” max 07901 < n"|[D™9|* < a"||BIPID VI < A |IBIPT Y 107 VI,
o|=m

lal=m lal=m
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | QO-Q

FX = xo+ BX (B non-singular linear operator)

If v.e H™(RQ), then © := vo F € H™(2) and there exists constant ¢ = c(2, m) so that

19 ma < cllBI"| det BI™2|v|ma.

Proof:

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | QO-Q

FX = xo+ BX (B non-singular linear operator)

If v.e H™(RQ), then © := vo F € H™(2) and there exists constant ¢ = c(2, m) so that

19 ma < cllBI"| det BI™2|v|ma.

Proof:
Integrating both size and using Jacobian of the transformation
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | QO-Q

FX = xo+ BX (B non-singular linear operator)
If v.e H™(RQ), then © := vo F € H™(2) and there exists constant ¢ = c(2, m) so that

19 ma < cllBI"| det BI™2|v|ma.

Proof:
Integrating both size and using Jacobian of the transformation

o= [ 3 107or
Q

lal=m
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | QO-Q

FX = xo+ BX (B non-singular linear operator)

If v.e H™(RQ), then © := vo F € H™(2) and there exists constant ¢ = c(2, m) so that

19 ma < cllBI"| det BI™2|v|ma.

Proof:
Integrating both size and using Jacobian of the transformation

9= [ 3 00Pds < w B [ ST (0" dets o
Q Q

lal=m lal=m
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | QO-Q

FX = xo+ BX (B non-singular linear operator)

If v.e H™(RQ), then © := vo F € H™(2) and there exists constant ¢ = c(2, m) so that

19 ma < cllBI"| det BI™2|v|ma.

Proof:
Integrating both size and using Jacobian of the transformation

|0|;7ﬁ:/A S J0% 0Pz < n2"’\|BH2'"/ S 107V - [detB ™ dx = n2" | B[] det B[} v[2, o
Q Q

lal=m lal=m
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Approximation by Finite Elements

Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | QO-Q

FX = xo+ BX (B non-singular linear operator)
If v.e H™(RQ), then © := vo F € H™(2) and there exists constant ¢ = c(2, m) so that

19 ma < cllBI"| det BI™2|v|ma.

Proof:
Integrating both size and using Jacobian of the transformation

|0|;7ﬁ:/A S J0% 0Pz < n2"’\|BH2'"/ S 107V - [detB ™ dx = n2" | B[] det B[} v[2, o
Q Q

lal=m lal=m

By taking square root we obtain the bound.
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Transformation Formula

Let © and £ be affine equivalent in sense that there exists a bijective affine mapping

F | QO-Q

FX = xo+ BX (B non-singular linear operator)
If v.e H™(RQ), then © := vo F € H™(2) and there exists constant ¢ = c(2, m) so that

19 ma < cllBI"| det BI™2|v|ma.

Proof:
Integrating both size and using Jacobian of the transformation

|0|;7ﬁ:/A S J0% 0Pz < n2"’\|BH2'"/ S 107V - [detB ™ dx = n2" | B[] det B[} v[2, o
Q Q

lal=m lal=m

By taking square root we obtain the bound. H
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Approximation by Finite Elements

Definition
For triangle T; € T,
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Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T,
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Approximation by Finite Elements

For triangle T; € T,
pj is the largest radius of circle inscribed in T,

rj is the smallest radius of circle containing Tj,
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Approximation by Finite Elements

For triangle T; € T,
pj is the largest radius of circle inscribed in T,

rj is the smallest radius of circle containing Tj,
hj = Ldiameter(T;).
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Approximation by Finite Elements

Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T,
rj is the smallest radius of circle containing Tj,
hj = Ldiameter(T;).

A mesh Tj, is called shape-regular if there exists a k so that for every
triangle T € Ty,
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Approximation by Finite Elements

Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T,
rj is the smallest radius of circle containing Tj,
hj = Ldiameter(T;).

A mesh Tj, is called shape-regular if there exists a k so that for every
triangle T € Ty,

PT Z hT/I-’\J.
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Approximation by Finite Elements

Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T,
rj is the smallest radius of circle containing Tj,
hj = Ldiameter(T;).

A mesh Tj, is called shape-regular if there exists a k so that for every
triangle T € Ty,

PT Z hT/I-’\J.

Let F| Ty — T, then X — BX + Xp is an affine map.
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Approximation by Finite Elements

Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T,
rj is the smallest radius of circle containing Tj,
hj = Ldiameter(T;).

