# Finite Element Spaces 

Paul J. Atzberger<br>206D: Finite Element Methods<br>University of California Santa Barbara

## Finite Elements

## Definition

Consider

## Finite Elements

## Definition

Consider
i An element domain is a set $K \subseteq \mathbb{R}^{n}$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.

## Finite Elements

## Definition

Consider
i An element domain is a set $K \subseteq \mathbb{R}^{n}$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.
ii The shape functions $\mathcal{P}$ consist of a finite-dimensional space of functions on $K$.

## Finite Elements

## Definition

Consider
i An element domain is a set $K \subseteq \mathbb{R}^{n}$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.
ii The shape functions $\mathcal{P}$ consist of a finite-dimensional space of functions on $K$.
iii The nodal variables $\mathcal{N}=\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ are any basis of the dual space $\mathcal{P}^{\prime}$

## Finite Elements

## Definition

Consider
i An element domain is a set $K \subseteq \mathbb{R}^{n}$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.
ii The shape functions $\mathcal{P}$ consist of a finite-dimensional space of functions on $K$.
iii The nodal variables $\mathcal{N}=\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ are any basis of the dual space $\mathcal{P}^{\prime}$
A finite element is the triple $(K, \mathcal{P}, \mathcal{N})$.

## Finite Elements

## Definition

Consider
i An element domain is a set $K \subseteq \mathbb{R}^{n}$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.
ii The shape functions $\mathcal{P}$ consist of a finite-dimensional space of functions on $K$.
iii The nodal variables $\mathcal{N}=\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ are any basis of the dual space $\mathcal{P}^{\prime}$
A finite element is the triple $(K, \mathcal{P}, \mathcal{N})$.
This definition of FEM is due to Ciarlet. Sometimes also denoted by $(\mathcal{T}, \Pi, \Sigma)$.

## Finite Elements

## Definition

Consider
i An element domain is a set $K \subseteq \mathbb{R}^{n}$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.
ii The shape functions $\mathcal{P}$ consist of a finite-dimensional space of functions on $K$.
iii The nodal variables $\mathcal{N}=\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ are any basis of the dual space $\mathcal{P}^{\prime}$
A finite element is the triple $(K, \mathcal{P}, \mathcal{N})$.
This definition of FEM is due to Ciarlet. Sometimes also denoted by $(\mathcal{T}, \Pi, \Sigma)$.

## Definition

For a finite element $(K, \mathcal{P}, \mathcal{N})$, the nodal basis $\left\{\phi_{i}\right\}_{i=1}^{k}$ of $\mathcal{P}$ is the collection of functions for which $N_{i}\left(\phi_{j}\right)=\delta_{i j}$.

## Finite Elements

## Definition

Consider
i An element domain is a set $K \subseteq \mathbb{R}^{n}$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.
ii The shape functions $\mathcal{P}$ consist of a finite-dimensional space of functions on $K$.
iii The nodal variables $\mathcal{N}=\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ are any basis of the dual space $\mathcal{P}^{\prime}$
A finite element is the triple $(K, \mathcal{P}, \mathcal{N})$.
This definition of FEM is due to Ciarlet. Sometimes also denoted by $(\mathcal{T}, \Pi, \Sigma)$.

## Definition

For a finite element $(K, \mathcal{P}, \mathcal{N})$, the nodal basis $\left\{\phi_{i}\right\}_{i=1}^{k}$ of $\mathcal{P}$ is the collection of functions for which $N_{i}\left(\phi_{j}\right)=\delta_{i j}$.
Example: Consider the finite element with $K=[0,1]$ and $\mathcal{P}$ with linear polynomial basis with $\mathcal{N}=\left\{N_{1}, N_{2}\right\}$, where $N_{1}(v)=v(0)$ and $N_{2}(v)=v(1)$.

## Finite Elements

## Definition

Consider
i An element domain is a set $K \subseteq \mathbb{R}^{n}$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.
ii The shape functions $\mathcal{P}$ consist of a finite-dimensional space of functions on $K$.
iii The nodal variables $\mathcal{N}=\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ are any basis of the dual space $\mathcal{P}^{\prime}$
A finite element is the triple $(K, \mathcal{P}, \mathcal{N})$.
This definition of FEM is due to Ciarlet. Sometimes also denoted by $(\mathcal{T}, \Pi, \Sigma)$.

## Definition

For a finite element $(K, \mathcal{P}, \mathcal{N})$, the nodal basis $\left\{\phi_{i}\right\}_{i=1}^{k}$ of $\mathcal{P}$ is the collection of functions for which $N_{i}\left(\phi_{j}\right)=\delta_{i j}$.
Example: Consider the finite element with $K=[0,1]$ and $\mathcal{P}$ with linear polynomial basis with $\mathcal{N}=\left\{N_{1}, N_{2}\right\}$, where $N_{1}(v)=v(0)$ and $N_{2}(v)=v(1)$. Then $\phi_{1}(x)=1-x$ and $\phi_{2}(x)=x$.

## Finite Elements

## Definition

The nodal variables $\mathcal{N}$ are said to determine members of $\mathcal{P}$ if for $\psi \in \mathcal{P}$ we have $N(\psi)=0 \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

## Finite Elements

## Definition

The nodal variables $\mathcal{N}$ are said to determine members of $\mathcal{P}$ if for $\psi \in \mathcal{P}$ we have $N(\psi)=0 \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

This means that knowledge of $a_{i}=N_{i}(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$.

## Finite Elements

## Definition

The nodal variables $\mathcal{N}$ are said to determine members of $\mathcal{P}$ if for $\psi \in \mathcal{P}$ we have $N(\psi)=0 \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

This means that knowledge of $a_{i}=N_{i}(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$. This follows since for $b_{i}=N_{i}\left(\psi_{1}\right)$ and $c_{i}=N_{i}\left(\psi_{2}\right)$, if $b_{i}=c_{i}, \forall i$, then $\psi_{1} \equiv \psi_{2}$.

## Finite Elements

## Definition

The nodal variables $\mathcal{N}$ are said to determine members of $\mathcal{P}$ if for $\psi \in \mathcal{P}$ we have $N(\psi)=0 \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

This means that knowledge of $a_{i}=N_{i}(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$. This follows since for $b_{i}=N_{i}\left(\psi_{1}\right)$ and $c_{i}=N_{i}\left(\psi_{2}\right)$, if $b_{i}=c_{i}, \forall i$, then $\psi_{1} \equiv \psi_{2}$.

## Lemma

The following statements are equivalent

## Finite Elements

## Definition

The nodal variables $\mathcal{N}$ are said to determine members of $\mathcal{P}$ if for $\psi \in \mathcal{P}$ we have $N(\psi)=0 \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

This means that knowledge of $a_{i}=N_{i}(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$. This follows since for $b_{i}=N_{i}\left(\psi_{1}\right)$ and $c_{i}=N_{i}\left(\psi_{2}\right)$, if $b_{i}=c_{i}, \forall i$, then $\psi_{1} \equiv \psi_{2}$.

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.

## Finite Elements

## Definition

The nodal variables $\mathcal{N}$ are said to determine members of $\mathcal{P}$ if for $\psi \in \mathcal{P}$ we have $N(\psi)=0 \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

This means that knowledge of $a_{i}=N_{i}(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$. This follows since for $b_{i}=N_{i}\left(\psi_{1}\right)$ and $c_{i}=N_{i}\left(\psi_{2}\right)$, if $b_{i}=c_{i}, \forall i$, then $\psi_{1} \equiv \psi_{2}$.

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.

## Finite Elements

## Definition

The nodal variables $\mathcal{N}$ are said to determine members of $\mathcal{P}$ if for $\psi \in \mathcal{P}$ we have $N(\psi)=0 \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

This means that knowledge of $a_{i}=N_{i}(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$. This follows since for $b_{i}=N_{i}\left(\psi_{1}\right)$ and $c_{i}=N_{i}\left(\psi_{2}\right)$, if $b_{i}=c_{i}, \forall i$, then $\psi_{1} \equiv \psi_{2}$.

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.

## Proof:

## Finite Elements

## Definition

The nodal variables $\mathcal{N}$ are said to determine members of $\mathcal{P}$ if for $\psi \in \mathcal{P}$ we have $N(\psi)=0 \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

This means that knowledge of $a_{i}=N_{i}(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$. This follows since for $b_{i}=N_{i}\left(\psi_{1}\right)$ and $c_{i}=N_{i}\left(\psi_{2}\right)$, if $b_{i}=c_{i}, \forall i$, then $\psi_{1} \equiv \psi_{2}$.

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Suppose $\left\{\phi_{i}\right\}$ are a basis for $\mathcal{P}$.

## Finite Elements

## Definition

The nodal variables $\mathcal{N}$ are said to determine members of $\mathcal{P}$ if for $\psi \in \mathcal{P}$ we have $N(\psi)=0 \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

This means that knowledge of $a_{i}=N_{i}(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$. This follows since for $b_{i}=N_{i}\left(\psi_{1}\right)$ and $c_{i}=N_{i}\left(\psi_{2}\right)$, if $b_{i}=c_{i}, \forall i$, then $\psi_{1} \equiv \psi_{2}$.

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Suppose $\left\{\phi_{i}\right\}$ are a basis for $\mathcal{P}$. The $\left\{N_{i}\right\}$ are basis for $\mathcal{P}^{\prime}$ iff for any $L \in \mathcal{P}^{\prime}$ we have

$$
L=\alpha_{1} N_{1}+\ldots+\alpha_{d} N_{d}
$$

## Finite Elements

## Definition

The nodal variables $\mathcal{N}$ are said to determine members of $\mathcal{P}$ if for $\psi \in \mathcal{P}$ we have $N(\psi)=0 \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

This means that knowledge of $a_{i}=N_{i}(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$. This follows since for $b_{i}=N_{i}\left(\psi_{1}\right)$ and $c_{i}=N_{i}\left(\psi_{2}\right)$, if $b_{i}=c_{i}, \forall i$, then $\psi_{1} \equiv \psi_{2}$.

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Suppose $\left\{\phi_{i}\right\}$ are a basis for $\mathcal{P}$. The $\left\{N_{i}\right\}$ are basis for $\mathcal{P}^{\prime}$ iff for any $L \in \mathcal{P}^{\prime}$ we have

$$
L=\alpha_{1} N_{1}+\ldots+\alpha_{d} N_{d}
$$

and $L \equiv 0$ implies $\alpha_{i}=0$.

## Finite Elements

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.

## Proof:

## Finite Elements

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Finding the $\alpha_{i}$ of $L=\alpha_{1} N_{1}+\ldots+\alpha_{d} N_{d}$ is equivalent to finding solution to

$$
L\left(\phi_{i}\right)=\alpha_{1} N_{1}\left(\phi_{i}\right)+\ldots+\alpha_{d} N_{d}\left(\phi_{i}\right) .
$$

## Finite Elements

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Finding the $\alpha_{i}$ of $L=\alpha_{1} N_{1}+\ldots+\alpha_{d} N_{d}$ is equivalent to finding solution to

$$
L\left(\phi_{i}\right)=\alpha_{1} N_{1}\left(\phi_{i}\right)+\ldots+\alpha_{d} N_{d}\left(\phi_{i}\right) .
$$

Let matrix $B_{i j}=N_{j}\left(\phi_{i}\right)$, then above corresponds to solving $B \boldsymbol{\alpha}=\mathbf{y}$, where $y_{i}=L\left(\phi_{i}\right)$,

## Finite Elements

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Finding the $\alpha_{i}$ of $L=\alpha_{1} N_{1}+\ldots+\alpha_{d} N_{d}$ is equivalent to finding solution to

$$
L\left(\phi_{i}\right)=\alpha_{1} N_{1}\left(\phi_{i}\right)+\ldots+\alpha_{d} N_{d}\left(\phi_{i}\right) .
$$

Let matrix $B_{i j}=N_{j}\left(\phi_{i}\right)$, then above corresponds to solving $B \boldsymbol{\alpha}=\mathbf{y}$, where $y_{i}=L\left(\phi_{i}\right)$, so (ii) $\Longleftrightarrow B$ is invertible.

## Finite Elements

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Finding the $\alpha_{i}$ of $L=\alpha_{1} N_{1}+\ldots+\alpha_{d} N_{d}$ is equivalent to finding solution to

$$
L\left(\phi_{i}\right)=\alpha_{1} N_{1}\left(\phi_{i}\right)+\ldots+\alpha_{d} N_{d}\left(\phi_{i}\right) .
$$

Let matrix $B_{i j}=N_{j}\left(\phi_{i}\right)$, then above corresponds to solving $B \boldsymbol{\alpha}=\mathbf{y}$, where $y_{i}=L\left(\phi_{i}\right)$, so (ii) $\Longleftrightarrow B$ is invertible.

