FEM Approximation Properties and Convergence

Paul J. Atzberger

206D: Finite Element Methods University of California Santa Barbara

Definition

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** m-norm for $m \geq 1$ as

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** m-**norm** for $m \geq 1$ as

$$\|v\|_{m,h} := \sqrt{\sum_{\mathcal{T}_j \in \mathcal{T}_h} \|v\|_{m,\mathcal{T}_j}}.$$

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** m-norm for $m \geq 1$ as

$$\|v\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|v\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** m-norm for $m \geq 1$ as

$$\|v\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|v\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $||v||_{m,h} = ||v||_m$.

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** m-norm for $m \geq 1$ as

$$\|v\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|v\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $||v||_{m,h} = ||v||_m$.

For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative.

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** m-norm for $m \geq 1$ as

$$||v||_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} ||v||_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $||v||_{m,h} = ||v||_m$.

For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative.

Denote by $S_h = S(T_h)$ the space generated by T_h .

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** m-**norm** for $m \geq 1$ as

$$\|v\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|v\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $||v||_{m,h} = ||v||_m$.

For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative.

Denote by $S_h = S(T_h)$ the space generated by T_h .

Definition

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m*-**norm** for $m \geq 1$ as

$$\|v\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|v\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $||v||_{m,h} = ||v||_m$.

For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative. Denote by $S_h = S(T_h)$ the space generated by T_h .

Definition

The **interpolation** associated with elements of S_h having nodal variables $N_i[v]$ is the mapping

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m***-norm** for $m \geq 1$ as

$$\|v\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|v\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $||v||_{m,h} = ||v||_m$.

For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative. Denote by $S_h = S(T_h)$ the space generated by T_h .

Definition

The **interpolation** associated with elements of S_h having nodal variables $N_i[v]$ is the mapping

$$\mathcal{I}_h: H^m(\Omega) \to \mathcal{S}_h, \text{ so that } w|_{\mathcal{T}_j} = [\mathcal{I}_h v]_{\mathcal{T}_j} \text{ satisfies } N_i[w] = N_i[v].$$

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m***-norm** for $m \geq 1$ as

$$\|v\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|v\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $||v||_{m,h} = ||v||_m$.

For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative. Denote by $S_h = S(\mathcal{T}_h)$ the space generated by \mathcal{T}_h .

Definition

The **interpolation** associated with elements of S_h having nodal variables $N_i[v]$ is the mapping

$$\mathcal{I}_h: H^m(\Omega) o \mathcal{S}_h$$
, so that $w|_{\mathcal{T}_i} = [\mathcal{I}_h v]_{\mathcal{T}_i}$ satisfies $N_i[w] = N_i[v]$.

When $N_i[v] = v(x_i)$ and $\mathcal{P} = \mathcal{P}_t$ this is piecewise polynomial interpolation of the nodal values.

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m***-norm** for $m \geq 1$ as

$$\|v\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|v\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $||v||_{m,h} = ||v||_m$.

For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative.

Denote by $S_h = S(T_h)$ the space generated by T_h .

Definition

The **interpolation** associated with elements of S_h having nodal variables $N_i[v]$ is the mapping

$$\mathcal{I}_h: H^m(\Omega) o \mathcal{S}_h$$
, so that $w|_{\mathcal{T}_i} = [\mathcal{I}_h v]_{\mathcal{T}_i}$ satisfies $N_i[w] = N_i[v]$.

When $N_i[v] = v(x_i)$ and $\mathcal{P} = \mathcal{P}_t$ this is piecewise polynomial interpolation of the nodal values.

Goal: Obtain estimates of $||v - I_h v||_{m,h}$ in terms of $||v||_{t,\Omega}$ and h with $m \le t$.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Definition

Definition

A domain Ω is said to be **star-shaped** with respect to a ball $\mathcal{B}(\mathsf{x}_0,r) := \{\mathsf{x} \in \mathbb{R}^d | \|\mathsf{x} - \mathsf{x}_0\| \leq r\}$, if for every $\mathsf{x} \in \Omega$ the closed convex hull of $\{\mathsf{x}\} \bigcup \mathcal{B}$ is contained in Ω .

Definition

A domain Ω is said to be **star-shaped** with respect to a ball $\mathcal{B}(\mathsf{x}_0,r) := \{\mathsf{x} \in \mathbb{R}^d | \|\mathsf{x} - \mathsf{x}_0\| \leq r\}$, if for every $\mathsf{x} \in \Omega$ the closed convex hull of $\{\mathsf{x}\} \bigcup \mathcal{B}$ is contained in Ω .

Definition

Definition

A domain Ω is said to be **star-shaped** with respect to a ball $\mathcal{B}(\mathsf{x}_0,r) := \{\mathsf{x} \in \mathbb{R}^d | \|\mathsf{x} - \mathsf{x}_0\| \leq r\}$, if for every $\mathsf{x} \in \Omega$ the closed convex hull of $\{\mathsf{x}\} \bigcup \mathcal{B}$ is contained in Ω .

Definition

For a bounded domain Ω , the **chunkiness parameter** γ is defined to be the ratio of the diameter d_{Ω} of Ω to the largest radius r_{max} for which Ω is star-shaped, $\gamma = d_{\Omega}/r_{\text{max}}$.

Definition

A domain Ω is said to be **star-shaped** with respect to a ball $\mathcal{B}(\mathsf{x}_0,r) := \{\mathsf{x} \in \mathbb{R}^d | \|\mathsf{x} - \mathsf{x}_0\| \leq r\}$, if for every $\mathsf{x} \in \Omega$ the closed convex hull of $\{\mathsf{x}\} \bigcup \mathcal{B}$ is contained in Ω .

Definition

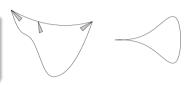
For a bounded domain Ω , the **chunkiness parameter** γ is defined to be the ratio of the diameter d_{Ω} of Ω to the largest radius r_{max} for which Ω is star-shaped, $\gamma = d_{\Omega}/r_{max}$.

An open domain Ω is said to satisfy the **cone condition** with angle ϕ and radius r if at every point $x \in \Omega$ we have $x + \mathcal{C}_{\phi,r,e_x} \subset \Omega$ for some orientation e_x .

Lemma

Definition

A domain Ω is said to be **star-shaped** with respect to a ball $\mathcal{B}(\mathsf{x}_0,r) := \{\mathsf{x} \in \mathbb{R}^d | \|\mathsf{x} - \mathsf{x}_0\| \le r\}$, if for every $\mathsf{x} \in \Omega$ the closed convex hull of $\{\mathsf{x}\} \bigcup \mathcal{B}$ is contained in Ω .



Definition

For a bounded domain Ω , the **chunkiness parameter** γ is defined to be the ratio of the diameter d_{Ω} of Ω to the largest radius r_{\max} for which Ω is star-shaped, $\gamma = d_{\Omega}/r_{\max}$.

An open domain Ω is said to satisfy the **cone condition** with angle ϕ and radius r if at every point $x \in \Omega$ we have $x + \mathcal{C}_{\phi,r,e_x} \subset \Omega$ for some orientation e_x .

Lemma

Consider an Ω that is bounded and star-shaped with respect to $\mathcal{B}(\mathsf{x}_c, r_c)$ and contained within $\mathcal{B}(\mathsf{x}_c, R)$. Then Ω satisfies an **interior cone condition** with radius r_c and angle $\phi = 2\arcsin{(r_c/2R)}$.

Bramble-Hilbert Lemma

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1,\ t\geq 2$.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1,\ t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1,\ t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u-\mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof:

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1,\ t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof: Let

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof: Let

$$|||v|||:=|v|_t+\sum_{i=1}^s|v(z_i)|.$$

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof: Let

$$|||v|||:=|v|_t+\sum_{i=1}^s|v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1,\ t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof: Let

$$|||v|||:=|v|_t+\sum_{i=1}^s|v(z_i)|.$$

We show the norms $||\cdot||$ and $||\cdot||_t$ are equivalent. If this were the case, the bound would follow from

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1,\ t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof: Let

$$|||v|||:=|v|_t+\sum_{i=1}^s|v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$||u - \mathcal{I}_s u||_t \le c|||u - I_s u|||$$

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1,\ t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof: Let

$$|||v|||:=|v|_t+\sum_{i=1}^s|v(z_i)|.$$

We show the norms $||\cdot||$ and $||\cdot||_t$ are equivalent. If this were the case, the bound would follow from

$$\|u-\mathcal{I}_s u\|_t \leq c\||u-I_s u\|| = c\left(|u-\mathcal{I}_s u|_t + \sum_{i=1}^s |(u-\mathcal{I}_s u)(z_i)|\right)$$

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1,\ t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof: Let

$$|||v|||:=|v|_t+\sum_{i=1}^s|v(z_i)|.$$

We show the norms $||\cdot||$ and $|\cdot||_t$ are equivalent. If this were the case, the bound would follow from

$$||u - \mathcal{I}_s u||_t \le c||u - I_s u|| = c\left(|u - \mathcal{I}_s u|_t + \sum_{i=1}^s |(u - \mathcal{I}_s u)(z_i)|\right) = c|u - \mathcal{I}_s u|_t = c|u|_t.$$

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t\geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u-\mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof: Let

$$|||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$||u - \mathcal{I}_s u||_t \le c||u - I_s u|| = c\left(|u - \mathcal{I}_s u|_t + \sum_{i=1}^s |(u - \mathcal{I}_s u)(z_i)|\right) = c|u - \mathcal{I}_s u|_t = c|u|_t.$$