A mesh Tj, is called shape-regular if there exists a k so that for every
triangle T € Ty,
PT Z hT/I-’\J.

Let F| Ty — T, then X — BX + Xp is an affine map.

Claim: ||B|| < r2/p1, and ||B7Y| < r/po.
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Approximation by Finite Elements

Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T,
rj is the smallest radius of circle containing Tj,
hj = Ldiameter(T;).

A mesh Tj, is called shape-regular if there exists a k so that for every
triangle T € Ty,
PT Z hT/I-’\J.

Let F| Ty — T, then X — BX + Xp is an affine map.
Claim: ||B|| < r2/p1, and ||B7Y| < r/po.

Note: Gives condition number ||B||||[B™|| < rnra/(pip2).
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Approximation by Finite Elements

Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T,
rj is the smallest radius of circle containing Tj,
hj = Ldiameter(T;).

A mesh Tj, is called shape-regular if there exists a k so that for every
triangle T € Ty,

PT Z hT/I-’\J.

Let F| Ty — T, then X — BX + Xp is an affine map.
Claim: ||B|| < r2/p1, and ||B7Y| < r/po.
Note: Gives condition number ||B||||[B™|| < rnra/(pip2).

This will become poor for triangles that are small "slivers.”
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Approximation by Finite Elements

Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T, —
rj is the smallest radius of circle containing Tj,
hj = Ldiameter(T;).

A mesh T, is called shape-regular if there exists a k so that for every
triangle T € T,

pT > hr/K.
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Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T, —
rj is the smallest radius of circle containing Tj,
hj = Ldiameter(T;).

A mesh T, is called shape-regular if there exists a k so that for every
triangle T € T,
pT > hr/K.

We now prove
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Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T,
rj is the smallest radius of circle containing T;,
hj = Ldiameter(T;).

A mesh T, is called shape-regular if there exists a k so that for every
triangle T € T,
pT > hr/K.

We now prove

Theorem for Triangulations
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Approximation by Finite Elements

Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T,
rj is the smallest radius of circle containing T;,
hj = Ldiameter(T;).

A mesh T, is called shape-regular if there exists a k so that for every
triangle T € T,
pT > hr/K.

We now prove

Theorem for Triangulations

Consider T, a shape-regular triangulation of Q.
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Approximation by Finite Elements

Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T,
rj is the smallest radius of circle containing T;,
hj = Ldiameter(T;).

A mesh T, is called shape-regular if there exists a k so that for every
triangle T € T,
pT > hr/K.

We now prove

Theorem for Triangulations

Consider 7;, a shape-regular triangulation of Q. For t > 2 there exists a constant ¢ = ¢(£2, k, t) such that
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Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T,
rj is the smallest radius of circle containing T;,
hj = Ldiameter(T;).

A mesh T, is called shape-regular if there exists a k so that for every
triangle T € T,
pT > hr/K.

We now prove

Theorem for Triangulations

Consider 7;, a shape-regular triangulation of Q. For t > 2 there exists a constant ¢ = ¢(£2, k, t) such that

lu— Zpul|mp < ch'™"|uleo, Yue H(Q), 0<m< t.
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Approximation by Finite Elements

Definition

For triangle T; € T,
pj is the largest radius of circle inscribed in T,
rj is the smallest radius of circle containing T;,
hj = Ldiameter(T;).

A mesh T, is called shape-regular if there exists a k so that for every
triangle T € T,

pT > hr/K.

We now prove

Theorem for Triangulations

Consider 7;, a shape-regular triangulation of Q. For t > 2 there exists a constant ¢ = ¢(£2, k, t) such that

lu— Zpul|mp < ch'™"|uleo, Yue H(Q), 0<m< t.

The Z;, denotes the interpolation operator by piecewise polynomials of degree < t — 1.
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Approximation by Finite Elements

Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof:
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Approximation by Finite Elements

Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing the inequality holds on each triangle T; of a shape-regular triangulation 7.
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Approximation by Finite Elements

Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)[0 <y <1 —x,x € [0,1]} the half-square which has 7 = 271/2
and p=(2++v2)7t > 2/7.
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Approximation by Finite Elements

Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)|0 <y <1 —x,x € [0,1]} the half-square which has 7 = 27/2
and p=(2+vV2)P>2/7. Let F: Tref = T with T =T, € Ts.
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Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)|0 <y <1 —x,x € [0,1]} the half-square which has 7 = 27/2
and p=(2++v2)"'>2/7. Let F: T, — T with T = T; € ;. Now by applying transform formula to F we
obtain
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Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)|0 <y <1 —x,x € [0,1]} the half-square which has 7 = 27/2
and p=(2++v2)"'>2/7. Let F: T, — T with T = T; € ;. Now by applying transform formula to F we
obtain

|u = Thulmr < c|[BII""| det B|"?|a — Tydlm,r,,
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Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)|0 <y <1 —x,x € [0,1]} the half-square which has 7 = 27/2
and p=(2++v2)"'>2/7. Let F: T, — T with T = T; € ;. Now by applying transform formula to F we
obtain

|u—Thulmr < c||BII™"| det BI72|8 — Tndlm.1,, < c|[BII7"| det BT cld]e.r

ref
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Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)|0 <y <1 —x,x € [0,1]} the half-square which has 7 = 27/2
and p=(2++v2)"'>2/7. Let F: T, — T with T = T; € ;. Now by applying transform formula to F we
obtain

IN

cl|B]|~"| det B|~"*|a — Tyd|m,7,,, < cl|B|~"|det B|7* - cldl.r,

|u—Thu|mT ref
c||Bl~"| det B| 72 - c|| BI|" - | det B*/|ul:,

IN
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Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)|0 <y <1 —x,x € [0,1]} the half-square which has 7 = 27/2
and p=(2++v2)"'>2/7. Let F: T, — T with T = T; € ;. Now by applying transform formula to F we
obtain

IN

cl|B]|~"| det B|~"*|a — Tyd|m,7,,, < cl|B|~"|det B|7* - cldl.r,

ref

clIBII~"|det B2 c||BI| | det B2[ule.r < ¢ (11BIIB )" IBI " uler-

|u—Thu|mT

IN
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Approximation by Finite Elements

Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)|0 <y <1 —x,x € [0,1]} the half-square which has 7 = 27/2
and p=(2++v2)"'>2/7. Let F: T, — T with T = T; € ;. Now by applying transform formula to F we
obtain

IN

cl|B]|~"| det B|~"*|a — Tyd|m,7,,, < cl|B|~"|det B|7* - cldl.r,

ref

clIBII~"|det B2 c||BI| | det B2[ule.r < ¢ (11BIIB )" IBI " uler-

|u—Thu|mT

IN

By the shape regularity we have r/p < s and [|B|| - [|B7"| < (2+ V2)~.
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Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)|0 <y <1 —x,x € [0,1]} the half-square which has 7 = 27/2
and p=(2++v2)"'>2/7. Let F: T, — T with T = T; € ;. Now by applying transform formula to F we
obtain

IN

cl|B]| ™| det B|*|a — Tydlm,7,, < cl|B| "I det B|7* - cldle.7,,

clIBII~"|det B2 c||BI| | det B2[ule.r < ¢ (11BIIB )" IBI " uler-

|u—Thu|mT

IN

By the shape regularity we have r/p < x and ||B|| - ||B™Y|| < (24 v/2)x. This implies ||B|| < h/p < 4h.
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Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)|0 <y <1 —x,x € [0,1]} the half-square which has 7 = 27/2
and p=(2++v2)"'>2/7. Let F: T, — T with T = T; € ;. Now by applying transform formula to F we
obtain

IN

cl|B]| ™| det B|*|a — Tydlm,7,, < cl|B| "I det B|7* - cldle.7,,

clIBII~"|det B2 c||BI| | det B2[ule.r < ¢ (11BIIB )" IBI " uler-

|u—Thu|mT

IN

By the shape regularity we have r/p < x and ||B|| - ||B™}|| < (24 +/2)x. This implies ||B|| < h/p < 4h. Putting
this together we obtain
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Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)|0 <y <1 —x,x € [0,1]} the half-square which has 7 = 27/2
and p=(2++v2)"'>2/7. Let F: T, — T with T = T; € ;. Now by applying transform formula to F we
obtain

IN

cl|B]|~"| det B|~"*|a — Tyd|m,7,,, < cl|B|~"|det B|7* - cldl.r,

ref

clIBII~"|det B2 c||BI| | det B2[ule.r < ¢ (11BIIB )" IBI " uler-

|u—Thu|mT

IN

By the shape regularity we have r/p < x and ||B|| - ||B™}|| < (24 +/2)x. This implies ||B|| < h/p < 4h. Putting
this together we obtain
|U *Ihu‘g"r S Chtie|u|t"r.
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Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)|0 <y <1 —x,x € [0,1]} the half-square which has 7 = 27/2
and p=(2++v2)"'>2/7. Let F: T, — T with T = T; € ;. Now by applying transform formula to F we
obtain