Consider $v \in \mathcal{P}$ with $v=\sum_{j} \beta_{j} \phi_{j}$.

## Finite Elements

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Finding the $\alpha_{i}$ of $L=\alpha_{1} N_{1}+\ldots+\alpha_{d} N_{d}$ is equivalent to finding solution to

$$
L\left(\phi_{i}\right)=\alpha_{1} N_{1}\left(\phi_{i}\right)+\ldots+\alpha_{d} N_{d}\left(\phi_{i}\right) .
$$

Let matrix $B_{i j}=N_{j}\left(\phi_{i}\right)$, then above corresponds to solving $B \boldsymbol{\alpha}=\mathbf{y}$, where $y_{i}=L\left(\phi_{i}\right)$, so (ii) $\Longleftrightarrow B$ is invertible.

Consider $v \in \mathcal{P}$ with $v=\sum_{j} \beta_{j} \phi_{j}$. If $N_{i}(v)=0$, then $\sum_{j} \beta_{j} N_{j}\left(\phi_{i}\right)=0$.

## Finite Elements

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Finding the $\alpha_{i}$ of $L=\alpha_{1} N_{1}+\ldots+\alpha_{d} N_{d}$ is equivalent to finding solution to

$$
L\left(\phi_{i}\right)=\alpha_{1} N_{1}\left(\phi_{i}\right)+\ldots+\alpha_{d} N_{d}\left(\phi_{i}\right) .
$$

Let matrix $B_{i j}=N_{j}\left(\phi_{i}\right)$, then above corresponds to solving $B \boldsymbol{\alpha}=\mathbf{y}$, where $y_{i}=L\left(\phi_{i}\right)$, so (ii) $\Longleftrightarrow B$ is invertible.

Consider $v \in \mathcal{P}$ with $v=\sum_{j} \beta_{j} \phi_{j}$. If $N_{i}(v)=0$, then $\sum_{j} \beta_{j} N_{j}\left(\phi_{i}\right)=0$. The $v \equiv 0$ if $\beta_{j}=0$.

## Finite Elements

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Finding the $\alpha_{i}$ of $L=\alpha_{1} N_{1}+\ldots+\alpha_{d} N_{d}$ is equivalent to finding solution to

$$
L\left(\phi_{i}\right)=\alpha_{1} N_{1}\left(\phi_{i}\right)+\ldots+\alpha_{d} N_{d}\left(\phi_{i}\right) .
$$

Let matrix $B_{i j}=N_{j}\left(\phi_{i}\right)$, then above corresponds to solving $B \boldsymbol{\alpha}=\mathbf{y}$, where $y_{i}=L\left(\phi_{i}\right)$, so (ii) $\Longleftrightarrow B$ is invertible.

Consider $v \in \mathcal{P}$ with $v=\sum_{j} \beta_{j} \phi_{j}$. If $N_{i}(v)=0$, then $\sum_{j} \beta_{j} N_{j}\left(\phi_{i}\right)=0$. The $v \equiv 0$ if $\beta_{j}=0$. Let matrix $C_{i j}=N_{i}\left(\phi_{j}\right), x_{j}=\beta_{j}$, then above corresponds to $C \mathbf{x}=0 \Rightarrow \mathbf{x}=0$,

## Finite Elements

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Finding the $\alpha_{i}$ of $L=\alpha_{1} N_{1}+\ldots+\alpha_{d} N_{d}$ is equivalent to finding solution to

$$
L\left(\phi_{i}\right)=\alpha_{1} N_{1}\left(\phi_{i}\right)+\ldots+\alpha_{d} N_{d}\left(\phi_{i}\right) .
$$

Let matrix $B_{i j}=N_{j}\left(\phi_{i}\right)$, then above corresponds to solving $B \boldsymbol{\alpha}=\mathbf{y}$, where $y_{i}=L\left(\phi_{i}\right)$, so (ii) $\Longleftrightarrow B$ is invertible.

Consider $v \in \mathcal{P}$ with $v=\sum_{j} \beta_{j} \phi_{j}$. If $N_{i}(v)=0$, then $\sum_{j} \beta_{j} N_{j}\left(\phi_{i}\right)=0$. The $v \equiv 0$ if $\beta_{j}=0$. Let matrix $C_{i j}=N_{i}\left(\phi_{j}\right), x_{j}=\beta_{j}$, then above corresponds to $C \mathbf{x}=0 \Rightarrow \mathbf{x}=0$, so
(i) $\Longleftrightarrow C$ is invertible.

## Finite Elements

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Finding the $\alpha_{i}$ of $L=\alpha_{1} N_{1}+\ldots+\alpha_{d} N_{d}$ is equivalent to finding solution to

$$
L\left(\phi_{i}\right)=\alpha_{1} N_{1}\left(\phi_{i}\right)+\ldots+\alpha_{d} N_{d}\left(\phi_{i}\right) .
$$

Let matrix $B_{i j}=N_{j}\left(\phi_{i}\right)$, then above corresponds to solving $B \boldsymbol{\alpha}=\mathbf{y}$, where $y_{i}=L\left(\phi_{i}\right)$, so (ii) $\Longleftrightarrow B$ is invertible.

Consider $v \in \mathcal{P}$ with $v=\sum_{j} \beta_{j} \phi_{j}$. If $N_{i}(v)=0$, then $\sum_{j} \beta_{j} N_{j}\left(\phi_{i}\right)=0$. The $v \equiv 0$ if $\beta_{j}=0$. Let matrix $C_{i j}=N_{i}\left(\phi_{j}\right), x_{j}=\beta_{j}$, then above corresponds to $C \mathbf{x}=0 \Rightarrow \mathbf{x}=0$, so
(i) $\Longleftrightarrow C$ is invertible.

The $C=B^{T}$ so it follows (i) $\Longleftrightarrow$ (ii).

## Finite Elements

## Lemma

The following statements are equivalent
i For $v \in \mathcal{P}$ with $N_{i}(v)=0, \forall i$, then $v \equiv 0$.
ii The collection $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ is a basis for $\mathcal{P}^{\prime}$.
Proof: Finding the $\alpha_{i}$ of $L=\alpha_{1} N_{1}+\ldots+\alpha_{d} N_{d}$ is equivalent to finding solution to

$$
L\left(\phi_{i}\right)=\alpha_{1} N_{1}\left(\phi_{i}\right)+\ldots+\alpha_{d} N_{d}\left(\phi_{i}\right) .
$$

Let matrix $B_{i j}=N_{j}\left(\phi_{i}\right)$, then above corresponds to solving $B \boldsymbol{\alpha}=\mathbf{y}$, where $y_{i}=L\left(\phi_{i}\right)$, so (ii) $\Longleftrightarrow B$ is invertible.

Consider $v \in \mathcal{P}$ with $v=\sum_{j} \beta_{j} \phi_{j}$. If $N_{i}(v)=0$, then $\sum_{j} \beta_{j} N_{j}\left(\phi_{i}\right)=0$. The $v \equiv 0$ if $\beta_{j}=0$. Let matrix $C_{i j}=N_{i}\left(\phi_{j}\right), x_{j}=\beta_{j}$, then above corresponds to $C \mathbf{x}=0 \Rightarrow \mathbf{x}=0$, so
(i) $\Longleftrightarrow C$ is invertible.

The $C=B^{T}$ so it follows (i) $\Longleftrightarrow$ (ii).

## Finite Elements

## Definition

Conforming Finite Elements are those that generate a space $\mathcal{S}$ with $\mathcal{S} \subset \mathcal{V}$. The generated space $\mathcal{S}$ is a subspace of the $\mathcal{V}$ used for the weak formulation.

## Finite Elements

## Definition

Conforming Finite Elements are those that generate a space $\mathcal{S}$ with $\mathcal{S} \subset \mathcal{V}$. The generated space $\mathcal{S}$ is a subspace of the $\mathcal{V}$ used for the weak formulation.

## Definition

We call admissible a partition of $\Omega$ into
$\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{M}\right\}$ into triangular or quadrilateral elements if

## Finite Elements

## Definition

Conforming Finite Elements are those that generate a space $\mathcal{S}$ with $\mathcal{S} \subset \mathcal{V}$. The generated space $\mathcal{S}$ is a subspace of the $\mathcal{V}$ used for the weak formulation.

## Definition

We call admissible a partition of $\Omega$ into
$\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{M}\right\}$ into triangular or quadrilateral elements if
i The $T_{i}$ form a partition $\bar{\Omega}=\bigcup_{i=1}^{M} T_{i}$.

## Finite Elements

## Definition

Conforming Finite Elements are those that generate a space $\mathcal{S}$ with $\mathcal{S} \subset \mathcal{V}$. The generated space $\mathcal{S}$ is a subspace of the $\mathcal{V}$ used for the weak formulation.

## Definition

We call admissible a partition of $\Omega$ into
$\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{M}\right\}$ into triangular or quadrilateral elements if
i The $T_{i}$ form a partition $\bar{\Omega}=\bigcup_{i=1}^{M} T_{i}$.
ii For $i \neq j$ the $T_{i} \cap T_{j}$ only intersect along an edge or vertex.

## Finite Elements

## Definition

Conforming Finite Elements are those that generate a space $\mathcal{S}$ with $\mathcal{S} \subset \mathcal{V}$. The generated space $\mathcal{S}$ is a subspace of the $\mathcal{V}$ used for the weak formulation.

## Definition

We call admissible a partition of $\Omega$ into
$\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{M}\right\}$ into triangular or quadrilateral elements if
i The $T_{i}$ form a partition $\bar{\Omega}=\bigcup_{i=1}^{M} T_{i}$.
ii For $i \neq j$ the $T_{i} \cap T_{j}$ only intersect along an edge or vertex.

admissible triangulation

inadmissible (hanging nodes)

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Proof:

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

Proof: We show this for the case $k=1$, and for simplicity $\mathbb{R}^{2}$.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

Proof: We show this for the case $k=1$, and for simplicity $\mathbb{R}^{2}$. The result follows for larger derivatives by applying the result to the $(k-1)$-order derivative functions.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

Proof: We show this for the case $k=1$, and for simplicity $\mathbb{R}^{2}$. The result follows for larger derivatives by applying the result to the ( $k-1$ )-order derivative functions. $(\Leftarrow)$

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

Proof: We show this for the case $k=1$, and for simplicity $\mathbb{R}^{2}$. The result follows for larger derivatives by applying the result to the ( $k-1$ )-order derivative functions. ( $\Leftarrow$ ) For $v \in C^{0}(\Omega)$, let $\mathcal{T}=\left\{T_{j}\right\}_{j=1}^{M}$ be the partition corresponding to the piecewise infinite differentiability property of $v$.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

Proof: We show this for the case $k=1$, and for simplicity $\mathbb{R}^{2}$. The result follows for larger derivatives by applying the result to the ( $k-1$ )-order derivative functions. ( $\Leftarrow$ ) For $v \in C^{0}(\Omega)$, let $\mathcal{T}=\left\{T_{j}\right\}_{j=1}^{M}$ be the partition corresponding to the piecewise infinite differentiability property of $v$. For $i=1,2$, let $w_{i}=\partial_{i} v(x)$ in interior $x \in \stackrel{\circ}{T}_{j}$ for each $j$.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

Proof: We show this for the case $k=1$, and for simplicity $\mathbb{R}^{2}$. The result follows for larger derivatives by applying the result to the ( $k-1$ )-order derivative functions. ( $\Leftarrow$ ) For $v \in C^{0}(\Omega)$, let $\mathcal{T}=\left\{T_{j}\right\}_{j=1}^{M}$ be the partition corresponding to the piecewise infinite differentiability property of $v$. For $i=1,2$, let $w_{i}=\partial_{i} v(x)$ in interior $x \in \bar{T}_{j}$ for each $j$.
We claim the $w_{i}$ is a weak derivative of $v$, since $\forall \phi \in C_{0}^{\infty}(\Omega)$

$$
\left(w_{i}, \phi\right)_{0}=\int_{\Omega} w_{i} \phi d \mathbf{x}=\sum_{j} \int_{T_{j}} \phi \partial_{i} v d \mathbf{x}=\sum_{j}\left(\int_{\partial T_{j}} \phi v d \mathbf{x}-\int_{T_{j}} v \partial_{i} \phi d \mathbf{x}\right)=-\left(v, \partial_{i} \phi\right)_{0}
$$

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\overline{\bar{\Omega}})$.