This makes use of $\mathcal{I}_s u(z_i) = u(z_i)$ at the interpolation points

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u-\mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof: Let

$$|||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$||u - \mathcal{I}_s u||_t \le c|||u - I_s u||| = c\left(|u - \mathcal{I}_s u|_t + \sum_{i=1}^s |(u - \mathcal{I}_s u)(z_i)|\right) = c|u - \mathcal{I}_s u|_t = c|u|_t.$$

This makes use of $\mathcal{I}_s u(z_i) = u(z_i)$ at the interpolation points and that $D^{\alpha} \mathcal{I}_s u = 0$ for all $|\alpha| = t$.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof: Let

$$|||v|||:=|v|_t+\sum_{i=1}^s|v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$||u - \mathcal{I}_s u||_t \le c|||u - I_s u||| = c\left(|u - \mathcal{I}_s u|_t + \sum_{i=1}^s |(u - \mathcal{I}_s u)(z_i)|\right) = c|u - \mathcal{I}_s u|_t = c|u|_t.$$

This makes use of $\mathcal{I}_s u(z_i) = u(z_i)$ at the interpolation points and that $D^{\alpha} \mathcal{I}_s u = 0$ for all $|\alpha| = t$. We obtain one direction of equivalence, since $H^t \subset H^2 \subset C^0$ by the Sobolev Embedding Theorem, so we have

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1,\ t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof: Let

$$|||v|||:=|v|_t+\sum_{i=1}^s|v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$||u - \mathcal{I}_s u||_t \le c|||u - I_s u||| = c\left(|u - \mathcal{I}_s u|_t + \sum_{i=1}^s |(u - \mathcal{I}_s u)(z_i)|\right) = c|u - \mathcal{I}_s u|_t = c|u|_t.$$

This makes use of $\mathcal{I}_s u(z_i) = u(z_i)$ at the interpolation points and that $D^{\alpha} \mathcal{I}_s u = 0$ for all $|\alpha| = t$. We obtain one direction of equivalence, since $H^t \subset H^2 \subset C^0$ by the Sobolev Embedding Theorem, so we have

$$|v(z_i)| \leq c||v||_t \Rightarrow |||v|||$$

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u-\mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof: Let

$$|||v|||:=|v|_t+\sum_{i=1}^s|v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$||u - \mathcal{I}_s u||_t \le c||u - I_s u|| = c\left(|u - \mathcal{I}_s u|_t + \sum_{i=1}^s |(u - \mathcal{I}_s u)(z_i)|\right) = c|u - \mathcal{I}_s u|_t = c|u|_t.$$

This makes use of $\mathcal{I}_s u(z_i) = u(z_i)$ at the interpolation points and that $D^{\alpha} \mathcal{I}_s u = 0$ for all $|\alpha| = t$. We obtain one direction of equivalence, since $H^t \subset H^2 \subset C^0$ by the Sobolev Embedding Theorem, so we have

$$|v(z_i)| \le c||v||_t \Rightarrow |||v||| \le (1+cs)||v||_t.$$

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued):

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

 $||v||_t \le c|||v|||, \ \forall v \in H^t(\Omega)$ fails for every positive c.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$||v||_t \le c|||v|||, \ \forall v \in H^t(\Omega)$$
 fails for every positive c .

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \geq 1$

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$||v||_t \le c|||v|||, \ \forall v \in H^t(\Omega)$$
 fails for every positive c .

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \geq 1$

$$||v_k||_t = 1, |||v_k||| \le 1/k.$$

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$||v||_t \le c|||v|||, \ \forall v \in H^t(\Omega)$$
 fails for every positive c .

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \geq 1$

$$||v_k||_t = 1, |||v_k||| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem).

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$||v||_t \le c|||v|||, \ \forall v \in H^t(\Omega)$$
 fails for every positive c .

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \geq 1$

$$||v_k||_t = 1, |||v_k||| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_k itself converges.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1,\ t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$||v||_t \le c|||v|||, \ \forall v \in H^t(\Omega)$$
 fails for every positive c .

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \geq 1$

$$||v_k||_t = 1, \ |||v_k||| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_k itself converges. Since $|v_k|_t \to 0$, we have by Cauchy sequence that $||v_k - v_\ell||_t < ||v_k - v_\ell||_{t-1} + (|v_k|_t + |v_\ell|_t)^2$.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$||v||_t \le c|||v|||, \ \forall v \in H^t(\Omega)$$
 fails for every positive c .

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k\geq 1$

$$||v_k||_t = 1, |||v_k||| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_k itself converges. Since $|v_k|_t \to 0$, we have by Cauchy sequence that

$$\|v_k - v_\ell\|_t \le \|v_k - v_\ell\|_{t-1} + (|v_k|_t + |v_\ell|_t)^2$$
. This shows that v_k is also a Cauchy sequence in $H^t(\Omega)$.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t o \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1,\ t\geq 2$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \dots, z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$||v||_t \le c|||v|||, \ \forall v \in H^t(\Omega)$$
 fails for every positive c .

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \geq 1$

$$||v_k||_t = 1, \ |||v_k||| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_k itself converges. Since $|v_k|_t \to 0$, we have by Cauchy sequence that $\|v_k - v_\ell\|_t \le \|v_k - v_\ell\|_{t-1} + (|v_k|_t + |v_\ell|_t)^2$. This shows that v_k is also a Cauchy sequence in $H^t(\Omega)$. By

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

completeness there exists a $v^* \in H^t(\Omega)$.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$||v||_t \le c|||v|||, \ \forall v \in H^t(\Omega)$$
 fails for every positive c .

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k\geq 1$

$$||v_k||_t = 1, \ |||v_k||| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_k itself converges. Since $|v_k|_t \to 0$, we have by Cauchy sequence that

 $\|v_k - v_\ell\|_t \le \|v_k - v_\ell\|_{t-1} + (|v_k|_t + |v_\ell|_t)^2$. This shows that v_k is also a Cauchy sequence in $H^t(\Omega)$. By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u||_t \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$||v||_t \le c|||v|||, \ \forall v \in H^t(\Omega)$$
 fails for every positive c .

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \geq 1$

$$||v_k||_t = 1, \ |||v_k||| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_k itself converges. Since $|v_k|_t \to 0$, we have by Cauchy sequence that

 $\|v_k - v_\ell\|_t \le \|v_k - v_\ell\|_{t-1} + (|v_k|_t + |v_\ell|_t)^2$. This shows that v_k is also a Cauchy sequence in $H^t(\Omega)$. By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

$$||v^*||_t = 1$$
 and $|||v^*||| = 0$.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u-\mathcal{I}_s u|| \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u|| \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

$$\|v^*\|_t = 1$$
 and $\||v^*\|| = 0$.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u|| \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

$$||v^*||_t = 1$$
 and $|||v^*||| = 0$.

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} .

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u|| \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

$$||v^*||_t = 1$$
 and $|||v^*||| = 0$.

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} . Since $v^*(z_i) = 0$ we have the null polynomial $v^* \equiv 0$.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u|| \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

$$||v^*||_t = 1$$
 and $|||v^*||| = 0$.

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} . Since $v^*(z_i) = 0$ we have the null polynomial $v^* \equiv 0$.

The v^* needing to be null polynomial gives a contradiction.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u-\mathcal{I}_s u|| \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

$$||v^*||_t = 1$$
 and $|||v^*||| = 0$.

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} . Since $v^*(z_i) = 0$ we have the null polynomial $v^* \equiv 0$.

The v^* needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u|| \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

$$||v^*||_t = 1$$
 and $|||v^*||| = 0$.

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} . Since $v^*(z_i) = 0$ we have the null polynomial $v^* \equiv 0$.

The v^* needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false. Therefore,

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u|| \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

$$||v^*||_t = 1$$
 and $|||v^*||| = 0$.

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} . Since $v^*(z_i) = 0$ we have the null polynomial $v^* \equiv 0$.

The v^* needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false. Therefore,

$$||v||_t \leq c|||v|||, \quad \forall v \in H^1(\Omega).$$

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s=t(t+1)/2 points z_1,z_2,\ldots,z_s on $\overline{\Omega}$ which maps from $H^t\to\mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega\subset\mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c(\Omega,z_1,\ldots,z_s)$ so the following bound holds

$$||u - \mathcal{I}_s u|| \leq c|u|_t, \ \forall u \in H^t(\Omega).$$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

$$||v^*||_t = 1$$
 and $|||v^*||| = 0$.

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} . Since $v^*(z_i) = 0$ we have the null polynomial $v^* \equiv 0$.

The v^* needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false. Therefore,

$$||v||_t \leq c|||v|||, \quad \forall v \in H^1(\Omega).$$

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

$$||Lv||_{\mathcal{Z}} \leq c|v|_t$$
, for all $v \in H^t(\Omega)$.

Proof:

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

$$||Lv||_{\mathcal{Z}} \leq c|v|_t$$
, for all $v \in H^t(\Omega)$.

Proof:

Let $\mathcal{I}_h: H^t(\Omega) \to \mathcal{P}_{t-1}$ be the interpolation operator.

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

$$||Lv||_{\mathcal{Z}} \leq c|v|_t$$
, for all $v \in H^t(\Omega)$.