IN

cl|B]|~"| det B|~"*|a — Tyd|m,7,,, < cl|B|~"|det B|7* - cldl.r,

ref

clIBII~"|det B2 c||BI| | det B2[ule.r < ¢ (11BIIB )" IBI " uler-

|u—Thu|mT

IN

By the shape regularity we have r/p < x and ||B|| - ||B™}|| < (24 +/2)x. This implies ||B|| < h/p < 4h. Putting
this together we obtain
|U *Ihu‘g"r S Chtie|

By summing the squares of these local inequalities we obtain the global bound stated in the theorem.

U|t’T.
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Theorem for Triangulations

Consider 7j, a shape-regular triangulation of . For t > 2 there exists a constant ¢ = ¢(f.k, t) such that
lu— Zhu|lm < ch*™"uleo Yu € H(Q), 0<m< t.

The Z, denotes the interpolation operator by piecewise polynomials of degree < t — 1.

Proof: This is proved by showing theAinequaIity holds on each triangle T; of a shape-regular triangulation 7p.
We choose as our reference triangle T = {(x,y)|0 <y <1 —x,x € [0,1]} the half-square which has 7 = 27/2
and p=(2++v2)"'>2/7. Let F: T, — T with T = T; € ;. Now by applying transform formula to F we
obtain

IN

cl|B]|~"| det B|~"*|a — Tyd|m,7,,, < cl|B|~"|det B|7* - cldl.r,

ref

clIBII~"|det B2 c||BI| | det B2[ule.r < ¢ (11BIIB )" IBI " uler-

|u—Thu|mT

IN

By the shape regularity we have r/p < x and ||B|| - ||B™}|| < (24 +/2)x. This implies ||B|| < h/p < 4h. Putting
this together we obtain
|U *Ihu‘g"r S Chtie|

By summing the squares of these local inequalities we obtain the global bound stated in the theorem. B

U|t’T.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider T a quasi-uniform decomposition of  into parallelograms. There
exists a constant ¢ = ¢(£2, k) such that

|u—Zpullma < ch® "|ul2aq, Yue H(Q).

The Zj denotes the interpolation operator by piecewise bilinear elements.

lle = Iytellmn < ch'™"ulr.o O=m=t
C° elements
linear triangle t = 2
quadratic triangle 2<1<3
cubic triangle 2<1<4
bilinear quadrilateral t = 2
serendipity element 2<1r<3
9 node quadrilateral 2<r<3
C' elements
Argyris element 3<1<6
Bell element 3<1<5

Hsieh-Clough-Tocher element
reduc. Hsieh—-Clough-Tocher element

3<t<4 m=<2)

t

3 (m<2)
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Theorem for Quadrilateral Bilinear Elements

Consider T a quasi-uniform decomposition of  into parallelograms. There
exists a constant ¢ = ¢(£2, k) such that

|u—Zpullma < ch® "|ul2aq, Yue H(Q).

The Zj denotes the interpolation operator by piecewise bilinear elements.

lle = Iytellmn < ch'™"ulr.o O=m=t
C° elements
linear triangle t = 2
quadratic triangle 2<1<3
cubic triangle 2<1<4
bilinear quadrilateral t = 2
serendipity element 2<1r<3
9 node quadrilateral 2<r<3
C' elements
Argyris element 3<1<6
Bell element 3<1<5

Hsieh-Clough-Tocher element
reduc. Hsieh—-Clough-Tocher element

3<t<4 m=<2)

t

3 (m<2)

Proof:
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Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider T a quasi-uniform decomposition of  into parallelograms. There
exists a constant ¢ = ¢(£2, k) such that

|u—Zpullma < ch® "|ul2aq, Yue H(Q).