Proof: We show this for the case $k=1$, and for simplicity $\mathbb{R}^{2}$. The result follows for larger derivatives by applying the result to the ( $k-1$ )-order derivative functions. ( $\Leftarrow$ ) For $v \in C^{0}(\Omega)$, let $\mathcal{T}=\left\{T_{j}\right\}_{j=1}^{M}$ be the partition corresponding to the piecewise infinite differentiability property of $v$. For $i=1,2$, let $w_{i}=\partial_{i} v(x)$ in interior $x \in \bar{T}_{j}$ for each $j$.
We claim the $w_{i}$ is a weak derivative of $v$, since $\forall \phi \in C_{0}^{\infty}(\Omega)$

$$
\left(w_{i}, \phi\right)_{0}=\int_{\Omega} w_{i} \phi d \mathbf{x}=\sum_{j} \int_{T_{j}} \phi \partial_{i} v d \mathbf{x}=\sum_{j}\left(\int_{\partial T_{j}} \phi v d \mathbf{x}-\int_{T_{j}} v \partial_{i} \phi d \mathbf{x}\right)=-\left(v, \partial_{i} \phi\right)_{0}
$$

The boundary term vanishes since $\phi(x)=0$ for $x \in \partial \Omega$ and internal boundary terms cancel.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\overline{\bar{\Omega}})$.

Proof: We show this for the case $k=1$, and for simplicity $\mathbb{R}^{2}$. The result follows for larger derivatives by applying the result to the ( $k-1$ )-order derivative functions. ( $\Leftarrow$ ) For $v \in C^{0}(\Omega)$, let $\mathcal{T}=\left\{T_{j}\right\}_{j=1}^{M}$ be the partition corresponding to the piecewise infinite differentiability property of $v$. For $i=1,2$, let $w_{i}=\partial_{i} v(x)$ in interior $x \in \bar{T}_{j}$ for each $j$.
We claim the $w_{i}$ is a weak derivative of $v$, since $\forall \phi \in C_{0}^{\infty}(\Omega)$

$$
\left(w_{i}, \phi\right)_{0}=\int_{\Omega} w_{i} \phi d \mathbf{x}=\sum_{j} \int_{T_{j}} \phi \partial_{i} v d \mathbf{x}=\sum_{j}\left(\int_{\partial T_{j}} \phi v d \mathbf{x}-\int_{T_{j}} v \partial_{i} \phi d \mathbf{x}\right)=-\left(v, \partial_{i} \phi\right)_{0}
$$

The boundary term vanishes since $\phi(x)=0$ for $x \in \partial \Omega$ and internal boundary terms cancel.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Proof:

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Proof:

$(\Rightarrow)$

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Proof:

$(\Rightarrow)$ Let $v \in H^{1}(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the $y$-axis as interval [ $y_{1}-\delta, y_{2}+\delta$ ], $\delta>0$.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Proof:

$(\Rightarrow)$ Let $v \in H^{1}(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the $y$-axis as interval [ $y_{1}-\delta, y_{2}+\delta$ ], $\delta>0$.
Consider the auxiliary function

$$
\Psi(x):=\int_{y_{1}}^{y_{2}} v(x, y) d y .
$$

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Proof:

$(\Rightarrow)$ Let $v \in H^{1}(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the $y$-axis as interval [ $y_{1}-\delta, y_{2}+\delta$ ], $\delta>0$.
Consider the auxiliary function

$$
\Psi(x):=\int_{y_{1}}^{y_{2}} v(x, y) d y .
$$

If $v \in C^{\infty}(\Omega)$, it would follow from Cauchy-Swartz that

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Proof:

$(\Rightarrow)$ Let $v \in H^{1}(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the $y$-axis as interval [ $y_{1}-\delta, y_{2}+\delta$ ], $\delta>0$.
Consider the auxiliary function

$$
\Psi(x):=\int_{y_{1}}^{y_{2}} v(x, y) d y .
$$

If $v \in C^{\infty}(\Omega)$, it would follow from Cauchy-Swartz that

$$
\left|\Psi\left(x_{2}\right)-\Psi\left(x_{1}\right)\right|^{2}=\left|\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \partial_{1} v d x d y\right|^{2} \leq\left|\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} 1^{2} d x d y\right| \cdot|v|_{1, \Omega}^{2} \leq\left|x_{2}-x_{1}\right| \cdot\left|y_{2}-y_{1}\right| \cdot|v|_{1, \Omega}^{2} .
$$

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Proof:

$(\Rightarrow)$ Let $v \in H^{1}(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the $y$-axis as interval [ $y_{1}-\delta, y_{2}+\delta$ ], $\delta>0$.
Consider the auxiliary function

$$
\Psi(x):=\int_{y_{1}}^{y_{2}} v(x, y) d y .
$$

If $v \in C^{\infty}(\Omega)$, it would follow from Cauchy-Swartz that

$$
\left|\Psi\left(x_{2}\right)-\Psi\left(x_{1}\right)\right|^{2}=\left|\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \partial_{1} v d x d y\right|^{2} \leq\left|\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} 1^{2} d x d y\right| \cdot|v|_{1, \Omega}^{2} \leq\left|x_{2}-x_{1}\right| \cdot\left|y_{2}-y_{1}\right| \cdot|v|_{1, \Omega}^{2} .
$$

Since $C^{\infty} \bigcap H^{1}(\Omega)$ is dense the above bound also holds for general $v \in H^{1}(\Omega)$.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Proof:

$(\Rightarrow)$ Let $v \in H^{1}(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the $y$-axis as interval $\left[y_{1}-\delta, y_{2}+\delta\right], \delta>0$.
Consider the auxiliary function

$$
\Psi(x):=\int_{y_{1}}^{y_{2}} v(x, y) d y .
$$

If $v \in C^{\infty}(\Omega)$, it would follow from Cauchy-Swartz that

$$
\left|\Psi\left(x_{2}\right)-\Psi\left(x_{1}\right)\right|^{2}=\left|\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \partial_{1} v d x d y\right|^{2} \leq\left|\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} 1^{2} d x d y\right| \cdot|v|_{1, \Omega}^{2} \leq\left|x_{2}-x_{1}\right| \cdot\left|y_{2}-y_{1}\right| \cdot|v|_{1, \Omega}^{2} .
$$

Since $C^{\infty} \bigcap H^{1}(\Omega)$ is dense the above bound also holds for general $v \in H^{1}(\Omega)$.
This means the function $\Psi(x)$ is continuous, in particular at $x=0$. Since $y_{1}, y_{2}$ can be chosen arbitrary with $y_{1}<y_{2}, \Psi$ can only be continuous if $v$ is continuous at the edge, $\Rightarrow v \in C^{0}$.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Proof:

$(\Rightarrow)$ Let $v \in H^{1}(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the $y$-axis as interval $\left[y_{1}-\delta, y_{2}+\delta\right], \delta>0$.
Consider the auxiliary function

$$
\Psi(x):=\int_{y_{1}}^{y_{2}} v(x, y) d y .
$$

If $v \in C^{\infty}(\Omega)$, it would follow from Cauchy-Swartz that

$$
\left|\Psi\left(x_{2}\right)-\Psi\left(x_{1}\right)\right|^{2}=\left|\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \partial_{1} v d x d y\right|^{2} \leq\left|\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} 1^{2} d x d y\right| \cdot|v|_{1, \Omega}^{2} \leq\left|x_{2}-x_{1}\right| \cdot\left|y_{2}-y_{1}\right| \cdot|v|_{1, \Omega}^{2}
$$

Since $C^{\infty} \bigcap H^{1}(\Omega)$ is dense the above bound also holds for general $v \in H^{1}(\Omega)$.
This means the function $\Psi(x)$ is continuous, in particular at $x=0$. Since $y_{1}, y_{2}$ can be chosen arbitrary with $y_{1}<y_{2}, \Psi$ can only be continuous if $v$ is continuous at the edge, $\Rightarrow v \in C^{0}$.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

Significance: This shows that provided our elements are smooth piecewise and have derivatives $C^{k-1}$ across edges, we obtain conforming elements for $\mathcal{V}=H^{k}(\Omega)$.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

Significance: This shows that provided our elements are smooth piecewise and have derivatives $C^{k-1}$ across edges, we obtain conforming elements for $\mathcal{V}=H^{k}(\Omega)$.

Example: While hat-functions are only $C^{0}$, they provide elements conforming to $\mathcal{V}=H^{1}(\Omega)$. Allows for approximating in weak form second-order PDEs.

## Finite Elements

## Theorem

For a bounded domain $\Omega$, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v: \bar{\Omega} \rightarrow \mathbb{R}$ belongs to $H^{k}(\Omega)$ if and only if $v \in C^{k-1}(\bar{\Omega})$.

Significance: This shows that provided our elements are smooth piecewise and have derivatives $C^{k-1}$ across edges, we obtain conforming elements for $\mathcal{V}=H^{k}(\Omega)$.

Example: While hat-functions are only $C^{0}$, they provide elements conforming to $\mathcal{V}=H^{1}(\Omega)$. Allows for approximating in weak form second-order PDEs.

Example: Elements with $C^{1}$-regularity across edges are sufficient to conform to $\mathcal{V}=H^{2}(\Omega)$. Allows for approximating in weak form fourth-order PDEs.

## Practical Methods: A Few Considerations

## Definitions

## Practical Methods: A Few Considerations

## Definitions

Two elements are congruent if they can be rigidly transformed into each other (allowing reflections).

## Practical Methods: A Few Considerations

## Definitions

Two elements are congruent if they can be rigidly transformed into each other (allowing reflections). A partition by elements is called regular if all the elements are congruent (same type and shape).

## Practical Methods: A Few Considerations

## Definitions

Two elements are congruent if they can be rigidly transformed into each other (allowing reflections). A partition by elements is called regular if all the elements are congruent (same type and shape). The space of polynomials of degree $t$ with $\mathbf{x} \in \mathbb{R}^{n}$ is denoted by

## Practical Methods: A Few Considerations

## Definitions

Two elements are congruent if they can be rigidly transformed into each other (allowing reflections). A partition by elements is called regular if all the elements are congruent (same type and shape). The space of polynomials of degree $t$ with $\mathbf{x} \in \mathbb{R}^{n}$ is denoted by

$$
\mathcal{P}_{t}=\left\{u \mid u(\mathbf{x})=\sum_{|\alpha| \leq t} c_{\alpha} \mathbf{x}^{\alpha}\right\}
$$

## Practical Methods: A Few Considerations

## Definitions

Two elements are congruent if they can be rigidly transformed into each other (allowing reflections). A partition by elements is called regular if all the elements are congruent (same type and shape). The space of polynomials of degree $t$ with $\mathbf{x} \in \mathbb{R}^{n}$ is denoted by

$$
\mathcal{P}_{t}=\left\{u \mid u(\mathbf{x})=\sum_{|\alpha| \leq t} c_{\alpha} \mathbf{x}^{\alpha}\right\}
$$

Elements with complete polynomials refers to shape spaces using all polynomials with degree $\leq t$.

## Practical Methods: A Few Considerations

## Definitions

Two elements are congruent if they can be rigidly transformed into each other (allowing reflections). A partition by elements is called regular if all the elements are congruent (same type and shape). The space of polynomials of degree $t$ with $\mathbf{x} \in \mathbb{R}^{n}$ is denoted by

$$
\mathcal{P}_{t}=\left\{u \mid u(\mathbf{x})=\sum_{|\alpha| \leq t} c_{\alpha} \mathbf{x}^{\alpha}\right\}
$$

Elements with complete polynomials refers to shape spaces using all polynomials with degree $\leq t$.
Conforming finite elements are those that generate function spaces contained in the Sobolev space of the weak formulation.

## Practical Methods: A Few Considerations

## Definitions

Two elements are congruent if they can be rigidly transformed into each other (allowing reflections). A partition by elements is called regular if all the elements are congruent (same type and shape). The space of polynomials of degree $t$ with $\mathbf{x} \in \mathbb{R}^{n}$ is denoted by

$$
\mathcal{P}_{t}=\left\{u \mid u(\mathbf{x})=\sum_{|\alpha| \leq t} c_{\alpha} \mathbf{x}^{\alpha}\right\}
$$

Elements with complete polynomials refers to shape spaces using all polynomials with degree $\leq t$.
Conforming finite elements are those that generate function spaces contained in the Sobolev space of the weak formulation.

Other shape spaces, partition types, and non-conforming finite elements are also possible.

## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted.