Proof:

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

$$||Lv||_{\mathcal{Z}} \leq c|v|_t$$
, for all $v \in H^t(\Omega)$.

Proof:

$$||Lv||_{\mathcal{Z}} = ||L(v - \mathcal{I}_h v)||_{\mathcal{Z}}$$

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

$$||Lv||_{\mathcal{Z}} \leq c|v|_t$$
, for all $v \in H^t(\Omega)$.

Proof:

$$||Lv||_{\mathcal{Z}} = ||L(v - \mathcal{I}_h v)||_{\mathcal{Z}} \le ||L|| \cdot ||v - \mathcal{I}_h v||_t$$

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

$$||Lv||_{\mathcal{Z}} \leq c|v|_t$$
, for all $v \in H^t(\Omega)$.

Proof:

$$\|Lv\|_{\mathcal{Z}} = \|L(v - \mathcal{I}_h v)\|_{\mathcal{Z}} \leq \|L\| \cdot \|v - \mathcal{I}_h v\|_t \leq c\|L\| \cdot |v|_t.$$

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

$$||Lv||_{\mathcal{Z}} \leq c|v|_t$$
, for all $v \in H^t(\Omega)$.

Proof:

$$\|Lv\|_{\mathcal{Z}} = \|L(v - \mathcal{I}_h v)\|_{\mathcal{Z}} \leq \|L\| \cdot \|v - \mathcal{I}_h v\|_t \leq c\|L\| \cdot |v|_t.$$

Theorem for Triangulations

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω .

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$||u - \mathcal{I}_h u||_{m,h} \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem.

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t\geq 2$ there exists a constant $c=c(\Omega.\kappa,t)$ such that

$$||u - \mathcal{I}_h u||_{m,h} \le ch^{t-m}|u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq c h^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x,y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0,h]\}.$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq c h^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x,y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0,h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy),

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq c h^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x,y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0,h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$.

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq c h^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x,y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0,h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx,hy), so $\partial^{\alpha}v = h^{|\alpha|}\partial^{\alpha}w$ with $|\alpha| \le t$. Now

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq c h^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x,y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0,h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx,hy), so $\partial^{\alpha}v = h^{|\alpha|}\partial^{\alpha}w$ with $|\alpha| \le t$. Now

$$\|w\|_{m,T_h}^2 = \sum_{\ell \le m} |w|_{\ell,T_h}^2$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq c h^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x,y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0,h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx,hy), so $\partial^{\alpha}v = h^{|\alpha|}\partial^{\alpha}w$ with $|\alpha| \leq t$. Now

$$\|w\|_{m,T_h}^2 = \sum_{\ell \le m} |w|_{\ell,T_h}^2 = \sum_{\ell \le m} h^{-2\ell+2} |v|_{\ell,T_1^{ref}}^2$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx,hy), so $\partial^{\alpha}v = h^{|\alpha|}\partial^{\alpha}w$ with $|\alpha| \le t$. Now

$$\|w\|_{m,T_h}^2 = \sum_{\ell \leq m} |w|_{\ell,T_h}^2 = \sum_{\ell \leq m} h^{-2\ell+2} |v|_{\ell,T_1^{ref}}^2 \leq h^{-2m+2} \|v\|_{m,T_1^{ref}}^2,$$

$$|v|_{\ell,T_1^{ref}}^2$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t\geq 2$ there exists a constant $c=c(\Omega.\kappa,t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx,hy), so $\partial^{\alpha}v = h^{|\alpha|}\partial^{\alpha}w$ with $|\alpha| \le t$. Now

$$\|w\|_{m,T_h}^2 = \sum_{\ell \leq m} |w|_{\ell,T_h}^2 = \sum_{\ell \leq m} h^{-2\ell+2} |v|_{\ell,T_1^{ref}}^2 \leq h^{-2m+2} \|v\|_{m,T_1^{ref}}^2,$$

$$|v|_{\ell, T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 dx^{ref}$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq c h^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx,hy), so $\partial^{\alpha}v = h^{|\alpha|}\partial^{\alpha}w$ with $|\alpha| \leq t$. Now

$$\|w\|_{m,T_h}^2 = \sum_{\ell \leq m} |w|_{\ell,T_h}^2 = \sum_{\ell \leq m} h^{-2\ell+2} |v|_{\ell,T_1^{ref}}^2 \leq h^{-2m+2} \|v\|_{m,T_1^{ref}}^2,$$

$$|v|_{\ell, T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 dx^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} (\partial^{\alpha} v)^2 h^{-2} dx$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t\geq 2$ there exists a constant $c=c(\Omega.\kappa,t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq c h^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx,hy), so $\partial^{\alpha}v = h^{|\alpha|}\partial^{\alpha}w$ with $|\alpha| \le t$. Now

$$\|w\|_{m,T_h}^2 = \sum_{\ell \leq m} |w|_{\ell,T_h}^2 = \sum_{\ell \leq m} h^{-2\ell+2} |v|_{\ell,T_1^{ref}}^2 \leq h^{-2m+2} \|v\|_{m,T_1^{ref}}^2,$$

$$|v|_{\ell,T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 dx^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} (\partial^{\alpha} v)^2 h^{-2} dx = h^{2\ell-2} |w|_{\ell,T_h}^2.$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t\geq 2$ there exists a constant $c=c(\Omega.\kappa,t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx,hy), so $\partial^{\alpha}v = h^{|\alpha|}\partial^{\alpha}w$ with $|\alpha| \leq t$. Now

$$\|w\|_{m,T_h}^2 = \sum_{\ell \leq m} |w|_{\ell,T_h}^2 = \sum_{\ell \leq m} h^{-2\ell+2} |v|_{\ell,T_1^{ref}}^2 \leq h^{-2m+2} \|v\|_{m,T_1^{ref}}^2,$$

$$|v|_{\ell,T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 dx^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} (\partial^{\alpha} v)^2 h^{-2} dx = h^{2\ell-2} |w|_{\ell,T_h}^2.$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t\geq 2$ there exists a constant $c=c(\Omega.\kappa,t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx,hy), so $\partial^{\alpha}v = h^{|\alpha|}\partial^{\alpha}w$ with $|\alpha| \le t$. Now

$$\|w\|_{m,T_h}^2 = \sum_{\ell \leq m} |w|_{\ell,T_h}^2 = \sum_{\ell \leq m} h^{-2\ell+2} |v|_{\ell,T_1^{ref}}^2 \leq h^{-2m+2} \|v\|_{m,T_1^{ref}}^2,$$

$$|v|_{\ell,\,T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 \, dx^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} \, (\partial^{\alpha} v)^2 \, h^{-2} dx = h^{2\ell-2} |w|_{\ell,\,T_h}^2.$$

$$||u - \mathcal{I}_h u||_{m, T_h} \le h^{-m+1} ||u - \mathcal{I}_h u||_{m, T_1^{ref}}$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx,hy), so $\partial^{\alpha}v = h^{|\alpha|}\partial^{\alpha}w$ with $|\alpha| \le t$. Now

$$\|w\|_{m,T_h}^2 = \sum_{\ell \leq m} |w|_{\ell,T_h}^2 = \sum_{\ell \leq m} h^{-2\ell+2} |v|_{\ell,T_1^{ref}}^2 \leq h^{-2m+2} \|v\|_{m,T_1^{ref}}^2,$$

$$|v|_{\ell,T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 dx^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} (\partial^{\alpha} v)^2 h^{-2} dx = h^{2\ell-2} |w|_{\ell,T_h}^2.$$

$$\|u - \mathcal{I}_h u\|_{m,T_h} \leq h^{-m+1} \|u - \mathcal{I}_h u\|_{m,T_1^{ref}} \leq h^{-m+1} \|u - \mathcal{I}_h u\|_{t,T_1^{ref}}$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t\geq 2$ there exists a constant $c=c(\Omega.\kappa,t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx,hy), so $\partial^{\alpha}v = h^{|\alpha|}\partial^{\alpha}w$ with $|\alpha| \leq t$. Now

$$\|w\|_{m,T_h}^2 = \sum_{\ell \leq m} |w|_{\ell,T_h}^2 = \sum_{\ell \leq m} h^{-2\ell+2} |v|_{\ell,T_1^{ref}}^2 \leq h^{-2m+2} \|v\|_{m,T_1^{ref}}^2,$$

$$|v|_{\ell,T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 dx^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} (\partial^{\alpha} v)^2 h^{-2} dx = h^{2\ell-2} |w|_{\ell,T_h}^2.$$

Now let $w = u - \mathcal{I}_h u$ then we obtain

$$\|u - \mathcal{I}_h u\|_{m,T_h} \leq h^{-m+1} \|u - \mathcal{I}_h u\|_{m,T_1^{ref}} \leq h^{-m+1} \|u - \mathcal{I}_h u\|_{t,T_1^{ref}} \leq h^{-m+1} c |u|_{t,T_1^{ref}}$$

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t\geq 2$ there exists a constant $c=c(\Omega.\kappa,t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Remark: Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}.$