The Zj denotes the interpolation operator by piecewise bilinear elements.

lle = Iytellmn < ch'™"ulr.o O=m=t
C° elements
linear triangle t = 2
quadratic triangle 2<1<3
cubic triangle 2=<1=4
bilinear quadrilateral t = 2
serendipity element 2<1r<3
9 node quadrilateral 2<r<3
C' elements
Argyris element 3<1<6
Bell element 3<1<5

Hsieh-Clough-Tocher element
reduc. Hsieh—-Clough-Tocher element

3<t<4 m=<2)

t

3 (m<2)

Proof: It suffices to show interpolation on the unit square IC = [0, 1] x [0, 1] satisfies

Paul J. Atzberger, UCSB Finite Element Methods

/atzberger.org/



http://atzberger.org/

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider T a quasi-uniform decomposition of  into parallelograms. There
exists a constant ¢ = ¢(£2, k) such that

|u—Zpullma < ch® "|ul2aq, Yue H(Q).

The Zj denotes the interpolation operator by piecewise bilinear elements.

lle = Intellmn < ch'™"ulr.o O=m=t
C° elements
linear triangle t = 2
quadratic triangle 2<1<3
cubic triangle 2=<1=4
bilinear quadrilateral t = 2
serendipity element 2<1r<3
9 node quadrilateral 2<r<3
C' elements
Argyris element 3<1<6
Bell element 3<1<5
Hsieh-Clough-Tocher element 3<t<4 m=<2)
reduc. Hsieh—-Clough-Tocher element ¢ = 3 (m <2)

Proof: It suffices to show interpolation on the unit square IC = [0, 1] x [0, 1] satisfies

lu—Thulax < clulx, Vue H(K).
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Approximation by Finite Elements

W= s < ch il O=m=i
" e C° elements
Theorem for Quadrilateral Bilinear Elements linear rangle ro= 2
quadratic triangle 2<1<3
. P i . cubic triangle 2<1<4
C9n5|der Th a quasi-uniform decomposition of 2 into parallelograms. There bilnear auadrlaeral Cs
exists a constant ¢ = ¢(£2, k) such that serendipity clemeat 25153
9 node quadrilateral 2<t1<3
2—m 2 C' elements
||U - IhUHm,Q < ch |U|2,Qy Yue H (Q) Argyris element 3<1<6
Bell element 3<1=<5
. . o o ore Hsieh—Clough-Tocher el 3 <4 <2
The Z), denotes the interpolation operator by piecewise bilinear elements. et Hisieh Clowgh Tocher slement 1 3 8:221

Proof: It suffices to show interpolation on the unit square IC = [0, 1] x [0, 1] satisfies

lu—Thulax < clulx, Vue H(K).

By embedding theorem H?*(KC) C C°(K) so values of u at the four corners are bounded by c||ul|2,x-
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e — Dyl < =" lul, 0<m<t
" e C° elements
Theorem for Quadrilateral Bilinear Elements linear rangle ro= 2
quadratic triangle 2<1<3
. P e . cubic triangle 2<1<4
C9n5|der Th a quasi-uniform decomposition of 2 into parallelograms. There bilnear auadrlaeral Cs
exists a constant ¢ = ¢(£2, k) such that serendipity clemeat 25153
9 node quadrilateral 2<1<3
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||U - IhUHm,Q < ch |U|2,Qy Yue H (Q) Argyris element 3<1<6
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. g o o ore Hsieh-Clough-Tocher el 3 <4 <2
The Zj denotes the interpolation operator by piecewise bilinear elements. ,;,':c_Hsﬁ):f,clai;:ffoirei"élemem J=r=] 8:221

Proof: It suffices to show interpolation on the unit square IC = [0, 1] x [0, 1] satisfies

lu—Thulax < clulx, Vue H(K).

By embedding theorem H?*(KC) C C°(K) so values of u at the four corners are bounded by c||ul|2,x-

The interpolation operator Z, depends linearly on these four vertices,
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By embedding theorem H?*(KC) C C°(K) so values of u at the four corners are bounded by c||ul|2,x-

The interpolation operator Z, depends linearly on these four vertices, so

Zhull2,c < cmax|u(x)| < ellull2,c
xeKX
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Theorem for Quadrilateral Bilinear Elements

Consider T a quasi-uniform decomposition of 2 into parallelograms. There
exists a constant ¢ = ¢(£2, k) such that

|u—Zht|lma < ch® "|ul2q, Yue H(Q).