Linear triangular element $\mathcal{M}_{0}^{1}$
$u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

Cubic triangular element $\mathcal{M}_{0}^{3}$
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial $p$ of degree $\leq t$ satisfying interpolation


Linear triangular element $\mathcal{M}_{0}^{1}$
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$
$u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$
Cubic triangular element $\mathcal{M}_{0}^{3}$
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial $p$ of degree $\leq t$ satisfying interpolation

$$
p\left(z_{i}\right)=f\left(z_{i}\right), \quad 1 \leq i \leq s .
$$



Linear triangular element $\mathcal{M}_{0}^{1}$
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10
\end{aligned}
$$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial $p$ of degree $\leq t$ satisfying interpolation

$$
p\left(z_{i}\right)=f\left(z_{i}\right), \quad 1 \leq i \leq s .
$$

## Proof:



Linear triangular element $\mathcal{M}_{0}^{1}$
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

> Cubic triangular element $\mathcal{M}_{0}^{3}$
> $u \in C^{0}(\Omega)$
> $\Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial $p$ of degree $\leq t$ satisfying interpolation

$$
p\left(z_{i}\right)=f\left(z_{i}\right), \quad 1 \leq i \leq s .
$$

Proof: We proceed by induction.


Linear triangular element $\mathcal{M}_{0}^{1}$
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10
\end{aligned}
$$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial $p$ of degree $\leq t$ satisfying interpolation

$$
p\left(z_{i}\right)=f\left(z_{i}\right), \quad 1 \leq i \leq s .
$$

Proof: We proceed by induction. Clearly, in the case of $t=0$ when $s=1$ we have interpolation by the constant polynomials.


Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10
\end{aligned}
$$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial $p$ of degree $\leq t$ satisfying interpolation

$$
p\left(z_{i}\right)=f\left(z_{i}\right), \quad 1 \leq i \leq s .
$$

Proof: We proceed by induction. Clearly, in the case of $t=0$ when $s=1$ we have interpolation by the constant polynomials. Now if the interpolation for $t-1$ holds, we prove it holds for $t$.


Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10
\end{aligned}
$$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial $p$ of degree $\leq t$ satisfying interpolation

$$
p\left(z_{i}\right)=f\left(z_{i}\right), \quad 1 \leq i \leq s .
$$

Proof: We proceed by induction. Clearly, in the case of $t=0$ when $s=1$ we have interpolation by the constant polynomials. Now if the interpolation for $t-1$ holds, we prove it holds for $t$. Let $p_{1}$ be the univariate Lagrange polynomial interpolating the $t+1$ points on the $x$-axis.


Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10
\end{aligned}
$$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial $p$ of degree $\leq t$ satisfying interpolation

$$
p\left(z_{i}\right)=f\left(z_{i}\right), \quad 1 \leq i \leq s .
$$

Proof: We proceed by induction. Clearly, in the case of $t=0$ when $s=1$ we have interpolation by the constant polynomials. Now if the interpolation for $t-1$ holds, we prove it holds for $t$. Let $p_{1}$ be the univariate Lagrange polynomial interpolating the $t+1$ points on the x -axis. Consider the sub-triangle neglecting the points on the $x$-axis.


Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10
\end{aligned}
$$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial $p$ of degree $\leq t$ satisfying interpolation

$$
p\left(z_{i}\right)=f\left(z_{i}\right), \quad 1 \leq i \leq s .
$$

Proof: We proceed by induction. Clearly, in the case of $t=0$ when $s=1$ we have interpolation by the constant polynomials. Now if the interpolation for $t-1$ holds, we prove it holds for $t$. Let $p_{1}$ be the univariate Lagrange polynomial interpolating the $t+1$ points on the x -axis. Consider the sub-triangle neglecting the points on the $x$-axis. Let $p_{2}$ be the interpolating polynomial


Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10
\end{aligned}
$$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial $p$ of degree $\leq t$ satisfying interpolation

$$
p\left(z_{i}\right)=f\left(z_{i}\right), \quad 1 \leq i \leq s .
$$

Proof: We proceed by induction. Clearly, in the case of $t=0$ when $s=1$ we have interpolation by the constant polynomials. Now if the interpolation for $t-1$ holds, we prove it holds for $t$. Let $p_{1}$ be the univariate Lagrange polynomial interpolating the $t+1$ points on the x -axis. Consider the sub-triangle neglecting the points on the $x$-axis. Let $p_{2}$ be the interpolating polynomial for these points with $p_{2}\left(z_{i}\right)=\left(f\left(z_{i}\right)-p_{1}\left(z_{i}\right)\right) / y_{i}, 1 \leq i \leq s-(t+1)$.


Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10
\end{aligned}
$$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial $p$ of degree $\leq t$ satisfying interpolation

$$
p\left(z_{i}\right)=f\left(z_{i}\right), \quad 1 \leq i \leq s .
$$

Proof: We proceed by induction. Clearly, in the case of $t=0$ when $s=1$ we have interpolation by the constant polynomials. Now if the interpolation for $t-1$ holds, we prove it holds for $t$. Let $p_{1}$ be the univariate Lagrange polynomial interpolating the $t+1$ points on the x -axis. Consider the sub-triangle neglecting the points on the $x$-axis. Let $p_{2}$ be the interpolating polynomial for these points with $p_{2}\left(z_{i}\right)=\left(f\left(z_{i}\right)-p_{1}\left(z_{i}\right)\right) / y_{i}, 1 \leq i \leq s-(t+1)$. The polynomial $q(x, y)=p_{1}(x)+y p_{2}(x, y)$ interpolates all points.

Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$


Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\mathrm{ref}}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=10
\end{aligned}
$$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Lemma

Consider triangle $T$ with $z_{1}, z_{2}, \ldots, z_{s}, s=1+2+\cdots(t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial $p$ of degree $\leq t$ satisfying interpolation

$$
p\left(z_{i}\right)=f\left(z_{i}\right), \quad 1 \leq i \leq s .
$$

Proof: We proceed by induction. Clearly, in the case of $t=0$ when $s=1$ we have interpolation by the constant polynomials. Now if the interpolation for $t-1$ holds, we prove it holds for $t$. Let $p_{1}$ be the univariate Lagrange polynomial interpolating the $t+1$ points on the x -axis. Consider the sub-triangle neglecting the points on the $x$-axis. Let $p_{2}$ be the interpolating polynomial for these points with $p_{2}\left(z_{i}\right)=\left(f\left(z_{i}\right)-p_{1}\left(z_{i}\right)\right) / y_{i}, 1 \leq i \leq s-(t+1)$. The polynomial $q(x, y)=p_{1}(x)+y p_{2}(x, y)$ interpolates all points. Uniqueness as exercise (use holds for degree $t-1$ ).

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007

Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

Cubic triangular element $\mathcal{M}_{0}^{3}$
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10$

## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.


- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.


- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Definition

$\mathcal{M}^{k}:=\mathcal{M}_{k}(\mathcal{T}):=\left\{v \in L^{2}(\Omega) ;\left.v\right|_{\mathcal{T}} \in \mathcal{P}_{t}\right.$ for every $\left.T \in \mathcal{T}\right\}$


Linear triangular element $\mathcal{M}_{0}^{1}$
$u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$
Cubic triangular element $\mathcal{M}_{0}^{3}$
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Definition

$$
\begin{aligned}
& \mathcal{M}^{k}:=\mathcal{M}_{k}(\mathcal{T}):=\left\{v \in L^{2}(\Omega) ; v \mid \mathcal{T} \in \mathcal{P}_{t} \text { for every } T \in \mathcal{T}\right\} \\
& \mathcal{M}_{0}^{k}:=\mathcal{M}_{k}(\mathcal{T}) \cap C^{0}(\Omega)=\mathcal{M}^{k} \bigcap H^{1}(\Omega)
\end{aligned}
$$



Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$
Cubic triangular element $\mathcal{M}_{0}^{3}$
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Definition

$$
\begin{aligned}
& \mathcal{M}^{k}:=\mathcal{M}_{k}(\mathcal{T}):=\left\{v \in L^{2}(\Omega) ; v \mid \mathcal{T} \in \mathcal{P}_{t} \text { for every } T \in \mathcal{T}\right\} \\
& \mathcal{M}_{0}^{k}:=\mathcal{M}_{k}(\mathcal{T}) \bigcap C^{0}(\Omega)=\mathcal{M}^{k} \bigcap H^{1}(\Omega) \\
& \mathcal{M}_{0,0}^{k}:=\mathcal{M}^{k} \cap H_{0}^{1}(\Omega) .
\end{aligned}
$$



Linear triangular element $\mathcal{M}_{0}^{1}$
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

> Cubic triangular element $\mathcal{M}_{0}^{3}$
> $u \in C^{0}(\Omega)$
> $\Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Definition

$$
\begin{aligned}
& \mathcal{M}^{k}:=\mathcal{M}_{k}(\mathcal{T}):=\left\{v \in L^{2}(\Omega) ; v \mid \mathcal{T} \in \mathcal{P}_{t} \text { for every } T \in \mathcal{T}\right\} \\
& \mathcal{M}_{0}^{k}:=\mathcal{M}_{k}(\mathcal{T}) \bigcap C^{0}(\Omega)=\mathcal{M}^{k} \bigcap H^{1}(\Omega) \\
& \mathcal{M}_{0,0}^{k}:=\mathcal{M}^{k} \cap H_{0}^{1}(\Omega) .
\end{aligned}
$$

The $\mathcal{M}_{0}^{k}$ provide $C^{0}$ elements $\subset H^{1}$.


Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

> Cubic triangular element $\mathcal{M}_{0}^{3}$
> $u \in C^{0}(\Omega)$
> $\Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Definition

$$
\begin{aligned}
& \mathcal{M}^{k}:=\mathcal{M}_{k}(\mathcal{T}):=\left\{v \in L^{2}(\Omega) ; v \mid \mathcal{T} \in \mathcal{P}_{t} \text { for every } T \in \mathcal{T}\right\} \\
& \mathcal{M}_{0}^{k}:=\mathcal{M}_{k}(\mathcal{T}) \bigcap C^{0}(\Omega)=\mathcal{M}^{k} \bigcap H^{1}(\Omega) \\
& \mathcal{M}_{0,0}^{k}:=\mathcal{M}^{k} \cap H_{0}^{1}(\Omega) .
\end{aligned}
$$

The $\mathcal{M}_{0}^{k}$ provide $C^{0}$ elements $\subset H^{1}$.



Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

> Cubic triangular element $\mathcal{M}_{0}^{3}$
> $u \in C^{0}(\Omega)$
> $\Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Definition

$$
\begin{aligned}
& \mathcal{M}^{k}:=\mathcal{M}_{k}(\mathcal{T}):=\left\{v \in L^{2}(\Omega) ; v \mid \mathcal{T} \in \mathcal{P}_{t} \text { for every } T \in \mathcal{T}\right\} \\
& \mathcal{M}_{0}^{k}:=\mathcal{M}_{k}(\mathcal{T}) \bigcap C^{0}(\Omega)=\mathcal{M}^{k} \bigcap H^{1}(\Omega) \\
& \mathcal{M}_{0,0}^{k}:=\mathcal{M}^{k} \cap H_{0}^{1}(\Omega) .
\end{aligned}
$$

The $\mathcal{M}_{0}^{k}$ provide $C^{0}$ elements $\subset H^{1}$.


Note: Shared common nodes at vertices ensures the continuity.


Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10
\end{aligned}
$$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Definition

$$
\begin{aligned}
& \mathcal{M}^{k}:=\mathcal{M}_{k}(\mathcal{T}):=\left\{v \in L^{2}(\Omega) ; v \mid \mathcal{T} \in \mathcal{P}_{t} \text { for every } T \in \mathcal{T}\right\} \\
& \mathcal{M}_{0}^{k}:=\mathcal{M}_{k}(\mathcal{T}) \bigcap C^{0}(\Omega)=\mathcal{M}^{k} \bigcap H^{1}(\Omega) \\
& \mathcal{M}_{0,0}^{k}:=\mathcal{M}^{k} \cap H_{0}^{1}(\Omega) .
\end{aligned}
$$

The $\mathcal{M}_{0}^{k}$ provide $C^{0}$ elements $\subset H^{1}$.


Note: Shared common nodes at vertices ensures the continuity. $\mathcal{M}_{0}^{k}$ is called the conforming $P_{k}$ element.


Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10
\end{aligned}
$$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Definition

$$
\begin{aligned}
& \mathcal{M}^{k}:=\mathcal{M}_{k}(\mathcal{T}):=\left\{v \in L^{2}(\Omega) ; v \mid \mathcal{T} \in \mathcal{P}_{t} \text { for every } T \in \mathcal{T}\right\} \\
& \mathcal{M}_{0}^{k}:=\mathcal{M}_{k}(\mathcal{T}) \bigcap C^{0}(\Omega)=\mathcal{M}^{k} \bigcap H^{1}(\Omega) \\
& \mathcal{M}_{0,0}^{k}:=\mathcal{M}^{k} \cap H_{0}^{1}(\Omega) .
\end{aligned}
$$

The $\mathcal{M}_{0}^{k}$ provide $C^{0}$ elements $\subset H^{1}$.


Note: Shared common nodes at vertices ensures the continuity. $\mathcal{M}_{0}^{k}$ is called the conforming $P_{k}$ element. $\mathcal{M}_{0}^{1}$ is sometimes called the Courant triangle.

Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10
\end{aligned}
$$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007


## Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements $\mathcal{T}$.

## Definition

$$
\begin{aligned}
& \mathcal{M}^{k}:=\mathcal{M}_{k}(\mathcal{T}):=\left\{v \in L^{2}(\Omega) ; v \mid \mathcal{T} \in \mathcal{P}_{t} \text { for every } T \in \mathcal{T}\right\} \\
& \mathcal{M}_{0}^{k}:=\mathcal{M}_{k}(\mathcal{T}) \bigcap C^{0}(\Omega)=\mathcal{M}^{k} \bigcap H^{1}(\Omega) \\
& \mathcal{M}_{0,0}^{k}:=\mathcal{M}^{k} \cap H_{0}^{1}(\Omega) .
\end{aligned}
$$

The $\mathcal{M}_{0}^{k}$ provide $C^{0}$ elements $\subset H^{1}$.



Linear triangular element $\mathcal{M}_{0}^{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=3$

Quadratic triangular element $\mathcal{M}_{0}^{2}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}}=\mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=6$

$$
\begin{aligned}
& \text { Cubic triangular element } \mathcal{M}_{0}^{3} \\
& u \in C^{0}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=10
\end{aligned}
$$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007

Note: Shared common nodes at vertices ensures the continuity.
$\mathcal{M}_{0}^{k}$ is called the conforming $P_{k}$ element.
$\mathcal{M}_{0}^{1}$ is sometimes called the Courant triangle.
Nodal variables are $N_{j}(u)=u\left(z_{j}\right)$, so also called Lagrange elements.

## Triangular Finite Elements: $C^{1}$ Regularity

## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.


Argyris triangle
$u \in C^{1}(\Omega)$
$\Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21$

Bell triangle
$u \in C^{1}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{5},\left.\quad \partial_{v} u\right|_{\partial T_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=18$

Hsieh-Clough-Tocher element
$u \in C^{1}(\Omega)$
$T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=12$

- Function value prescribed
() Function value and 1st derivative prescribed
(Q) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity. Argyris element:


$$
\begin{aligned}
& \text { Argyris triangle } \\
& u \in C^{1}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21
\end{aligned}
$$



> Bell triangle
> $u \in C^{1}(\Omega)$
> $\Pi_{\text {ref }} \subset \mathcal{P}_{5},\left.\partial_{v} u\right|_{\partial T_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=18$

Hsieh-Clough-Tocher element
$u \in C^{1}(\Omega)$
$T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\mathrm{rcf}}=12$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity. Argyris element:
Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.


- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.


- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices. However, this is only $3 \times 6=18$ DOF.


- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.


- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

## Bell element:



$$
\begin{aligned}
& \text { Argyris triangle } \\
& u \in C^{1}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21
\end{aligned}
$$

Bell triangle
$u \in C^{1}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{5},\left.\partial_{v} u\right|_{\partial T_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=18$

Hsieh-Clough-Tocher element
$u \in C^{1}(\Omega)$
$T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=12$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

## Bell element:

Uses $\tilde{\mathcal{P}}_{5}=\mathcal{P}_{5} \backslash \mathcal{Q}$ which has $\operatorname{dim} \tilde{\mathcal{P}}_{5}=18$.


$$
\begin{aligned}
& \text { Argyris triangle } \\
& u \in C^{1}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21
\end{aligned}
$$

Bell triangle
$u \in C^{1}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{5},\left.\partial_{v} u\right|_{\partial T_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=18$

Hsieh-Clough-Tocher element
$u \in C^{1}(\Omega)$
$T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=12$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

## Bell element:

Uses $\tilde{\mathcal{P}}_{5}=\mathcal{P}_{5} \backslash \mathcal{Q}$ which has $\operatorname{dim} \tilde{\mathcal{P}}_{5}=18$.
$\tilde{\mathcal{P}}_{5}$ restricted to polynomials having normal derivatives along the edges only of degree $4,\left(\partial_{n} p\left(\mathbf{x}_{e}\right) \in \mathcal{P}_{4}\right)$ ).


$$
\begin{aligned}
& \text { Argyris triangle } \\
& u \in C^{1}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21
\end{aligned}
$$

Bell triangle
$u \in C^{1}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{5},\left.\partial_{v} u\right|_{\partial T_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=18$

Hsieh-Clough-Tocher element
$u \in C^{1}(\Omega)$
$T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\mathrm{rcf}}=12$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

## Bell element:

Uses $\tilde{\mathcal{P}}_{5}=\mathcal{P}_{5} \backslash \mathcal{Q}$ which has $\operatorname{dim} \tilde{\mathcal{P}}_{5}=18$.
$\tilde{\mathcal{P}}_{5}$ restricted to polynomials having normal derivatives along the edges only of degree $4,\left(\partial_{n} p\left(\mathbf{x}_{e}\right) \in \mathcal{P}_{4}\right)$ ).
Values given of all derivatives up to order 2 at the vertices.


$$
\begin{aligned}
& \text { Argyris triangle } \\
& u \in C^{1}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21
\end{aligned}
$$

Bell triangle
$u \in C^{1}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{5},\left.\partial_{v} u\right|_{\partial T_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=18$

Hsieh-Clough-Tocher element
$u \in C^{1}(\Omega)$
$T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\mathrm{rcf}}=12$

- Function value prescribed
- Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

## Bell element:

Uses $\tilde{\mathcal{P}}_{5}=\mathcal{P}_{5} \backslash \mathcal{Q}$ which has $\operatorname{dim} \tilde{\mathcal{P}}_{5}=18$.
$\tilde{\mathcal{P}}_{5}$ restricted to polynomials having normal derivatives along the edges only of degree $\left.4,\left(\partial_{n} p\left(\mathbf{x}_{e}\right) \in \mathcal{P}_{4}\right)\right)$.
Values given of all derivatives up to order 2 at the vertices.


$$
\begin{aligned}
& \text { Argyris triangle } \\
& u \in C^{1}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21
\end{aligned}
$$

## Hsieh-Clough-Tocher element

$$
u \in C^{1}(\Omega)
$$

$$
T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\mathrm{rcf}}=12
$$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(Q) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Hsieh-Clough-Tocher element:

## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

## Bell element:

Uses $\tilde{\mathcal{P}}_{5}=\mathcal{P}_{5} \backslash \mathcal{Q}$ which has $\operatorname{dim} \tilde{\mathcal{P}}_{5}=18$.
$\tilde{\mathcal{P}}_{5}$ restricted to polynomials having normal derivatives along the edges only of degree $\left.4,\left(\partial_{n} p\left(\mathbf{x}_{e}\right) \in \mathcal{P}_{4}\right)\right)$.
Values given of all derivatives up to order 2 at the vertices.


$$
\begin{aligned}
& \text { Argyris triangle } \\
& u \in C^{1}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21
\end{aligned}
$$

## Hsieh-Clough-Tocher element

$$
u \in C^{1}(\Omega)
$$

$$
T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\mathrm{rcf}}=12
$$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(Q) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007

Hsieh-Clough-Tocher element: Macroelement approach.

## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

## Bell element:

Uses $\tilde{\mathcal{P}}_{5}=\mathcal{P}_{5} \backslash \mathcal{Q}$ which has $\operatorname{dim} \tilde{\mathcal{P}}_{5}=18$.
$\tilde{\mathcal{P}}_{5}$ restricted to polynomials having normal derivatives along the edges only of degree $4,\left(\partial_{n} p\left(\mathbf{x}_{e}\right) \in \mathcal{P}_{4}\right)$ ).
Values given of all derivatives up to order 2 at the vertices.


> Argyris triangle
> $u \in C^{1}(\Omega)$
> $\Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21$


Bell triangle
$u \in C^{1}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{5},\left.\partial_{\nu} u\right|_{\partial T_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=18$


## Hsieh-Clough-Tocher element

$$
u \in C^{1}(\Omega)
$$

$$
T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\mathrm{rcf}}=12
$$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(Q) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007
Hsieh-Clough-Tocher element: Macroelement approach. Subdivide the triangle into three subtriangles.


## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

## Bell element:

Uses $\tilde{\mathcal{P}}_{5}=\mathcal{P}_{5} \backslash \mathcal{Q}$ which has $\operatorname{dim} \tilde{\mathcal{P}}_{5}=18$.
$\tilde{\mathcal{P}}_{5}$ restricted to polynomials having normal derivatives along the edges only of degree $4,\left(\partial_{n} p\left(\mathbf{x}_{e}\right) \in \mathcal{P}_{4}\right)$ ).
Values given of all derivatives up to order 2 at the vertices.


> Argyris triangle
> $u \in C^{1}(\Omega)$
> $\Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21$


Bell triangle
$u \in C^{1}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{5},\left.\partial_{\nu} u\right|_{\partial T_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=18$


## Hsieh-Clough-Tocher element

$$
u \in C^{1}(\Omega)
$$

$$
T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\mathrm{rcf}}=12
$$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(Q) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007
Hsieh-Clough-Tocher element: Macroelement approach. Subdivide the triangle into three subtriangles.


## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

## Bell element:

Uses $\tilde{\mathcal{P}}_{5}=\mathcal{P}_{5} \backslash \mathcal{Q}$ which has $\operatorname{dim} \tilde{\mathcal{P}}_{5}=18$.
$\tilde{\mathcal{P}}_{5}$ restricted to polynomials having normal derivatives along the edges only of degree $4,\left(\partial_{n} p\left(\mathbf{x}_{e}\right) \in \mathcal{P}_{4}\right)$ ).
Values given of all derivatives up to order 2 at the vertices.


$$
\begin{aligned}
& \text { Argyris triangle } \\
& u \in C^{1}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21
\end{aligned}
$$

Bell triangle
$u \in C^{1}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{5},\left.\partial_{v} u\right|_{\partial T_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=18$

Hsieh-Clough-Tocher element
$u \in C^{1}(\Omega)$
$T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=12$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(Q) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed D. Braess 2007

Hsieh-Clough-Tocher element: Macroelement approach.
Subdivide the triangle into three subtriangles.
Use $\mathcal{S}$ piecewise cubic polynomials on each subtriangle, $\operatorname{dim} \mathcal{S}=12$.

## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

## Bell element:

Uses $\tilde{\mathcal{P}}_{5}=\mathcal{P}_{5} \backslash \mathcal{Q}$ which has $\operatorname{dim} \tilde{\mathcal{P}}_{5}=18$.
$\tilde{\mathcal{P}}_{5}$ restricted to polynomials having normal derivatives along the edges only of degree $4,\left(\partial_{n} p\left(\mathbf{x}_{e}\right) \in \mathcal{P}_{4}\right)$ ).
Values given of all derivatives up to order 2 at the vertices.


$$
\begin{aligned}
& \text { Argyris triangle } \\
& u \in C^{1}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21
\end{aligned}
$$

Bell triangle
$u \in C^{1}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{5},\left.\partial_{\nu} u\right|_{\partial T_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=18$

Hsieh-Clough-Tocher element
$u \in C^{1}(\Omega)$
$T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=12$

- Function value prescribed
- Function value and 1st derivative prescribed
(C) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007

Hsieh-Clough-Tocher element: Macroelement approach.
Subdivide the triangle into three subtriangles.
Use $\mathcal{S}$ piecewise cubic polynomials on each subtriangle, $\operatorname{dim} \mathcal{S}=12$. Values given of function and first derivative at vertices.

## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

## Bell element:

Uses $\tilde{\mathcal{P}}_{5}=\mathcal{P}_{5} \backslash \mathcal{Q}$ which has $\operatorname{dim} \tilde{\mathcal{P}}_{5}=18$.
$\tilde{\mathcal{P}}_{5}$ restricted to polynomials having normal derivatives along the edges only of degree $4,\left(\partial_{n} p\left(\mathbf{x}_{e}\right) \in \mathcal{P}_{4}\right)$ ).
Values given of all derivatives up to order 2 at the vertices.


$$
\begin{aligned}
& \text { Argyris triangle } \\
& u \in C^{1}(\Omega) \\
& \Pi_{\text {ref }}=\mathcal{P}_{5}, \quad \operatorname{dim} \Pi_{\text {ref }}=21
\end{aligned}
$$

Bell triangle
$u \in C^{1}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{5},\left.\partial_{\nu} u\right|_{\partial T_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=18$

Hsieh-Clough-Tocher element
$u \in C^{1}(\Omega)$
$T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\text {ref }}=12$

- Function value prescribed
- Function value and 1st derivative prescribed
(C) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007

Hsieh-Clough-Tocher element: Macroelement approach.
Subdivide the triangle into three subtriangles.
Use $\mathcal{S}$ piecewise cubic polynomials on each subtriangle, $\operatorname{dim} \mathcal{S}=12$.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.

## Triangular Finite Elements: $C^{1}$ Regularity

More challenging to obtain elements with $C^{1}$ regularity.

## Argyris element:

Uses $\mathcal{P}_{5}$ which has $\operatorname{dim} \mathcal{P}_{5}=21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6=18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

## Bell element:

Uses $\tilde{\mathcal{P}}_{5}=\mathcal{P}_{5} \backslash \mathcal{Q}$ which has $\operatorname{dim} \tilde{\mathcal{P}}_{5}=18$.
$\tilde{\mathcal{P}}_{5}$ restricted to polynomials having normal derivatives along the edges only of degree $4,\left(\partial_{n} p\left(\mathbf{x}_{e}\right) \in \mathcal{P}_{4}\right)$ ).
Values given of all derivatives up to order 2 at the vertices.


## Hsieh-Clough-Tocher element

$u \in C^{1}(\Omega)$
$T=\bigcup_{i=1}^{3} K_{i},\left.\quad u\right|_{K_{i}} \in \mathcal{P}_{3}, \quad \operatorname{dim} \Pi_{\mathrm{rcf}}=12$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(Q) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed $\quad$ D. Braess 2007

Hsieh-Clough-Tocher element: Macroelement approach.
Subdivide the triangle into three subtriangles.
Use $\mathcal{S}$ piecewise cubic polynomials on each subtriangle, $\operatorname{dim} \mathcal{S}=12$.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.
Bernstein-Bézier representation of polynomials used to handle derivatives along element boundaries.

## Quadrilateral Finite Elements

## Tensor Product Bases

## Quadrilateral Finite Elements

## Tensor Product Bases <br> A tensor-product basis generated by $\left\{\phi_{k}\right\}_{k=1}^{t}$ for $\mathbf{x} \in \mathbb{R}^{n}$

## Quadrilateral Finite Elements

## Tensor Product Bases

A tensor-product basis generated by $\left\{\phi_{k}\right\}_{k=1}^{t}$ for $\mathbf{x} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \tilde{\mathcal{P}}[\phi]:=\{u(\mathbf{x}) \mid \\
& \left.\quad u\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq j_{1}, \ldots, j_{n} \leq t} c_{\mathbf{j}} \phi_{j_{1}}\left(x_{1}\right) \cdot \phi_{j_{2}}\left(x_{2}\right) \cdots \phi_{j_{n}}\left(x_{n}\right)\right\}
\end{aligned}
$$

## Quadrilateral Finite Elements

## Tensor Product Bases

A tensor-product basis generated by $\left\{\phi_{k}\right\}_{k=1}^{t}$ for $\mathbf{x} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \tilde{\mathcal{P}}[\phi]:=\{u(\mathbf{x}) \mid \\
& \left.\quad u\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq j_{1}, \ldots, j_{n} \leq t} c_{\mathbf{j}} \phi_{j_{1}}\left(x_{1}\right) \cdot \phi_{j_{2}}\left(x_{2}\right) \cdots \phi_{j_{n}}\left(x_{n}\right)\right\}
\end{aligned}
$$

The polynomial tensor-product basis of degree $t$ is

## Quadrilateral Finite Elements

## Tensor Product Bases

A tensor-product basis generated by $\left\{\phi_{k}\right\}_{k=1}^{t}$ for $\mathbf{x} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \tilde{\mathcal{P}}[\phi]:=\{u(\mathbf{x}) \mid \\
& \left.\quad u\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq j_{1}, \ldots, j_{n} \leq t} c_{\mathbf{j}} \phi_{j_{1}}\left(x_{1}\right) \cdot \phi_{j_{2}}\left(x_{2}\right) \cdots \phi_{j_{n}}\left(x_{n}\right)\right\}
\end{aligned}
$$

The polynomial tensor-product basis of degree $t$ is

$$
\mathcal{Q}_{t}:=\left\{u \mid u(\mathbf{x})=\sum_{\max \alpha \leq t} c_{\alpha} \mathbf{x}^{\alpha}\right\}
$$

## Quadrilateral Finite Elements

## Tensor Product Bases

A tensor-product basis generated by $\left\{\phi_{k}\right\}_{k=1}^{t}$ for $\mathbf{x} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \tilde{\mathcal{P}}[\phi]:=\{u(\mathbf{x}) \mid \\
& \left.\quad u\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq j_{1}, \ldots, j_{n} \leq t} c_{\mathbf{j}} \phi_{j_{1}}\left(x_{1}\right) \cdot \phi_{j_{2}}\left(x_{2}\right) \cdots \phi_{j_{n}}\left(x_{n}\right)\right\}
\end{aligned}
$$

The polynomial tensor-product basis of degree $t$ is

$$
\mathcal{Q}_{t}:=\left\{u \mid u(\mathbf{x})=\sum_{\max \alpha \leq t} c_{\alpha} \mathbf{x}^{\alpha}\right\}
$$



Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=4$


$$
\begin{aligned}
& \text { Serendipity element } \\
& u \in C^{0}(\Omega) \\
& \Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8
\end{aligned}
$$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Quadrilateral Finite Elements

## Tensor Product Bases

A tensor-product basis generated by $\left\{\phi_{k}\right\}_{k=1}^{t}$ for $\mathbf{x} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \tilde{\mathcal{P}}[\phi]:=\{u(\mathbf{x}) \mid \\
& \left.\quad u\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq j_{1}, \ldots, j_{n} \leq t} c_{\mathfrak{j}} \phi_{j_{1}}\left(x_{1}\right) \cdot \phi_{j_{2}}\left(x_{2}\right) \cdots \phi_{j_{n}}\left(x_{n}\right)\right\}
\end{aligned}
$$

The polynomial tensor-product basis of degree $t$ is

$$
\mathcal{Q}_{t}:=\left\{u \mid u(\mathbf{x})=\sum_{\max \alpha \leq t} c_{\alpha} \mathbf{x}^{\alpha}\right\}
$$

The space $\mathcal{Q}_{1}$ gives bilinear interpolation of nodal values.

> Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
> $\Pi_{\mathrm{ref}} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=4$


Serendipity element
$u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Quadrilateral Finite Elements

## Tensor Product Bases

A tensor-product basis generated by $\left\{\phi_{k}\right\}_{k=1}^{t}$ for $\mathbf{x} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \tilde{\mathcal{P}}[\phi]:=\{u(\mathbf{x}) \mid \\
& \left.\quad u\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq j_{1}, \ldots, j_{n} \leq t} c_{\mathbf{j}} \phi_{j_{1}}\left(x_{1}\right) \cdot \phi_{j_{2}}\left(x_{2}\right) \cdots \phi_{j_{n}}\left(x_{n}\right)\right\}
\end{aligned}
$$

The polynomial tensor-product basis of degree $t$ is

$$
\mathcal{Q}_{t}:=\left\{u \mid u(\mathbf{x})=\sum_{\max \alpha \leq t} c_{\alpha} \mathbf{x}^{\alpha}\right\}
$$

The space $\mathcal{Q}_{1}$ gives bilinear interpolation of nodal values.
In fact, $\mathcal{Q}_{1}=\left\{u \in C^{0}(\Omega)|v|_{T} \in \mathcal{P}_{2}\right.$, along edges $\left.\left.v\right|_{\partial T} \in \mathcal{P}_{1}\right\}$.

Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=4$


Serendipity element
$u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8$

- Function value prescribed
© Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Quadrilateral Finite Elements

## Tensor Product Bases

A tensor-product basis generated by $\left\{\phi_{k}\right\}_{k=1}^{t}$ for $\mathbf{x} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \tilde{\mathcal{P}}[\phi]:=\{u(\mathbf{x}) \mid \\
& \left.\quad u\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq j_{1}, \ldots, j_{n} \leq t} c_{\mathbf{j}} \phi_{j_{1}}\left(x_{1}\right) \cdot \phi_{j_{2}}\left(x_{2}\right) \cdots \phi_{j_{n}}\left(x_{n}\right)\right\}
\end{aligned}
$$

The polynomial tensor-product basis of degree $t$ is

$$
\mathcal{Q}_{t}:=\left\{u \mid u(\mathbf{x})=\sum_{\max \alpha \leq t} c_{\alpha} \mathbf{x}^{\alpha}\right\}
$$

The space $\mathcal{Q}_{1}$ gives bilinear interpolation of nodal values.
In fact, $\mathcal{Q}_{1}=\left\{u \in C^{0}(\Omega)|v|_{T} \in \mathcal{P}_{2}\right.$, along edges $\left.\left.v\right|_{\partial T} \in \mathcal{P}_{1}\right\}$.

Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=4$


Serendipity element
$u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8$

- Function value prescribed
© Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Quadrilateral Finite Elements



Bilinear quadrilateral element $Q_{1}$
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$

Serendipity element
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\text {ref }}=8$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed
$\perp$ Normal derivative prescribed
D. Braess 2007


## Quadrilateral Finite Elements

## Serendipity Element:



Bilinear quadrilateral element $Q_{1}$
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$

Serendipity element
$u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\text {ref }}=8$

- Function value prescribed
(-) Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed

Normal derivative prescribed
D. Braess 2007

## Quadrilateral Finite Elements

## Serendipity Element:



Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$


Serendipity element
$u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8$

- Function value prescribed
(-) Function value and 1 st derivative prescribed
(D) Function value and 1 st and 2 nd derivatives prescribed

Normal derivative prescribed D. Braess 2007


## Quadrilateral Finite Elements

## Serendipity Element:

Consider $\mathcal{S}_{s d}=\left\{u \in \mathcal{P}_{3}|u|_{\partial T} \in \mathcal{P}_{2}\right\}$, which has $\operatorname{dim} \mathcal{S}_{s d}=8$.


Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$


Serendipity element
$u \in C^{0}(\Omega)$
$\Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8$

- Function value prescribed
(-) Function value and 1 st derivative prescribed
(D) Function value and 1 st and 2 nd derivatives prescribed

Normal derivative prescribed D. Braess 2007


## Quadrilateral Finite Elements

## Serendipity Element:

Consider $\mathcal{S}_{s d}=\left\{u \in \mathcal{P}_{3}|u|_{\partial T} \in \mathcal{P}_{2}\right\}$, which has $\operatorname{dim} \mathcal{S}_{s d}=8$. $p(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y$

$$
\begin{aligned}
& +c_{4}\left(x^{2}-1\right)(y-1)+c_{5}\left(x^{2}-1\right)(y+1) \\
& +c_{6}(x-1)\left(y^{2}-1\right)+c_{7}(x+1)\left(y^{2}-1\right) .
\end{aligned}
$$



Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$


$$
\begin{aligned}
& \text { Serendipity element } \\
& u \in C^{0}(\Omega) \\
& \Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8
\end{aligned}
$$

- Function value prescribed
(-) Function value and 1 st derivative prescribed
(D) Function value and 1 st and 2 nd derivatives prescribed

Normal derivative prescribed
D. Braess 2007


## Quadrilateral Finite Elements

## Serendipity Element:

Consider $\mathcal{S}_{s d}=\left\{u \in \mathcal{P}_{3}|u|_{\partial T} \in \mathcal{P}_{2}\right\}$, which has $\operatorname{dim} \mathcal{S}_{\text {sd }}=8$.
$p(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y$

$$
\begin{aligned}
& +c_{4}\left(x^{2}-1\right)(y-1)+c_{5}\left(x^{2}-1\right)(y+1) \\
& +c_{6}(x-1)\left(y^{2}-1\right)+c_{7}(x+1)\left(y^{2}-1\right)
\end{aligned}
$$

Nodal locations are vertices of rectangle and edge mid-points.


> Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
> $\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$


$$
\begin{aligned}
& \text { Serendipity element } \\
& u \in C^{0}(\Omega) \\
& \Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8
\end{aligned}
$$

- Function value prescribed
- Function value and 1 st derivative prescribed
(D) Function value and 1 st and 2 nd derivatives prescribed

Normal derivative prescribed
D. Braess 2007


## Quadrilateral Finite Elements

## Serendipity Element:

Consider $\mathcal{S}_{s d}=\left\{u \in \mathcal{P}_{3}|u|_{\partial T} \in \mathcal{P}_{2}\right\}$, which has $\operatorname{dim} \mathcal{S}_{\text {sd }}=8$.
$p(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y$

$$
\begin{aligned}
& +c_{4}\left(x^{2}-1\right)(y-1)+c_{5}\left(x^{2}-1\right)(y+1) \\
& +c_{6}(x-1)\left(y^{2}-1\right)+c_{7}(x+1)\left(y^{2}-1\right)
\end{aligned}
$$

Nodal locations are vertices of rectangle and edge mid-points.

## 9-Point Element:



Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$

$$
\begin{aligned}
& \text { Serendipity element } \\
& u \in C^{0}(\Omega) \\
& \Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8
\end{aligned}
$$

- Function value prescribed
(-) Function value and 1 st derivative prescribed
(O) Function value and 1 st and 2 nd derivatives prescribed

Normal derivative prescribed
D. Braess 2007


## Quadrilateral Finite Elements

## Serendipity Element:

Consider $\mathcal{S}_{s d}=\left\{u \in \mathcal{P}_{3}|u|_{\partial T} \in \mathcal{P}_{2}\right\}$, which has $\operatorname{dim} \mathcal{S}_{\text {sd }}=8$.
$p(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y$

$$
\begin{aligned}
& +c_{4}\left(x^{2}-1\right)(y-1)+c_{5}\left(x^{2}-1\right)(y+1) \\
& +c_{6}(x-1)\left(y^{2}-1\right)+c_{7}(x+1)\left(y^{2}-1\right)
\end{aligned}
$$

Nodal locations are vertices of rectangle and edge mid-points.

## 9-Point Element:

Consider $\mathcal{S}_{9}=\mathcal{S}_{\text {sd }} \bigoplus\left\{c_{8}\left(x^{2}-1\right)\left(y^{2}-1\right)\right\}$.


Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$


$$
\begin{aligned}
& \text { Serendipity element } \\
& u \in C^{0}(\Omega) \\
& \Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8
\end{aligned}
$$

- Function value prescribed
- Function value and 1 st derivative prescribed
(D) Function value and 1 st and 2 nd derivatives prescribed

Normal derivative prescribed
D. Braess 2007


## Quadrilateral Finite Elements

## Serendipity Element:

Consider $\mathcal{S}_{s d}=\left\{u \in \mathcal{P}_{3}|u|_{\partial T} \in \mathcal{P}_{2}\right\}$, which has $\operatorname{dim} \mathcal{S}_{\text {sd }}=8$.
$p(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y$

$$
\begin{aligned}
& +c_{4}\left(x^{2}-1\right)(y-1)+c_{5}\left(x^{2}-1\right)(y+1) \\
& +c_{6}(x-1)\left(y^{2}-1\right)+c_{7}(x+1)\left(y^{2}-1\right)
\end{aligned}
$$

Nodal locations are vertices of rectangle and edge mid-points.

## 9-Point Element:

Consider $\mathcal{S}_{9}=\mathcal{S}_{\text {sd }} \bigoplus\left\{c_{8}\left(x^{2}-1\right)\left(y^{2}-1\right)\right\}$.
Nodal locations are vertices of rectangle and edge mid-points.


Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$


$$
\begin{aligned}
& \text { Serendipity element } \\
& u \in C^{0}(\Omega) \\
& \Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8
\end{aligned}
$$

- Function value prescribed
- Function value and lst derivative prescribed
(D) Function value and 1 st and 2 nd derivatives prescribed Normal derivative prescribed
D. Braess 2007



## Quadrilateral Finite Elements

## Serendipity Element:

Consider $\mathcal{S}_{s d}=\left\{u \in \mathcal{P}_{3}|u|_{\partial T} \in \mathcal{P}_{2}\right\}$, which has $\operatorname{dim} \mathcal{S}_{\text {sd }}=8$.
$p(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y$

$$
\begin{aligned}
& +c_{4}\left(x^{2}-1\right)(y-1)+c_{5}\left(x^{2}-1\right)(y+1) \\
& +c_{6}(x-1)\left(y^{2}-1\right)+c_{7}(x+1)\left(y^{2}-1\right)
\end{aligned}
$$

Nodal locations are vertices of rectangle and edge mid-points.

## 9-Point Element:

Consider $\mathcal{S}_{9}=\mathcal{S}_{s d} \bigoplus\left\{c_{8}\left(x^{2}-1\right)\left(y^{2}-1\right)\right\}$.
Nodal locations are vertices of rectangle and edge mid-points.
Add nodal location at the center of the rectangle.


Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$


> Serendipity element $u \in C^{0}(\Omega)$
> $\Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8$

- Function value prescribed
- Function value and lst derivative prescribed
(D) Function value and 1 st and 2 nd derivatives prescribed Normal derivative prescribed
D. Braess 2007



## Quadrilateral Finite Elements

## Serendipity Element:

Consider $\mathcal{S}_{s d}=\left\{u \in \mathcal{P}_{3}|u|_{\partial T} \in \mathcal{P}_{2}\right\}$, which has $\operatorname{dim} \mathcal{S}_{\text {sd }}=8$.
$p(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y$

$$
\begin{aligned}
& +c_{4}\left(x^{2}-1\right)(y-1)+c_{5}\left(x^{2}-1\right)(y+1) \\
& +c_{6}(x-1)\left(y^{2}-1\right)+c_{7}(x+1)\left(y^{2}-1\right)
\end{aligned}
$$

Nodal locations are vertices of rectangle and edge mid-points.

## 9-Point Element:

Consider $\mathcal{S}_{9}=\mathcal{S}_{s d} \bigoplus\left\{c_{8}\left(x^{2}-1\right)\left(y^{2}-1\right)\right\}$.
Nodal locations are vertices of rectangle and edge mid-points.
Add nodal location at the center of the rectangle.
6-Point Element:


Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$

> Serendipity element $u \in C^{0}(\Omega)$
> $\Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8$

- Function value prescribed
- Function value and 1 st derivative prescribed
(D) Function value and 1 st and 2 nd derivatives prescribed

Normal derivative prescribed D. Braess 2007


## Quadrilateral Finite Elements

## Serendipity Element:

Consider $\mathcal{S}_{s d}=\left\{u \in \mathcal{P}_{3}|u|_{\partial T} \in \mathcal{P}_{2}\right\}$, which has $\operatorname{dim} \mathcal{S}_{\text {sd }}=8$.
$p(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y$

$$
\begin{aligned}
& +c_{4}\left(x^{2}-1\right)(y-1)+c_{5}\left(x^{2}-1\right)(y+1) \\
& +c_{6}(x-1)\left(y^{2}-1\right)+c_{7}(x+1)\left(y^{2}-1\right)
\end{aligned}
$$



Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$


> Serendipity element $u \in C^{0}(\Omega)$
> $\Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8$

- Function value prescribed
() Function value and 1st derivative prescribed
(0) Function value and 1st and 2nd derivatives prescribed

Normal derivative prescribed
D. Braess 2007


## Quadrilateral Finite Elements

## Serendipity Element:

Consider $\mathcal{S}_{s d}=\left\{u \in \mathcal{P}_{3}|u|_{\partial T} \in \mathcal{P}_{2}\right\}$, which has $\operatorname{dim} \mathcal{S}_{\text {sd }}=8$.
$p(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y$

$$
\begin{aligned}
& +c_{4}\left(x^{2}-1\right)(y-1)+c_{5}\left(x^{2}-1\right)(y+1) \\
& +c_{6}(x-1)\left(y^{2}-1\right)+c_{7}(x+1)\left(y^{2}-1\right)
\end{aligned}
$$



Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$


> Serendipity element $u \in C^{0}(\Omega)$
> $\Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8$

- Function value prescribed
- Function value and 1 st derivative prescribed
(D) Function value and 1 st and 2 nd derivatives prescribed
- Normal derivative prescribed
D. Braess 2007


## 6-Point Element:

Consider $\mathcal{S}_{\text {sd }} \backslash \mathcal{Q}$ for some $Q$ of polynomials terms.
For $\mathcal{Q}=\left\{c_{4}\left(x^{2}-1\right)(y-1) \oplus c_{5}\left(x^{2}-1\right)(y+1)\right\}$, drop midpoint nodes on edges with $y= \pm 1$.


## Quadrilateral Finite Elements

## Serendipity Element:

Consider $\mathcal{S}_{s d}=\left\{u \in \mathcal{P}_{3}|u|_{\partial T} \in \mathcal{P}_{2}\right\}$, which has $\operatorname{dim} \mathcal{S}_{\text {sd }}=8$.
$p(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y$

$$
\begin{aligned}
& +c_{4}\left(x^{2}-1\right)(y-1)+c_{5}\left(x^{2}-1\right)(y+1) \\
& +c_{6}(x-1)\left(y^{2}-1\right)+c_{7}(x+1)\left(y^{2}-1\right)
\end{aligned}
$$



Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$


> Serendipity element $u \in C^{0}(\Omega)$
> $\Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8$

- Function value prescribed
- Function value and 1 st derivative prescribed
(D) Function value and 1 st and 2 nd derivatives prescribed

Normal derivative prescribed D. Braess 2007


For $\mathcal{Q}=\left\{c_{6}(x-1)\left(y^{2}-1\right) \bigoplus c_{7}(x+1)\left(y^{2}-1\right)\right\}$, drop midpoint nodes on edges with $x= \pm 1$.

## Quadrilateral Finite Elements

## Serendipity Element:

Consider $\mathcal{S}_{s d}=\left\{u \in \mathcal{P}_{3}|u|_{\partial T} \in \mathcal{P}_{2}\right\}$, which has $\operatorname{dim} \mathcal{S}_{\text {sd }}=8$.
$p(x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x y$

$$
\begin{aligned}
& +c_{4}\left(x^{2}-1\right)(y-1)+c_{5}\left(x^{2}-1\right)(y+1) \\
& +c_{6}(x-1)\left(y^{2}-1\right)+c_{7}(x+1)\left(y^{2}-1\right)
\end{aligned}
$$



Bilinear quadrilateral element $Q_{1}$ $u \in C^{0}(\Omega)$
$\Pi_{\text {ref }} \subset \mathcal{P}_{2},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{1}, \quad \operatorname{dim} \Pi_{\text {ref }}=4$


> Serendipity element $u \in C^{0}(\Omega)$
> $\Pi_{\mathrm{ref}} \subset \mathcal{P}_{3},\left.u\right|_{\partial T_{i}} \in \mathcal{P}_{2}, \quad \operatorname{dim} \Pi_{\mathrm{ref}}=8$

- Function value prescribed
- Function value and 1 st derivative prescribed
(D) Function value and 1 st and 2 nd derivatives prescribed

Normal derivative prescribed D. Braess 2007


For $\mathcal{Q}=\left\{c_{6}(x-1)\left(y^{2}-1\right) \bigoplus c_{7}(x+1)\left(y^{2}-1\right)\right\}$, drop midpoint nodes on edges with $x= \pm 1$.

## Affine Families of Elements

Definition

## Affine Families of Elements

## Definition

We define for canonical representation a reference element $\left(\mathcal{T}_{\text {ref }}, \Pi_{\text {ref }}, \Sigma_{\text {ref }}\right)$.