Given $v \in H^t(T_1^{ref})$ we have v(x,y) = w(hx,hy), so $\partial^{\alpha}v = h^{|\alpha|}\partial^{\alpha}w$ with $|\alpha| \le t$. Now

$$\|w\|_{m,T_h}^2 \quad = \quad \sum_{\ell \leq m} |w|_{\ell,T_h}^2 = \sum_{\ell \leq m} h^{-2\ell+2} |v|_{\ell,T_1^{ref}}^2 \leq h^{-2m+2} \|v\|_{m,T_1^{ref}}^2,$$

$$|v|_{\ell,T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 dx^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} (\partial^{\alpha} v)^2 h^{-2} dx = h^{2\ell-2} |w|_{\ell,T_h}^2.$$

$$\|u-\mathcal{I}_h u\|_{m,T_h} \leq h^{-m+1} \|u-\mathcal{I}_h u\|_{m,T_1^{ref}} \leq h^{-m+1} \|u-\mathcal{I}_h u\|_{t,T_1^{ref}} \leq h^{-m+1} c |u|_{t,T_1^{ref}} \leq h^{t-m} c |u|_{t,T_h}.$$

Transformation Formula

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$F \mid \hat{\Omega} \rightarrow \Omega$$

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$F \mid \hat{\Omega} \to \Omega$$

 $F\hat{x} = x_0 + B\hat{x}$ (B non-singular linear operator)

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \le c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \le c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{\mathbf{v}}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |\mathbf{v}|_{m,\Omega}.$$

Proof:

By the chain rule we have for directions $\hat{y}_1, \dots \hat{y}_m$ that

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \le c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

By the chain rule we have for directions $\hat{y}_1, \dots \hat{y}_m$ that

$$D^{m}\hat{v}(\hat{x})(\hat{y}_{1},\ldots,\hat{y}_{m})=D^{m}v(x)(B\hat{y}_{1},\ldots,B\hat{y}_{m}).$$

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

By the chain rule we have for directions $\hat{y}_1, \dots \hat{y}_m$ that

$$D^m \hat{v}(\hat{x})(\hat{y}_1,\ldots,\hat{y}_m) = D^m v(x)(B\hat{y}_1,\ldots,B\hat{y}_m).$$

This gives $||D^m \hat{v}||_{\mathbb{R}^{nm}} \leq ||B||^m ||D^m v||_{\mathbb{R}^{nm}}$.

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

By the chain rule we have for directions $\hat{y}_1, \dots \hat{y}_m$ that

$$D^{m}\hat{v}(\hat{x})(\hat{y}_{1},\ldots,\hat{y}_{m})=D^{m}v(x)(B\hat{y}_{1},\ldots,B\hat{y}_{m}).$$

This gives $\|D^m\hat{\mathbf{v}}\|_{\mathbb{R}^{nm}} \leq \|B\|^m\|D^m\mathbf{v}\|_{\mathbb{R}^{nm}}$. The derivatives are estimated by $\partial_{i_1}\dots\partial_{i_m}\mathbf{v} = D^m\mathbf{v}(\mathbf{e}_{i_1},\dots,\mathbf{e}_{i_m})$ to obtain

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

By the chain rule we have for directions $\hat{y}_1, \dots \hat{y}_m$ that

$$D^{m}\hat{v}(\hat{x})(\hat{y}_{1},\ldots,\hat{y}_{m})=D^{m}v(x)(B\hat{y}_{1},\ldots,B\hat{y}_{m}).$$

This gives $\|D^m\hat{\mathbf{v}}\|_{\mathbb{R}^{nm}} \leq \|B\|^m\|D^m\mathbf{v}\|_{\mathbb{R}^{nm}}$. The derivatives are estimated by $\partial_{i_1}\ldots\partial_{i_m}\mathbf{v} = D^m\mathbf{v}(e_{i_1},\ldots,e_{i_m})$ to obtain

$$\sum_{|\alpha|=m} |\partial^{\alpha} \hat{\mathbf{v}}|^{2} \leq n^{m} \max_{|\alpha|=m} |\partial^{\alpha} \hat{\mathbf{v}}|^{2}$$

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

By the chain rule we have for directions $\hat{y}_1, \dots \hat{y}_m$ that

$$D^m \hat{v}(\hat{x})(\hat{y}_1,\ldots,\hat{y}_m) = D^m v(x)(B\hat{y}_1,\ldots,B\hat{y}_m).$$

This gives $\|D^m\hat{\mathbf{v}}\|_{\mathbb{R}^{nm}} \leq \|B\|^m\|D^m\mathbf{v}\|_{\mathbb{R}^{nm}}$. The derivatives are estimated by $\partial_{i_1}\ldots\partial_{i_m}\mathbf{v} = D^m\mathbf{v}(e_{i_1},\ldots,e_{i_m})$ to obtain

$$\sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^{2} \leq n^{m} \max_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^{2} \leq n^{m} \|D^{m} \hat{v}\|^{2}$$

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \le c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

By the chain rule we have for directions $\hat{y}_1, \dots \hat{y}_m$ that

$$D^m \hat{v}(\hat{x})(\hat{y}_1,\ldots,\hat{y}_m) = D^m v(x)(B\hat{y}_1,\ldots,B\hat{y}_m).$$

This gives $\|D^m \hat{\mathbf{v}}\|_{\mathbb{R}^{nm}} \leq \|B\|^m \|D^m \mathbf{v}\|_{\mathbb{R}^{nm}}$. The derivatives are estimated by $\partial_{i_1} \dots \partial_{i_m} \mathbf{v} = D^m \mathbf{v}(e_{i_1}, \dots, e_{i_m})$ to obtain

$$\sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^{2} \leq n^{m} \max_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^{2} \leq n^{m} \|D^{m} \hat{v}\|^{2} \leq n^{m} \|B\|^{2m} \|D^{m} v\|^{2}$$

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \le c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

By the chain rule we have for directions $\hat{y}_1, \dots \hat{y}_m$ that

$$D^{m}\hat{v}(\hat{x})(\hat{y}_{1},\ldots,\hat{y}_{m})=D^{m}v(x)(B\hat{y}_{1},\ldots,B\hat{y}_{m}).$$

This gives $\|D^m\hat{\mathbf{v}}\|_{\mathbb{R}^{nm}} \leq \|B\|^m\|D^m\mathbf{v}\|_{\mathbb{R}^{nm}}$. The derivatives are estimated by $\partial_{i_1}\ldots\partial_{i_m}\mathbf{v} = D^m\mathbf{v}(e_{i_1},\ldots,e_{i_m})$ to obtain

$$\sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^{2} \leq n^{m} \max_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^{2} \leq n^{m} \|D^{m} \hat{v}\|^{2} \leq n^{m} \|B\|^{2m} \|D^{m} v\|^{2} \leq n^{2m} \|B\|^{2m} \sum_{|\alpha|=m} |\partial^{\alpha} v|^{2}.$$

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$F \mid \hat{\Omega} \rightarrow \Omega$$

 $F\hat{x} = x_0 + B\hat{x}$ (*B* non-singular linear operator)

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \le c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \le c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

Integrating both size and using Jacobian of the transformation

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \le c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

Integrating both size and using Jacobian of the transformation

$$|\hat{\mathbf{v}}|_{m,\hat{\Omega}}^2 = \int_{\hat{\Omega}} \sum_{|\alpha|=m} |\partial^{\alpha} \hat{\mathbf{v}}|^2 d\hat{\mathbf{x}}$$

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \le c ||B||^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

Integrating both size and using Jacobian of the transformation

$$|\hat{v}|_{m,\hat{\Omega}}^2 = \int_{\hat{\Omega}} \sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^2 d\hat{x} \le n^{2m} \|B\|^{2m} \int_{\Omega} \sum_{|\alpha|=m} |\partial^{\alpha} v|^2 \cdot |\text{det}B^{-1}| dx$$

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \le c ||B||^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

Integrating both size and using Jacobian of the transformation

$$|\hat{v}|_{m,\hat{\Omega}}^2 = \int_{\hat{\Omega}} \sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^2 d\hat{x} \leq n^{2m} \|B\|^{2m} \int_{\Omega} \sum_{|\alpha|=m} |\partial^{\alpha} v|^2 \cdot |\det B^{-1}| dx = n^{2m} \|B\|^{2m} |\det B|^{-1} |v|_{m,\Omega}^2.$$

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \le c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

Integrating both size and using Jacobian of the transformation

$$|\hat{v}|_{m,\hat{\Omega}}^2 = \int_{\hat{\Omega}} \sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^2 d\hat{x} \leq n^{2m} \|B\|^{2m} \int_{\Omega} \sum_{|\alpha|=m} |\partial^{\alpha} v|^2 \cdot |\det B^{-1}| dx = n^{2m} \|B\|^{2m} |\det B|^{-1} |v|_{m,\Omega}^2.$$

By taking square root we obtain the bound.

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{v}|_{m,\hat{\Omega}} \le c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$$

Proof:

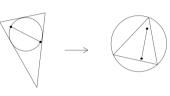
Integrating both size and using Jacobian of the transformation

$$|\hat{v}|_{m,\hat{\Omega}}^2 = \int_{\hat{\Omega}} \sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^2 d\hat{x} \leq n^{2m} \|B\|^{2m} \int_{\Omega} \sum_{|\alpha|=m} |\partial^{\alpha} v|^2 \cdot |\det B^{-1}| dx = n^{2m} \|B\|^{2m} |\det B|^{-1} |v|_{m,\Omega}^2.$$

By taking square root we obtain the bound.