The Zj denotes the interpolation operator by piecewise bilinear elements.

lle = Iytellmn < ch""ulr.o O=m=t
C° elements
linear triangle t = 2
quadratic triangle 2<1<3
cubic triangle 2=<1=4
bilinear quadrilateral t = 2
serendipity element 2<1r<3
9 node quadrilateral 2<r=<3
C' elements
Argyris element 3<1<6
Bell element 3<1<5

Hsieh-Clough-Tocher element
reduc. Hsieh—-Clough-Tocher element

3<t<4 m=<2)

t

3 (m<2)

Proof (continued): The interpolation operator Z, depends linearly on these four vertices,
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Proof (continued): The interpolation operator Z, depends linearly on these four vertices, so

I Zhull2.c < camax|u(x)| < cllull2.x.
xeKX
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Proof (continued): The interpolation operator Z, depends linearly on these four vertices, so

I Zhull2.c < camax|u(x)| < cllull2.x.
xeKX

This yields
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= Lt < " lul O<m=<t
Theorem for Quadrilateral Bilinear Elements g, cements
inear triangle t = 2
. . . . . adratic triangl 2<t1<3
Consider 75, a quasi-uniform decomposition of Q into parallelograms. There | | &uicuiongle yiiza
exists a constant ¢ = ¢(£2, k) such that bilinear quadsilateral i
serendipity element 2<1r<3
2 5 9 node quadrilateral 2<t1<3
||u —IhuHm,Q < ch _m|u|2,Q, YueH (Q) C" elements
Argyris element 3<r<6
. . . . .y Bell element 3<t1<5
The Zj denotes the interpolation operator by piecewise bilinear elements. Hsieh-Clough-Tocher element 314 ms2)
reduc. Hsieh-Clough-Tocher element ¢ = 3 (m <2)

Proof (continued): The interpolation operator Z, depends linearly on these four vertices, so

I Zhull2.c < camax|u(x)| < cllull2.x.
xeKX

This yields
lu = Zoullz < llull2 + I Zaull2 < (c2 + 1)]|u2.
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The Zj denotes the interpolation operator by piecewise bilinear elements. Hsieh-Clough-Tocher element 314 m<2)
reduc. Hsieh—-Clough-Tocherelement ¢ = 3 (m <2)

Proof (continued): The interpolation operator Z, depends linearly on these four vertices, so

I Zhull2.c < camax|u(x)| < cllull2.x.
xeKX

This yields
lu = Zoullz < llull2 + I Zaull2 < (c2 + 1)]|u2.

When u is linear polynomial then Zyu = u and u — Zyu = 0.
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linear triangle t = 2
. . . . . adratic triangl 2<1<3
Consider T, a quasi-uniform decomposition of Q into parallelograms. There bic gl yiiza
exists a constant ¢ = ¢(£2, k) such that bilinear quadsilateral =2
serendipity element 2<1r<3
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Argyris element 3<r<6
. . . . .y Bell element 3<r<5
The Zj denotes the interpolation operator by piecewise bilinear elements. Hsieh-Clough-Tocher element 314 m<2)
reduc. Hsieh—-Clough-Tocherelement ¢ = 3 (m <2)

Proof (continued): The interpolation operator Z, depends linearly on these four vertices, so

I Zhull2.c < camax|u(x)| < cllull2.x.
xeKX

This yields

u = Znull2 < [lullz + | Znull2 < (2 + 1) ulf2-
When u is linear polynomial then Zyu = u and u — Zyu = 0.
By Bramble-Hilbert Il we have the result.
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= Lt < " lul 0<m=<t
Theorem for Quadrilateral Bilinear Elements o vt s
inear triangle t = 2
. . . . . adratic triangl 2<1<3
Consider T, a quasi-uniform decomposition of Q into parallelograms. There bic gl yiiza
exists a constant ¢ = ¢(£2, k) such that bilinear quadsilateral =2
serendipity element 2<1r<3
) ) 9 node quadrilateral 2<1<3
||u —IhuHm,Q < ch _m|u|2,Q, YueH (Q) " elements
Argyris element 3<r<6
. . . . .y Bell element 3<r<5
The Zj denotes the interpolation operator by piecewise bilinear elements. Hsieh-Clough-Tocher element 314 m<2)
reduc. Hsieh-Clough-Tocher element ¢ = 3 (m <2)

Proof (continued): The interpolation operator Z, depends linearly on these four vertices, so

| Zhulaxe < e max u(x)] < calul
xeK

2,K-
This yields
lu = Zhull2 < [lull2 + [|Znull2 < (c2 + 1) ull2.