## Affine Families of Elements

## Definition

We define for canonical representation a reference element $\left(\mathcal{T}_{\text {ref }}, \Pi_{\text {ref }}, \Sigma_{\text {ref }}\right)$. A collection of finite element spaces $\mathcal{S}_{h}$ for partitions $\mathcal{T}_{h} \subset \Omega \subset \mathbb{R}^{d}$ is called an affine family if

## Affine Families of Elements

## Definition

We define for canonical representation a reference element ( $\left.\mathcal{T}_{\text {ref }}, \Pi_{\text {ref }}, \Sigma_{\text {ref }}\right)$. A collection of finite element spaces $\mathcal{S}_{h}$ for partitions $\mathcal{T}_{h} \subset \Omega \subset \mathbb{R}^{d}$ is called an affine family if
i For every $T_{j} \in \mathcal{T}_{h}$ there exists an affine map $F_{j}: T_{\text {ref }} \rightarrow T_{j}$ so that when $v \in \mathcal{S}_{h}$ when restricted to $T_{j}$ is of the form

## Affine Families of Elements

## Definition

We define for canonical representation a reference element $\left(\mathcal{T}_{\text {ref }}, \Pi_{\text {ref }}, \Sigma_{\text {ref }}\right)$. A collection of finite element spaces $\mathcal{S}_{h}$ for partitions $\mathcal{T}_{h} \subset \Omega \subset \mathbb{R}^{d}$ is called an affine family if
i For every $T_{j} \in \mathcal{T}_{h}$ there exists an affine map $F_{j}: T_{r e f} \rightarrow T_{j}$ so that when $v \in \mathcal{S}_{h}$ when restricted to $T_{j}$ is of the form

$$
v(\mathbf{x})=p\left(F_{j}^{-1} \mathbf{x}\right) \text { with } p \in \Pi_{r e f} .
$$

## Affine Families of Elements

## Definition

We define for canonical representation a reference element $\left(\mathcal{T}_{\text {ref }}, \Pi_{\text {ref }}, \Sigma_{\text {ref }}\right)$. A collection of finite element spaces $\mathcal{S}_{h}$ for partitions $\mathcal{T}_{h} \subset \Omega \subset \mathbb{R}^{d}$ is called an affine family if
i For every $T_{j} \in \mathcal{T}_{h}$ there exists an affine map $F_{j}: T_{r e f} \rightarrow T_{j}$ so that when $v \in \mathcal{S}_{h}$ when restricted to $T_{j}$ is of the form

$$
v(\mathbf{x})=p\left(F_{j}^{-1} \mathbf{x}\right) \text { with } p \in \Pi_{r e f} .
$$

The finite elements $\mathcal{M}_{0}^{k}$ are an affine family.

## Affine Families of Elements

## Definition

We define for canonical representation a reference element ( $\left.\mathcal{T}_{\text {ref }}, \Pi_{\text {ref }}, \Sigma_{\text {ref }}\right)$. A collection of finite element spaces $\mathcal{S}_{h}$ for partitions $\mathcal{T}_{h} \subset \Omega \subset \mathbb{R}^{d}$ is called an affine family if
i For every $T_{j} \in \mathcal{T}_{h}$ there exists an affine map $F_{j}: T_{r e f} \rightarrow T_{j}$ so that when $v \in \mathcal{S}_{h}$ when restricted to $T_{j}$ is of the form

$$
v(\mathbf{x})=p\left(F_{j}^{-1} \mathbf{x}\right) \text { with } p \in \Pi_{r e f}
$$

The finite elements $\mathcal{M}_{0}^{k}$ are an affine family.
The quadrilateral elements we defined using nodal values give affine families.

## Affine Families of Elements

## Definition

We define for canonical representation a reference element ( $\left.\mathcal{T}_{\text {ref }}, \Pi_{\text {ref }}, \Sigma_{\text {ref }}\right)$. A collection of finite element spaces $\mathcal{S}_{h}$ for partitions $\mathcal{T}_{h} \subset \Omega \subset \mathbb{R}^{d}$ is called an affine family if
i For every $T_{j} \in \mathcal{T}_{h}$ there exists an affine map $F_{j}: T_{r e f} \rightarrow T_{j}$ so that when $v \in \mathcal{S}_{h}$ when restricted to $T_{j}$ is of the form

$$
v(\mathbf{x})=p\left(F_{j}^{-1} \mathbf{x}\right) \text { with } p \in \Pi_{r e f}
$$

The finite elements $\mathcal{M}_{0}^{k}$ are an affine family.
The quadrilateral elements we defined using nodal values give affine families.
However, the Argyris elements are not since they involve normal derivatives.

## Affine Families of Elements

## Definition

We define for canonical representation a reference element ( $\left.\mathcal{T}_{\text {ref }}, \Pi_{\text {ref }}, \Sigma_{\text {ref }}\right)$. A collection of finite element spaces $\mathcal{S}_{h}$ for partitions $\mathcal{T}_{h} \subset \Omega \subset \mathbb{R}^{d}$ is called an affine family if
i For every $T_{j} \in \mathcal{T}_{h}$ there exists an affine map $F_{j}: T_{r e f} \rightarrow T_{j}$ so that when $v \in \mathcal{S}_{h}$ when restricted to $T_{j}$ is of the form

$$
v(\mathbf{x})=p\left(F_{j}^{-1} \mathbf{x}\right) \text { with } p \in \Pi_{r e f}
$$

The finite elements $\mathcal{M}_{0}^{k}$ are an affine family.
The quadrilateral elements we defined using nodal values give affine families.
However, the Argyris elements are not since they involve normal derivatives.

## Application to Elliptic PDEs.

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\}$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\}$
$\Delta u=-g$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)


Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

## Finite Element Approximation Steps:

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

## Finite Element Approximation Steps:

i Select element type for generating a space $\mathcal{S}$.

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)


Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

## Finite Element Approximation Steps:

i Select element type for generating a space $\mathcal{S}$.
ii Mesh the domain to obtain a collection of elements.

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)


Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

## Finite Element Approximation Steps:

i Select element type for generating a space $\mathcal{S}$.
ii Mesh the domain to obtain a collection of elements.
iii Calculate the stiffness matrix and load vector using weak form.

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)


Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

## Finite Element Approximation Steps:

i Select element type for generating a space $\mathcal{S}$.
ii Mesh the domain to obtain a collection of elements.
iii Calculate the stiffness matrix and load vector using weak form.
iv Solve the linear system $K \mathbf{u}=\mathbf{f}$.

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)


Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

## Finite Element Approximation Steps:

i Select element type for generating a space $\mathcal{S}$.
ii Mesh the domain to obtain a collection of elements.
iii Calculate the stiffness matrix and load vector using weak form.
iv Solve the linear system $K \mathbf{u}=\mathbf{f}$.

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:


Discretization:

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)
Discretization:
Divide domain into triangular elements $T_{j}$.

Domain


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)
Discretization:
Divide domain into triangular elements $T_{j}$.


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)
Discretization:
Divide domain into triangular elements $T_{j}$. Denote triangle vertices as $\mathbf{x}_{i}$.


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)
Discretization:
Divide domain into triangular elements $T_{j}$. Denote triangle vertices as $\mathbf{x}_{i}$. Use for shape space $\mathcal{P}_{1}$.

Domain


Triangulation


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

## Discretization:

Divide domain into triangular elements $T_{j}$. Denote triangle vertices as $\mathbf{x}_{i}$.
Use for shape space $\mathcal{P}_{1}$.
Take nodal variables as $N_{i}[v]=v\left(\mathbf{x}_{i}\right)$.

Domain


Triangulation


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

## Discretization:

Divide domain into triangular elements $T_{j}$. Denote triangle vertices as $\mathbf{x}_{i}$.
Use for shape space $\mathcal{P}_{1}$.
Take nodal variables as $N_{i}[v]=v\left(\mathbf{x}_{i}\right)$.

Domain


Triangulation


Basis Function $\phi_{i}(\mathbf{x})$

$\left\{\phi_{i}\right\}$ basis for $\mathcal{V}$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Discretization:

Divide domain into triangular elements $T_{j}$.
Denote triangle vertices as $\mathbf{x}_{i}$.
Use for shape space $\mathcal{P}_{1}$.
Take nodal variables as $N_{i}[v]=v\left(\mathbf{x}_{i}\right)$.
Nodal basis $\left\{\phi_{i}\right\}$ are 2D "hat functions."


Triangulation


Basis Function $\phi_{i}(\mathbf{x})$

$\left\{\phi_{i}\right\}$ basis for $\mathcal{V}$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

## Discretization:

Divide domain into triangular elements $T_{j}$. Denote triangle vertices as $\mathbf{x}_{i}$.
Use for shape space $\mathcal{P}_{1}$.
Take nodal variables as $N_{i}[v]=v\left(\mathbf{x}_{i}\right)$.
Nodal basis $\left\{\phi_{i}\right\}$ are 2D "hat functions."
Functions in $v \in \mathcal{S}$ can be represented as

Domain


Triangulation


Basis Function $\phi_{i}(\mathbf{x})$

$\left\{\phi_{i}\right\}$ basis for $\mathcal{V}$

$$
v(x)=\sum_{i=1}^{n} v\left(\mathbf{x}_{i}\right) \phi_{i}(\mathbf{x}) \in H^{1}
$$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Mesh Refinement:

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Mesh Refinement:

Can increase accuracy by refining the mesh.

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Mesh Refinement:

Can increase accuracy by refining the mesh.

refinement $=2$

refinement $=4$

refinement $=6$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)
Mesh Refinement:
Can increase accuracy by refining the mesh. Many strategies possible.

refinement $=2$

refinement $=4$

refinement $=6$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)
Mesh Refinement:
Can increase accuracy by refining the mesh. Many strategies possible.
Here, edges of triangle are bisected.

refinement $=2$

refinement $=4$

refinement $=6$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Mesh Refinement:

Can increase accuracy by refining the mesh.
Many strategies possible.
Here, edges of triangle are bisected.
Recursively yields mesh refinements.

refinement $=2$

refinement $=4$

refinement $=6$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Mesh Refinement:

Can increase accuracy by refining the mesh.
Many strategies possible.
Here, edges of triangle are bisected.
Recursively yields mesh refinements.
Quality of the triangle shapes is important.

refinement $=2$

refinement $=4$

refinement $=6$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Mesh Refinement:

Can increase accuracy by refining the mesh. Many strategies possible.
Here, edges of triangle are bisected.
Recursively yields mesh refinements.
Quality of the triangle shapes is important. Quality impacts condition number of the stiffness matrix $K$.

refinement $=2$

refinement $=4$

refinement $=6$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Mesh Refinement:

Can increase accuracy by refining the mesh.
Many strategies possible.
Here, edges of triangle are bisected.
Recursively yields mesh refinements.
Quality of the triangle shapes is important.
Quality impacts condition number of the stiffness matrix $K$.
Convergence expected sufficiently uniform refinements.

refinement $=2$

refinement $=4$

refinement $=6$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Example:

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

Numerical Solution



refinement $=6$

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

Numerical Solution




$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

Refinement of the mesh increases solution accuracy.

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

> Numerical Solution






## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

> Numerical Solution






## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$



## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

Study the error vs mesh refinement $N \sim h^{-2}$.


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

Study the error vs mesh refinement $N \sim h^{-2}$.



## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

Study the error vs mesh refinement $N \sim h^{-2}$.
Log-log plots yield information on convergence rate



## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

Study the error vs mesh refinement $N \sim h^{-2}$.
Log-log plots yield information on convergence rate $\epsilon=C h^{r}$



## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

## Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

Study the error vs mesh refinement $N \sim h^{-2}$.
Log-log plots yield information on convergence rate $\epsilon=C h^{r} \rightarrow \log (\epsilon)=\log (h) r+\log (C)$


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

## Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

Study the error vs mesh refinement $N \sim h^{-2}$.



## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

## Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

Study the error vs mesh refinement $N \sim h^{-2}$.


Log-log plots yield information on convergence rate $\epsilon=C h^{r} \rightarrow \log (\epsilon)=\log (h) r+\log (C) \Rightarrow-r / 2=s \sim-0.9 \rightarrow r \sim 1.8$.


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

Study the error vs mesh refinement $N \sim h^{-2}$.


Log-log plots yield information on convergence rate $\epsilon=C h^{r} \rightarrow \log (\epsilon)=\log (h) r+\log (C) \Rightarrow-r / 2=s \sim-0.9 \rightarrow r \sim 1.8$.
Indicates $2^{\text {nd }}$-order convergence rate.


## Application to Elliptic PDEs

## Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
$\left\{\begin{array}{ll}\Delta u=-g, & x \in \Omega \\ u=f, & x \in \partial \Omega .\end{array}\right\} \rightarrow\left\{\begin{array}{l}a(u, v)=-(g, v), v \in \mathcal{S} \\ a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} .\end{array}\right\}$ (RG-Approximation)

## Example:

Consider PDE with

$$
\begin{aligned}
& g(x, y)=\pi^{2} \sin (\pi x)+\pi^{2} \cos (\pi x) \\
& f(x, y)=\sin (\pi x)+\cos (\pi x)
\end{aligned}
$$

Solution is

$$
u(x, y)=\sin (\pi x)+\cos (\pi x)
$$

Study the error vs mesh refinement $N \sim h^{-2}$.


Log-log plots yield information on convergence rate $\epsilon=C h^{r} \rightarrow \log (\epsilon)=\log (h) r+\log (C) \Rightarrow-r / 2=s \sim-0.9 \rightarrow r \sim 1.8$.
Indicates $2^{\text {nd }}$-order convergence rate.