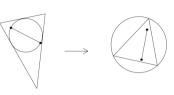
Definition

For triangle $T_j \in \mathcal{T}$,



Definition

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j ,

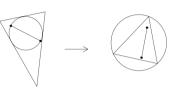


Definition

For triangle $T_j \in \mathcal{T}$,

 ho_j is the largest radius of circle inscribed in T_j ,

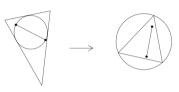
 r_i is the smallest radius of circle containing T_i ,



Definition

For triangle $T_j \in \mathcal{T}$,

 ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

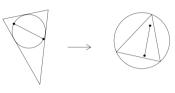


Definition

For triangle $T_j \in \mathcal{T}$,

 ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$



Definition

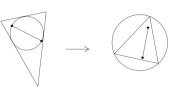
For triangle $T_j \in \mathcal{T}$,

 ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

 $n_j = \frac{1}{2} \operatorname{diameter}(T_j)$

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa.$$



Definition

For triangle $T_j \in \mathcal{T}$,

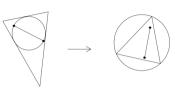
 ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j ,

 $h_j = \frac{1}{2} \text{diameter}(T_j).$

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$
.

Let $F|T_1 \to T_2$ then $\hat{x} \to B\hat{x} + X_0$ is an affine map.



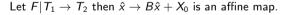
Definition

For triangle $T_j \in \mathcal{T}$,

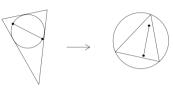
 ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_i = \frac{1}{2} \text{diameter}(T_i)$.

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$
.



Claim:
$$||B|| \le r_2/\rho_1$$
, and $||B^{-1}|| \le r_1/\rho_2$.



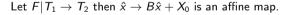
Definition

For triangle $T_j \in \mathcal{T}$,

 ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_i = \frac{1}{2} \text{diameter}(T_i)$.

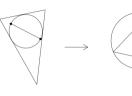
A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$
.



Claim:
$$||B|| \le r_2/\rho_1$$
, and $||B^{-1}|| \le r_1/\rho_2$.

Note: Gives condition number $||B|| ||B^{-1}|| \le r_1 r_2 / (\rho_1 \rho_2)$.



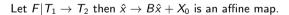
Definition

For triangle $T_j \in \mathcal{T}$,

 ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_i = \frac{1}{2} \text{diameter}(T_i)$.

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$
.



Claim:
$$||B|| \le r_2/\rho_1$$
, and $||B^{-1}|| \le r_1/\rho_2$.

Note: Gives condition number $||B|| ||B^{-1}|| \le r_1 r_2 / (\rho_1 \rho_2)$.

This will become poor for triangles that are small "slivers."

Definition

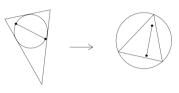
For triangle $T_j \in \mathcal{T}$,

 ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j ,

 $h_j = \frac{1}{2} \text{diameter}(T_j).$

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$
.



Definition

For triangle $T_j \in \mathcal{T}$,

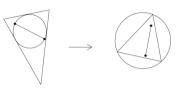
 ρ_j is the largest radius of circle inscribed in T_j , T_j is the smallest radius of circle containing T_j ,

$$h_j = \frac{1}{2} \text{diameter}(T_j).$$

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa.$$

We now prove



Definition

For triangle $T_j \in \mathcal{T}$,

 ρ_j is the largest radius of circle inscribed in T_j , T_j is the smallest radius of circle containing T_j ,

$$h_j = \frac{1}{2} \text{diameter}(T_j).$$

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa.$$

We now prove

Theorem for Triangulations

Definition

For triangle $T_j \in \mathcal{T}$,

 ρ_j is the largest radius of circle inscribed in T_j , r_i is the smallest radius of circle containing T_i ,

$$h_j = \frac{1}{2} \text{diameter}(T_j).$$

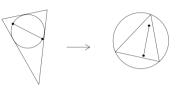
A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa.$$

We now prove

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω .



Definition

For triangle $T_j \in \mathcal{T}$,

 ρ_j is the largest radius of circle inscribed in T_j , r_i is the smallest radius of circle containing T_i .

$$h_i = \frac{1}{2} \text{diameter}(T_i).$$

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$
.

We now prove

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega, \kappa, t)$ such that

Definition

For triangle $T_j \in \mathcal{T}$,

 ρ_j is the largest radius of circle inscribed in T_j , r_i is the smallest radius of circle containing T_i ,

 $h_j = \frac{1}{2} \text{diameter}(T_j).$

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$
.

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega, \kappa, t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq c h^{t-m} |u|_{t,\Omega}, \ \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

Definition

For triangle $T_j \in \mathcal{T}$,

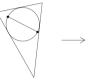
 ρ_j is the largest radius of circle inscribed in T_j ,

 r_j is the smallest radius of circle containing T_j ,

 $h_j = \frac{1}{2} \text{diameter}(T_j).$

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $T \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$
.



Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega, \kappa, t)$ such that

$$||u - \mathcal{I}_h u||_{m,h} \le ch^{t-m} |u|_{t,\Omega}, \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Proof:

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m}|u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Proof: This is proved by showing the inequality holds on each triangle T_i of a shape-regular triangulation T_h .

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m}|u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T} = \{(x,y)|0 \le y \le 1-x, x \in [0,1]\}$ the half-square which has $\hat{r} = 2^{-1/2}$ and $\hat{\rho} = (2+\sqrt{2})^{-1} \ge 2/7$.

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m}|u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m}|u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

$$|u - \mathcal{I}_h u|_{m,T} \le c ||B||^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,T_{ref}}$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

$$|u - \mathcal{I}_h u|_{m,T} \leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,T_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,T_{ref}}$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa,t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,T} & \leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,T_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,T_{ref}} \\ & \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^{t} \cdot |\det B|^{1/2} |u|_{t,T} \end{aligned}$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,T} & \leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,T_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,T_{ref}} \\ & \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t,T} \leq c \left(\|B\| \|B^{-1}\| \right)^m \|B\|^{t-m} |u|_{t,T}. \end{aligned}$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T}=\{(x,y)|0\leq y\leq 1-x,x\in[0,1]\}$ the half-square which has $\hat{r}=2^{-1/2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1}\geq 2/7$. Let $F:T_{ref}\to T$ with $T=T_j\in\mathcal{T}_h$. Now by applying transform formula to F we obtain

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,T} & \leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,T_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,T_{ref}} \\ & \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t,T} \leq c \left(\|B\| \|B^{-1}\| \right)^m \|B\|^{t-m} |u|_{t,T}. \end{aligned}$$

By the shape regularity we have $r/\rho \le \kappa$ and $||B|| \cdot ||B^{-1}|| \le (2 + \sqrt{2})\kappa$.

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T}=\{(x,y)|0\leq y\leq 1-x,x\in[0,1]\}$ the half-square which has $\hat{r}=2^{-1/2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1}\geq 2/7$. Let $F:T_{ref}\to T$ with $T=T_j\in\mathcal{T}_h$. Now by applying transform formula to F we obtain

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,T} & \leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,T_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,T_{ref}} \\ & \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t,T} \leq c \left(\|B\| \|B^{-1}\| \right)^m \|B\|^{t-m} |u|_{t,T}. \end{aligned}$$

By the shape regularity we have $r/\rho \le \kappa$ and $\|B\| \cdot \|B^{-1}\| \le (2+\sqrt{2})\kappa$. This implies $\|B\| \le h/\hat{\rho} \le 4h$.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T}=\{(x,y)|0\leq y\leq 1-x,x\in[0,1]\}$ the half-square which has $\hat{r}=2^{-1/2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1}\geq 2/7$. Let $F:T_{ref}\to T$ with $T=T_j\in\mathcal{T}_h$. Now by applying transform formula to F we obtain

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,T} & \leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,T_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,T_{ref}} \\ & \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t,T} \leq c \left(\|B\| \|B^{-1}\| \right)^m \|B\|^{t-m} |u|_{t,T}. \end{aligned}$$

By the shape regularity we have $r/\rho \le \kappa$ and $\|B\| \cdot \|B^{-1}\| \le (2+\sqrt{2})\kappa$. This implies $\|B\| \le h/\hat{\rho} \le 4h$. Putting this together we obtain

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T}=\{(x,y)|0\leq y\leq 1-x,x\in[0,1]\}$ the half-square which has $\hat{r}=2^{-1/2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1}\geq 2/7$. Let $F:T_{ref}\to T$ with $T=T_j\in\mathcal{T}_h$. Now by applying transform formula to F we obtain

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,T} & \leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,T_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,T_{ref}} \\ & \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t,T} \leq c \left(\|B\| \|B^{-1}\|\right)^m \|B\|^{t-m} |u|_{t,T}. \end{aligned}$$

By the shape regularity we have $r/\rho \le \kappa$ and $\|B\| \cdot \|B^{-1}\| \le (2+\sqrt{2})\kappa$. This implies $\|B\| \le h/\hat{\rho} \le 4h$. Putting this together we obtain

$$|u-\mathcal{I}_h u|_{\ell,T} \leq c h^{t-\ell} |u|_{t,T}.$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$||u - \mathcal{I}_h u||_m \leq ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T}=\{(x,y)|0\leq y\leq 1-x,x\in[0,1]\}$ the half-square which has $\hat{r}=2^{-1/2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1}\geq 2/7$. Let $F:T_{ref}\to T$ with $T=T_j\in\mathcal{T}_h$. Now by applying transform formula to F we obtain

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,T} & \leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,T_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,T_{ref}} \\ & \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t,T} \leq c \left(\|B\| \|B^{-1}\| \right)^m \|B\|^{t-m} |u|_{t,T}. \end{aligned}$$