When u is linear polynomial then Zyu = u and u — Zyu = 0.
By Bramble-Hilbert Il we have the result. B

Remark: For Serendipity Elements a similar proof technique can be used to obtain
lu = Zhul|ma < ch'™"|ultq, Yu € H' (), m=0,1, t =2,3.
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Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements {Sk} with piecewise polynomials of degree k having uniform partitions. There
exists a constant ¢ = c(k, k, t) so that

|t,h < Chm7t||vh||m’h, 0<m<t, wé€ Sh.

[l vi
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Theorem (Inverse Estimate)

Consider affine family of elements {Sk} with piecewise polynomials of degree k having uniform partitions. There
exists a constant ¢ = c(k, k, t) so that

valle.s < ch™ E||Vallmp, O0< m<t, vyE Sh

Proof (sketch):
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Consider affine family of elements {Sk} with piecewise polynomials of degree k having uniform partitions. There
exists a constant ¢ = c(k, k, t) so that

valle.s < ch™ E||Vallmp, O0< m<t, vyE Sh

Proof (sketch):
By use of reference element T and transformation formula this reduces to proving

[V]e,T < c|v|mT VYV ETP,
where ¢ = ¢(P).
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Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements {Sk} with piecewise polynomials of degree k having uniform partitions. There
exists a constant ¢ = c(k, k, t) so that

valle.s < ch™ E||Vallmp, O0< m<t, vyE Sh

Proof (sketch):
By use of reference element T and transformation formula this reduces to proving

[V]e,7 < c|v|mT Vv ETP,

where ¢ = ¢(P). We scale by h the unit reference element which yields the factor ch™* (as in prior proofs).
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exists a constant ¢ = c(k, k, t) so that
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[l vi

Proof (sketch):
By use of reference element T and transformation formula this reduces to proving

[V]e,T < c|v|mT VYV ETP,
where ¢ = ¢(P). We scale by h the unit reference element which yields the factor ch™* (as in prior proofs).

We use the equivalence of the norms || - ||c,7 and || - ||m,7 on the finite dimensional space Q@ = P P Pm—1.
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exists a constant ¢ = c(k, k, t) so that

|t,h < Chm7t||vh||m’h, 0<m<t, wé€ Sh.
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Proof (sketch):
By use of reference element T and transformation formula this reduces to proving

[V]e,T < c|v|mT VYV ETP,
where ¢ = ¢(P). We scale by h the unit reference element which yields the factor ch™* (as in prior proofs).

We use the equivalence of the norms || - ||c,7 and || - ||m,7 on the finite dimensional space Q@ = P P Pm—1.
Let I,v € Pm—1 be the polynomial interpolation at fixed points.
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We use the equivalence of the norms || - ||s,7 and || - ||m,7 on the finite dimensional space Q@ = P @ Pm—1.
Let /hv € Pp—1 be the polynomial interpolation at fixed points. Since t > m, we have |lv|; = 0.
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exists a constant ¢ = c(k, k, t) so that

|t,h < Chm7t||vh||m’h, 0<m<t, wé€ Sh.

[l vi

Proof (sketch):
By use of reference element T and transformation formula this reduces to proving

[V]e,T < c|v|mT VYV ETP,
where ¢ = ¢(P). We scale by h the unit reference element which yields the factor ch™* (as in prior proofs).

We use the equivalence of the norms || - ||s,7 and || - ||m,7 on the finite dimensional space Q@ = P @ Pm—1.
Let /hv € Pp—1 be the polynomial interpolation at fixed points. Since t > m, we have |lv|; = 0.
By the Bramble-Hilbert lemma

Ve = v —lvle < IV = hvlle < ellv = vl < €'[V]m.
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Clément’s Interpolation

The interpolation operator I, could only be applied to H? functions. Alternative for H'.
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The interpolation operator I, could only be applied to H? functions. Alternative for H'.
Let 7, be a shape-regular triangulation of Q.
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Clément’s Interpolation

The interpolation operator I, could only be applied to H? functions. Alternative for H'.
Let 74 be a shape-regular triangulation of Q. Given node x;, let

Wi = Wy = U T', (support), @7 := U{w,- |, xi € T} (neighborhood)

T/ | €T
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The interpolation operator I, could only be applied to H? functions. Alternative for H'.
Let 74 be a shape-regular triangulation of Q. Given node x;, let

Wi = Wy = U T', (support), @7 := U{w,- |, xi € T} (neighborhood)