By the shape regularity we have $r/\rho \le \kappa$ and $\|B\| \cdot \|B^{-1}\| \le (2+\sqrt{2})\kappa$. This implies $\|B\| \le h/\hat{\rho} \le 4h$. Putting this together we obtain

$$|u - \mathcal{I}_h u|_{\ell,T} \le ch^{t-\ell} |u|_{t,T}.$$

By summing the squares of these local inequalities we obtain the global bound stated in the theorem.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$||u - \mathcal{I}_h u||_m \le ch^{t-m} |u|_{t,\Omega} \ \forall u \in H^t(\Omega), \ 0 \le m \le t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T}=\{(x,y)|0\leq y\leq 1-x,x\in[0,1]\}$ the half-square which has $\hat{r}=2^{-1/2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1}\geq 2/7$. Let $F:T_{ref}\to T$ with $T=T_j\in\mathcal{T}_h$. Now by applying transform formula to F we obtain

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,T} & \leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,T_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,T_{ref}} \\ & \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t,T} \leq c \left(\|B\| \|B^{-1}\| \right)^m \|B\|^{t-m} |u|_{t,T}. \end{aligned}$$

By the shape regularity we have $r/\rho \le \kappa$ and $\|B\| \cdot \|B^{-1}\| \le (2+\sqrt{2})\kappa$. This implies $\|B\| \le h/\hat{\rho} \le 4h$. Putting this together we obtain

$$|u - \mathcal{I}_h u|_{\ell,T} \le ch^{t-\ell} |u|_{t,T}.$$

By summing the squares of these local inequalities we obtain the global bound stated in the theorem.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u-\mathcal{I}_h u||_{m,\Omega} \leq ch^{2-m}|u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C ⁰ elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u-\mathcal{I}_h u||_{m,\Omega} \leq ch^{2-m}|u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

Proof:

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{I,\Omega}$	$0 \leq m \leq t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u-\mathcal{I}_h u||_{m,\Omega} \leq ch^{2-m}|u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C ⁰ elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K} = [0,1] \times [0,1]$ satisfies

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u - \mathcal{I}_h u||_{m,\Omega} \le ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$ u - I_h u _{m,h} \le ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$	
C ⁰ elements		
linear triangle	t = 2	
quadratic triangle	$2 \le t \le 3$	
cubic triangle	$2 \le t \le 4$	
bilinear quadrilateral	t = 2	
serendipity element	$2 \le t \le 3$	
9 node quadrilateral	$2 \le t \le 3$	
C1 elements		
Argyris element	$3 \le t \le 6$	
Bell element	$3 \le t \le 5$	
Hsieh-Clough-Tocher element	$3 \le t \le 4$	$(m \le 2)$
reduc. Hsieh-Clough-Tocher element	t = 3	$(m \le 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K} = [0,1] \times [0,1]$ satisfies

$$||u-\mathcal{I}_h u||_{2,\mathcal{K}} \leq c|u|_{2,\mathcal{K}}, \quad \forall u \in H^2(\mathcal{K}).$$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u - \mathcal{I}_h u||_{m,\Omega} \le ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \leq m \leq t$	
C ⁰ elements		
linear triangle	t = 2	
quadratic triangle	$2 \le t \le 3$	
cubic triangle	$2 \le t \le 4$	
bilinear quadrilateral	t = 2	
serendipity element	$2 \le t \le 3$	
9 node quadrilateral	$2 \le t \le 3$	
C1 elements		
Argyris element	$3 \le t \le 6$	
Bell element	$3 \le t \le 5$	
Hsieh-Clough-Tocher element	$3 \le t \le 4$	$(m \le 2)$
reduc. Hsieh-Clough-Tocher element	t = 3	$(m \le 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K} = [0,1] \times [0,1]$ satisfies

$$||u-\mathcal{I}_h u||_{2,\mathcal{K}} \leq c|u|_{2,\mathcal{K}}, \quad \forall u \in H^2(\mathcal{K}).$$

By embedding theorem $H^2(\mathcal{K}) \subset C^0(\mathcal{K})$ so values of u at the four corners are bounded by $c||u||_{2,\mathcal{K}}$.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u-\mathcal{I}_h u||_{m,\Omega} \leq ch^{2-m}|u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$ u - I_h u _{m,h} \le ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C ⁰ elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K} = [0,1] \times [0,1]$ satisfies

$$||u-\mathcal{I}_h u||_{2,\mathcal{K}} \leq c|u|_{2,\mathcal{K}}, \quad \forall u \in H^2(\mathcal{K}).$$

By embedding theorem $H^2(\mathcal{K}) \subset C^0(\mathcal{K})$ so values of u at the four corners are bounded by $c||u||_{2,\mathcal{K}}$.

The interpolation operator \mathcal{I}_h depends linearly on these four vertices,

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u - \mathcal{I}_h u||_{m,\Omega} \le ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$	
C ⁰ elements		
linear triangle	t = 2	
quadratic triangle	$2 \le t \le 3$	
cubic triangle	$2 \le t \le 4$	
bilinear quadrilateral	t = 2	
serendipity element	$2 \le t \le 3$	
9 node quadrilateral	$2 \le t \le 3$	
C1 elements		
Argyris element	$3 \le t \le 6$	
Bell element	$3 \le t \le 5$	
Hsieh-Clough-Tocher element	$3 \le t \le 4$	$(m \le 2)$
reduc. Hsieh-Clough-Tocher element	t = 3	$(m \le 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K} = [0,1] \times [0,1]$ satisfies

$$||u - \mathcal{I}_h u||_{2,\mathcal{K}} \leq c|u|_{2,\mathcal{K}}, \quad \forall u \in H^2(\mathcal{K}).$$

By embedding theorem $H^2(\mathcal{K}) \subset C^0(\mathcal{K})$ so values of u at the four corners are bounded by $c||u||_{2,\mathcal{K}}$.

The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathsf{x} \in \mathcal{K}} |u(\mathsf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}$$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u - \mathcal{I}_h u||_{m,\Omega} \le ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$	
C ⁰ elements		
linear triangle	t = 2	
quadratic triangle	$2 \le t \le 3$	
cubic triangle	$2 \le t \le 4$	
bilinear quadrilateral	t = 2	
serendipity element	$2 \le t \le 3$	
9 node quadrilateral	$2 \le t \le 3$	
C1 elements		
Argyris element	$3 \le t \le 6$	
Bell element	$3 \le t \le 5$	
Hsieh-Clough-Tocher element	$3 \le t \le 4$	$(m \le 2)$
reduc. Hsieh-Clough-Tocher element	t = 3	$(m \le 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K} = [0,1] \times [0,1]$ satisfies

$$||u - \mathcal{I}_h u||_{2,\mathcal{K}} \leq c|u|_{2,\mathcal{K}}, \quad \forall u \in H^2(\mathcal{K}).$$

By embedding theorem $H^2(\mathcal{K}) \subset C^0(\mathcal{K})$ so values of u at the four corners are bounded by $c||u||_{2,\mathcal{K}}$.

The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathsf{x} \in \mathcal{K}} |u(\mathsf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}$$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u-\mathcal{I}_h u||_{m,\Omega} \leq ch^{2-m}|u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C ⁰ elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices,

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u-\mathcal{I}_h u||_{m,\Omega} \leq ch^{2-m}|u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C ⁰ elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathsf{x}\in\mathcal{K}} |u(\mathsf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u-\mathcal{I}_h u||_{m,\Omega} \leq ch^{2-m}|u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathsf{x}\in\mathcal{K}} |u(\mathsf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

This yields

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u-\mathcal{I}_h u||_{m,\Omega} \leq ch^{2-m}|u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C ⁰ elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 \ (m \le 2)$

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathsf{x} \in \mathcal{K}} |u(\mathsf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

This yields

$$||u - \mathcal{I}_h u||_2 \le ||u||_2 + ||\mathcal{I}_h u||_2 \le (c_2 + 1)||u||_2.$$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u-\mathcal{I}_h u||_{m,\Omega} \leq ch^{2-m}|u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C ⁰ elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathsf{x} \in \mathcal{K}} |u(\mathsf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

This yields

$$||u - \mathcal{I}_h u||_2 \le ||u||_2 + ||\mathcal{I}_h u||_2 \le (c_2 + 1)||u||_2.$$

When u is linear polynomial then $\mathcal{I}_h u = u$ and $u - \mathcal{I}_h u = 0$.

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u-\mathcal{I}_h u||_{m,\Omega} \leq ch^{2-m}|u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathsf{x} \in \mathcal{K}} |u(\mathsf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

This yields

$$||u - \mathcal{I}_h u||_2 \le ||u||_2 + ||\mathcal{I}_h u||_2 \le (c_2 + 1)||u||_2.$$

When u is linear polynomial then $\mathcal{I}_h u = u$ and $u - \mathcal{I}_h u = 0$.

By Bramble-Hilbert II we have the result.

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u-\mathcal{I}_h u||_{m,\Omega} \leq ch^{2-m}|u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C ⁰ elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 \ (m \le 2)$

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathsf{x} \in \mathcal{K}} |u(\mathsf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

This yields

$$||u - \mathcal{I}_h u||_2 \le ||u||_2 + ||\mathcal{I}_h u||_2 \le (c_2 + 1)||u||_2.$$

When u is linear polynomial then $\mathcal{I}_h u = u$ and $u - \mathcal{I}_h u = 0$.