T/ | €T

By shape regularity the area satisfies estimate u(o7) < c(x)h% and number triangles belonging to &7 is
bounded.
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By shape regularity the area satisfies estimate u(o7) < c(x)h% and number triangles belonging to &7 is
bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping Zj, : Hl(Q) — M3 so that
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By shape regularity the area satisfies estimate u(o7) < c(x)h% and number triangles belonging to &7 is
bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping Zj, : Hl(Q) — M3 so that

lv—=Zwvllmr < chy "|VlLe, Vv e H(Q),m=0,1,T € T5
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Clément’s Interpolation

The interpolation operator I, could only be applied to H? functions. Alternative for H'.
Let 74 be a shape-regular triangulation of Q. Given node x;, let

Wi = Wy = U T', (support), @7 := U{wj |, xi € T} (neighborhood)

T/ | €T

By shape regularity the area satisfies estimate u(o7) < c(x)h% and number triangles belonging to &7 is
bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping Zj, : Hl(Q) — M3 so that
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Clément’s Interpolation

The interpolation operator I, could only be applied to H? functions. Alternative for H'.
Let 74 be a shape-regular triangulation of Q. Given node x;, let

Wi = Wy = U T', (support), @7 := U{wj |, xi € T} (neighborhood)

T/ | €T

By shape regularity the area satisfies estimate u(o7) < c(x)h% and number triangles belonging to &7 is
bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping Zj, : Hl(Q) — M3 so that

lv—=Zwvllmr < chy "|VlLe, Vv e H(Q),m=0,1,T € T5
v —Twvlloe < ch¥?|vle, Vv e HNQ),ecdT, T €T

How do we construct such an operator Zj in practice?
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Clément’s Interpolation

Construction of interpolant:
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Clément’s Interpolation

Construction of interpolant:

Wi = Wy = U T', (support), @T = U{wj |, x; € T} (neighborhood).

T/ | €T’
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Clément’s Interpolation

Construction of interpolant:

Wi = Wy = U T', (support), @T = U{wj |, x; € T} (neighborhood).

T/ | €T’

For a given nodal point x; let

A 0 if x;€lp - .
Qv = { Qjv otherwise. ’ Q= L2(wj) = Po.
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Clément’s Interpolation

Construction of interpolant:

Wj = Wy 1= U T', (support),
T/ | x;EeT!

For a given nodal point x; let

ijz{ 0 ifxelp

Qjv  otherwise.

The Q; is the Ly-projection onto constant functions.

Paul J. Atzberger, UCSB Finite Element Methods

@T = U{wj |, x; € T} (neighborhood).

s Qj . Lg(wj) — Po.

http://atzberger.org/


http://atzberger.org/

Clément’s Interpolation

Construction of interpolant:

Wi = Wy = U T', (support), @T = U{wj |, x; € T} (neighborhood).

T/ | xET
For a given nodal point x; let

A 0 if x;€lp - .
Qv = { Qjv otherwise. ’ Q= L2(wj) = Po.

The Q; is the Ly-projection onto constant functions.
The I'p C 0N is part with Dirichlet boundary conditions.
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The I'p C 0N is part with Dirichlet boundary conditions.

Clément’s Interpolation:
Thv = Z(C_)jv)vj € Mg, veH(Q).
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Clément’s Interpolation

Construction of interpolant:

Wi = Wy = U T', (support), @T = U{wj |, x; € T} (neighborhood).

T/ | xET
For a given nodal point x; let

A 0 if x;€lp - .
Qv = { Qjv otherwise. ’ Q= L2(wj) = Po.

The Q; is the Ly-projection onto constant functions.
The I'p C 0N is part with Dirichlet boundary conditions.
Clément’s Interpolation:
Thv = Z(C_)jv)vj € Mg, veH(Q).
J

The cardinal shape functions v; form a partition of unity for elements (one on node j, zero at other nodes).
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Construction of interpolant:

Wi = Wy = U T', (support), @T = U{wj |, x; € T} (neighborhood).
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The I'p C 0N is part with Dirichlet boundary conditions.

Clément’s Interpolation:
Thv = Z(C_)jv)vj € Mg, veH(Q).
j

The cardinal shape functions v; form a partition of unity for elements (one on node j, zero at other nodes).

Significance: Allows for a notion of interpolation of non-smooth functions, v € H'(Q).
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Construction of interpolant:
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j

The cardinal shape functions v; form a partition of unity for elements (one on node j, zero at other nodes).

Significance: Allows for a notion of interpolation of non-smooth functions, v € H'(Q).
The Zy has well-controlled error bounds (see above).
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