By Bramble-Hilbert II we have the result. ■

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega,\kappa)$ such that

$$||u-\mathcal{I}_h u||_{m,\Omega} \leq ch^{2-m}|u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C ⁰ elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 \ (m \le 2)$

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathsf{x} \in \mathcal{K}} |u(\mathsf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

This yields

$$||u - \mathcal{I}_h u||_2 \le ||u||_2 + ||\mathcal{I}_h u||_2 \le (c_2 + 1)||u||_2.$$

When u is linear polynomial then $\mathcal{I}_h u = u$ and $u - \mathcal{I}_h u = 0$.

By Bramble-Hilbert II we have the result. ■

Remark: For Serendipity Elements a similar proof technique can be used to obtain $\|u - \mathcal{I}_h u\|_{m,\Omega} < ch^{t-m} |u|_{t,\Omega}, \ \forall u \in H^t(\Omega), \ m = 0, 1, \ t = 2, 3.$

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t}\|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t}\|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t}\|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t}\|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|v|_{t,T} \leq c|v|_{m,T} \quad \forall v \in \mathcal{P},$$

where $c = c(\mathcal{P})$.

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t}\|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|v|_{t,T} \leq c|v|_{m,T} \quad \forall v \in \mathcal{P},$$

where $c = c(\mathcal{P})$. We scale by h the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t}\|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|v|_{t,T} \leq c|v|_{m,T} \quad \forall v \in \mathcal{P},$$

where $c = c(\mathcal{P})$. We scale by h the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

We use the equivalence of the norms $\|\cdot\|_{t,T}$ and $\|\cdot\|_{m,T}$ on the finite dimensional space $\mathcal{Q}=\mathcal{P}\bigoplus\mathcal{P}_{m-1}$.

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t}\|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|v|_{t,T} \leq c|v|_{m,T} \quad \forall v \in \mathcal{P},$$

where $c = c(\mathcal{P})$. We scale by h the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

We use the equivalence of the norms $\|\cdot\|_{t,T}$ and $\|\cdot\|_{m,T}$ on the finite dimensional space $\mathcal{Q} = \mathcal{P} \bigoplus \mathcal{P}_{m-1}$. Let $I_h v \in \mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t}\|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|v|_{t,T} \leq c|v|_{m,T} \quad \forall v \in \mathcal{P},$$

where $c = c(\mathcal{P})$. We scale by h the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

We use the equivalence of the norms $\|\cdot\|_{t,T}$ and $\|\cdot\|_{m,T}$ on the finite dimensional space $\mathcal{Q}=\mathcal{P}\bigoplus\mathcal{P}_{m-1}$. Let $I_hv\in\mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points. Since t>m, we have $|I_hv|_t=0$.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t}\|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|v|_{t,T} \leq c|v|_{m,T} \quad \forall v \in \mathcal{P},$$

where $c = c(\mathcal{P})$. We scale by h the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

We use the equivalence of the norms $\|\cdot\|_{t,T}$ and $\|\cdot\|_{m,T}$ on the finite dimensional space $\mathcal{Q}=\mathcal{P}\bigoplus\mathcal{P}_{m-1}$. Let $I_hv\in\mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points. Since t>m, we have $|I_hv|_t=0$. By the Bramble-Hilbert lemma

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t}\|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|v|_{t,T} \leq c|v|_{m,T} \quad \forall v \in \mathcal{P},$$

where $c = c(\mathcal{P})$. We scale by h the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

We use the equivalence of the norms $\|\cdot\|_{t,T}$ and $\|\cdot\|_{m,T}$ on the finite dimensional space $\mathcal{Q}=\mathcal{P}\bigoplus\mathcal{P}_{m-1}$. Let $I_hv\in\mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points. Since t>m, we have $|I_hv|_t=0$. By the Bramble-Hilbert lemma

$$|v|_t = |v - I_h v|_t \le ||v - I_h v||_t \le c||v - I_h v||_m \le c' |v|_m.$$

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t}\|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|v|_{t,T} \leq c|v|_{m,T} \quad \forall v \in \mathcal{P},$$

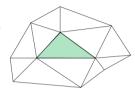
where $c = c(\mathcal{P})$. We scale by h the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

We use the equivalence of the norms $\|\cdot\|_{t,T}$ and $\|\cdot\|_{m,T}$ on the finite dimensional space $\mathcal{Q}=\mathcal{P}\bigoplus\mathcal{P}_{m-1}$. Let $I_hv\in\mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points. Since t>m, we have $|I_hv|_t=0$. By the Bramble-Hilbert lemma

$$|v|_t = |v - I_h v|_t \le ||v - I_h v||_t \le c ||v - I_h v||_m \le c' |v|_m.$$

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 .



The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω .

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node x_j , let

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node x_j , let

$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T, t \in \mathcal{T}'} T', \text{ (support)}, \quad \bar{\omega}_T := \bigcup \{\omega_j \mid_{t \in \mathcal{T}} \{\omega_j \mid_{t \in \mathcal{T}'} \{\omega_j \mid_{t \in \mathcal{T}'$$

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node x_i , let

The be a shape-regular triangulation of
$$\Omega$$
. Given node x_j , let $\omega_j := \omega_{x_j} := \bigcup_{T' \mid x_j \in T'} T'$, (support), $\bar{\omega}_T := \bigcup \{\omega_j \mid , \ x_j \in T\}$ (neighborhood)

By shape regularity the area satisfies estimate $\mu(\bar{\omega}_T) \leq c(\kappa)h_T^2$ and number triangles belonging to $\bar{\omega}_T$ is bounded.

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node x_j , let

$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \mid T' \in T'} T', \text{ (support)}, \quad \bar{\omega}_T := \bigcup \{\omega_j \mid, \; \mathsf{x}_j \in T\} \text{ (neighborhood)}$$

By shape regularity the area satisfies estimate $\mu(\bar{\omega}_T) \leq c(\kappa) h_T^2$ and number triangles belonging to $\bar{\omega}_T$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_h: H^1(\Omega) \to \mathcal{M}_0^1$ so that

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node x_j , let

$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \mid T' \in T'} T', \text{ (support)}, \quad \bar{\omega}_T := \bigcup \{\omega_j \mid, \ \mathsf{x}_j \in T\} \text{ (neighborhood)}$$

By shape regularity the area satisfies estimate $\mu(\bar{\omega}_T) \leq c(\kappa) h_T^2$ and number triangles belonging to $\bar{\omega}_T$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_h:H^1(\Omega) o\mathcal{M}^1_0$ so that

$$\|v-\mathcal{I}_hv\|_{m,T} \ \leq \ ch_T^{1-m}\|v\|_{1,\bar{\omega}_T} \ \forall v \in H^1(\Omega), m=0,1,T \in \mathcal{T}_h$$

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node x_j , let

$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \mid T \in T'} T', \text{ (support)}, \quad \bar{\omega}_{\mathcal{T}} := \bigcup \{\omega_j \mid, \ \mathsf{x}_j \in T\} \text{ (neighborhood)}$$

By shape regularity the area satisfies estimate $\mu(\bar{\omega}_T) \leq c(\kappa) h_T^2$ and number triangles belonging to $\bar{\omega}_T$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_h:H^1(\Omega) o\mathcal{M}^1_0$ so that

$$||v - \mathcal{I}_h v||_{m,T} \leq ch_T^{1-m} ||v||_{1,\bar{\omega}_T} \ \forall v \in H^1(\Omega), m = 0, 1, T \in \mathcal{T}_h$$
$$||v - \mathcal{I}_h v||_{0,e} \leq ch_T^{1/2} ||v||_{1,\bar{\omega}_T} \ \forall v \in H^1(\Omega), e \in \partial T, T \in \mathcal{T}_h.$$

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node x_i , let

$$\mathcal{T}_h$$
 be a shape-regular triangulation of Ω . Given node x_j , let $\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \mid \mathsf{x}_j \in T'} T'$, (support), $\bar{\omega}_{\mathcal{T}} := \bigcup \{\omega_j \mid, \; \mathsf{x}_j \in T\}$ (neighborhood)

By shape regularity the area satisfies estimate $\mu(\bar{\omega}_T) \leq c(\kappa)h_T^2$ and number triangles belonging to $\bar{\omega}_T$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_h: H^1(\Omega) \to \mathcal{M}_0^1$ so that

$$\begin{split} \|v-\mathcal{I}_hv\|_{m,\mathcal{T}} & \leq ch_{\mathcal{T}}^{1-m}\|v\|_{1,\bar{\omega}_{\mathcal{T}}} \ \forall v \in H^1(\Omega), m=0,1, \mathcal{T} \in \mathcal{T}_h \\ \|v-\mathcal{I}_hv\|_{0,e} & \leq ch_{\mathcal{T}}^{1/2}\|v\|_{1,\bar{\omega}_{\mathcal{T}}} \ \forall v \in H^1(\Omega), e \in \partial \mathcal{T}, \mathcal{T} \in \mathcal{T}_h. \end{split}$$

How do we construct such an operator \mathcal{I}_h in practice?

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node x_i , let

$$\mathcal{T}_h$$
 be a shape-regular triangulation of Ω . Given node x_j , let $\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \mid \mathsf{x}_j \in T'} T'$, (support), $\bar{\omega}_{\mathcal{T}} := \bigcup \{\omega_j \mid, \; \mathsf{x}_j \in T\}$ (neighborhood)

By shape regularity the area satisfies estimate $\mu(\bar{\omega}_T) \leq c(\kappa)h_T^2$ and number triangles belonging to $\bar{\omega}_T$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_h: H^1(\Omega) \to \mathcal{M}_0^1$ so that

$$\begin{split} \|v-\mathcal{I}_hv\|_{m,\mathcal{T}} & \leq ch_{\mathcal{T}}^{1-m}\|v\|_{1,\bar{\omega}_{\mathcal{T}}} \ \forall v \in H^1(\Omega), m=0,1, \mathcal{T} \in \mathcal{T}_h \\ \|v-\mathcal{I}_hv\|_{0,e} & \leq ch_{\mathcal{T}}^{1/2}\|v\|_{1,\bar{\omega}_{\mathcal{T}}} \ \forall v \in H^1(\Omega), e \in \partial \mathcal{T}, \mathcal{T} \in \mathcal{T}_h. \end{split}$$

How do we construct such an operator \mathcal{I}_h in practice?

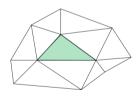
Construction of interpolant:



Construction of interpolant:

$$\omega_j := \omega_{\mathsf{x}_j} := igcup_{\mathsf{T}' \mid \mathsf{x}_j \in \mathsf{T}'} \mathsf{T}', \ (\mathsf{support}),$$

$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T \in \mathcal{T}'} \mathcal{T}', \text{ (support)}, \qquad \quad \bar{\omega}_{\mathcal{T}} := \bigcup \{\omega_j \mid, \, \mathsf{x}_j \in \mathcal{T}\} \text{ (neighborhood)}.$$



Construction of interpolant:

$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \mid \mathsf{x}_j \in T'} T', \text{ (support)}, \qquad \quad \bar{\omega}_{\mathcal{T}} := \bigcup \{\omega_j \mid, \, \mathsf{x}_j \in T\} \text{ (neighborhood)}.$$

For a given nodal point x_i let

$$ar{Q}_j v = \left\{ egin{array}{ll} 0 & ext{if } x_j \in \Gamma_D \ Q_j v & ext{otherwise.} \end{array}
ight., \qquad Q_j : L_2(\omega_j)
ightarrow \mathcal{P}_0.$$

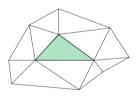
Construction of interpolant:

$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \mid \mathsf{x}_j \in T'} T', \text{ (support)}, \qquad \quad \bar{\omega}_{\mathcal{T}} := \bigcup \{\omega_j \mid, \; \mathsf{x}_j \in T\} \text{ (neighborhood)}.$$

For a given nodal point x_i let

$$ar{Q}_j v = \left\{ egin{array}{ll} 0 & ext{if } x_j \in \Gamma_D \ Q_j v & ext{otherwise.} \end{array}
ight., \qquad Q_j : L_2(\omega_j)
ightarrow \mathcal{P}_0.$$

The Q_i is the L_2 -projection onto constant functions.



Construction of interpolant:

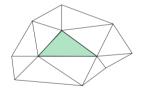
$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \ | \ \mathsf{x}_j \in T'} T', \ \mathsf{(support)}, \qquad \quad \bar{\omega}_T := \bigcup \{\omega_j \ |, \ \mathsf{x}_j \in T\} \ \ \mathsf{(neighborhood)}.$$

For a given nodal point x_i let

$$ar{Q}_j v = \left\{ egin{array}{ll} 0 & ext{if } x_j \in \Gamma_D \ Q_j v & ext{otherwise.} \end{array}
ight., \qquad Q_j : L_2(\omega_j)
ightarrow \mathcal{P}_0.$$

The Q_j is the L_2 -projection onto constant functions.

The $\Gamma_D \subset \partial \Omega$ is part with Dirichlet boundary conditions.



Construction of interpolant:

$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \ | \ \mathsf{x}_j \in T'} T', \ \mathsf{(support)}, \qquad \quad \bar{\omega}_T := \bigcup \{\omega_j \ |, \ \mathsf{x}_j \in T\} \ \ \mathsf{(neighborhood)}.$$

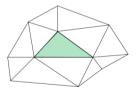
For a given nodal point x_i let

$$ar{Q}_j v = \left\{ egin{array}{ll} 0 & ext{if } x_j \in \Gamma_D \ Q_j v & ext{otherwise.} \end{array}
ight., \qquad Q_j : L_2(\omega_j)
ightarrow \mathcal{P}_0.$$

The Q_j is the L_2 -projection onto constant functions. The $\Gamma_D \subset \partial \Omega$ is part with Dirichlet boundary conditions.

Clément's Interpolation:

$$\mathcal{I}_h v := \sum_j (ar{Q}_j v) v_j \in \mathcal{M}^1_0, \ \ v \in H^1(\Omega).$$



Construction of interpolant:

$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \ | \ \mathsf{x}_j \in T'} T', \ \mathsf{(support)}, \qquad \quad \bar{\omega}_T := \bigcup \{\omega_j \ |, \ \mathsf{x}_j \in T\} \ \ \mathsf{(neighborhood)}.$$

For a given nodal point x_j let

$$ar{Q}_j v = \left\{ egin{array}{ll} 0 & ext{if } x_j \in \Gamma_D \ Q_j v & ext{otherwise.} \end{array}
ight., \qquad Q_j : L_2(\omega_j)
ightarrow \mathcal{P}_0.$$

The Q_j is the L_2 -projection onto constant functions.

The $\Gamma_D \subset \partial \Omega$ is part with Dirichlet boundary conditions.

$$\mathcal{I}_h v := \sum_j (ar{Q}_j v) v_j \in \mathcal{M}^1_0, \ \ v \in H^1(\Omega).$$

The cardinal shape functions v_j form a partition of unity for elements (one on node j, zero at other nodes).

Construction of interpolant:

$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \ | \ \mathsf{x}_j \in T'} T', \ \mathsf{(support)}, \qquad \quad \bar{\omega}_T := \bigcup \{\omega_j \ |, \ \mathsf{x}_j \in T\} \ \ \mathsf{(neighborhood)}.$$

For a given nodal point x_i let

$$ar{Q}_j v = \left\{ egin{array}{ll} 0 & ext{if } x_j \in \Gamma_D \ Q_j v & ext{otherwise.} \end{array}
ight., \qquad Q_j : L_2(\omega_j)
ightarrow \mathcal{P}_0.$$

The Q_j is the L_2 -projection onto constant functions.

The $\Gamma_D \subset \partial \Omega$ is part with Dirichlet boundary conditions.

Clément's Interpolation:

$$\mathcal{I}_h v := \sum_j (ar{Q}_j v) v_j \in \mathcal{M}^1_0, \;\; v \in H^1(\Omega).$$

The cardinal shape functions v_i form a partition of unity for elements (one on node j, zero at other nodes).

Significance: Allows for a notion of interpolation of non-smooth functions, $v \in H^1(\Omega)$.

Construction of interpolant:

$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \mid \mathsf{x}_j \in T'} T', \text{ (support)}, \qquad \quad \bar{\omega}_T := \bigcup \{\omega_j \mid, \; \mathsf{x}_j \in T\} \text{ (neighborhood)}.$$

For a given nodal point x_i let

$$ar{Q}_j v = \left\{ egin{array}{ll} 0 & ext{if } x_j \in \Gamma_D \ Q_j v & ext{otherwise.} \end{array}
ight., \qquad Q_j : L_2(\omega_j)
ightarrow \mathcal{P}_0.$$

The Q_j is the L_2 -projection onto constant functions.

The $\Gamma_D \subset \partial \Omega$ is part with Dirichlet boundary conditions.

Clément's Interpolation:

$$\mathcal{I}_h v := \sum_j (ar{Q}_j v) v_j \in \mathcal{M}^1_0, \;\; v \in H^1(\Omega).$$

The cardinal shape functions v_j form a partition of unity for elements (one on node j, zero at other nodes).

Significance: Allows for a notion of interpolation of non-smooth functions, $v \in H^1(\Omega)$. The \mathcal{I}_h has well-controlled error bounds (see above).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Construction of interpolant:

$$\omega_j := \omega_{\mathsf{x}_j} := \bigcup_{T' \mid \mathsf{x}_j \in T'} T', \text{ (support)}, \qquad \quad \bar{\omega}_T := \bigcup \{\omega_j \mid, \; \mathsf{x}_j \in T\} \text{ (neighborhood)}.$$

For a given nodal point x_i let

$$ar{Q}_j v = \left\{ egin{array}{ll} 0 & ext{if } x_j \in \Gamma_D \ Q_j v & ext{otherwise.} \end{array}
ight., \qquad Q_j : L_2(\omega_j)
ightarrow \mathcal{P}_0.$$

The Q_j is the L_2 -projection onto constant functions.

The $\Gamma_D \subset \partial \Omega$ is part with Dirichlet boundary conditions.

Clément's Interpolation:

$$\mathcal{I}_h v := \sum_j (ar{Q}_j v) v_j \in \mathcal{M}^1_0, \;\; v \in H^1(\Omega).$$

The cardinal shape functions v_j form a partition of unity for elements (one on node j, zero at other nodes).

Significance: Allows for a notion of interpolation of non-smooth functions, $v \in H^1(\Omega)$. The \mathcal{I}_h has well-controlled error bounds (see above).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/