Mixed Methods

Paul J. Atzberger

206D: Finite Element Methods University of California Santa Barbara

We consider variational problems with constraints. Let X and M be Hilbert spaces with

We consider variational problems with constraints. Let X and M be Hilbert spaces with

 $a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$$

Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$$

Saddle Point Problems

Find the minimum $u \in X$ of

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$J[u] = \frac{1}{2}a(u,v) - (f,u)$$
 subject to $b(u,\mu) = (g,\mu), \ \forall \mu \in M.$

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$J[u]=rac{1}{2}a(u,v)-(f,u)$$
 subject to $b(u,\mu)=(g,\mu),\ orall \mu\in M.$

Consider the Lagrangian

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$J[u] = \frac{1}{2}a(u,v) - (f,u)$$
 subject to $b(u,\mu) = (g,\mu), \ \forall \mu \in M.$

Consider the Lagrangian

$$\mathcal{L}(u,\lambda) := J(u) + [b(u,\lambda) - (g,\lambda)].$$

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$J[u] = \frac{1}{2}a(u,v) - (f,u)$$
 subject to $b(u,\mu) = (g,\mu), \ \forall \mu \in M.$

Consider the Lagrangian

$$\mathcal{L}(u,\lambda) := J(u) + [b(u,\lambda) - (g,\lambda)].$$

We seek the minimum of $\mathcal{L}(\cdot, \lambda)$ with fixed λ .

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$J[u]=rac{1}{2}a(u,v)-(f,u)$$
 subject to $b(u,\mu)=(g,\mu),\ orall \mu\in M.$

Consider the Lagrangian

$$\mathcal{L}(u,\lambda) := J(u) + [b(u,\lambda) - (g,\lambda)].$$

We seek the minimum of $\mathcal{L}(\cdot, \lambda)$ with fixed λ . Can we find λ_0 so this minimum satisfies the constraints?

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$J[u]=rac{1}{2}a(u,v)-(f,u)$$
 subject to $b(u,\mu)=(g,\mu),\ orall \mu\in M.$

Consider the Lagrangian

$$\mathcal{L}(u,\lambda) := J(u) + [b(u,\lambda) - (g,\lambda)].$$

We seek the minimum of $\mathcal{L}(\cdot, \lambda)$ with fixed λ . Can we find λ_0 so this minimum satisfies the constraints?

When $\mathcal L$ contains only bilinear and quadratic expressions in u and λ , we obtain a saddle point problem.

Saddle Point Problem I

Saddle Point Problem I

Saddle Point Problem I

$$a(u,v) + b(v,\lambda) = \langle f,v \rangle, \quad \forall v \in X,$$

Saddle Point Problem I

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,v) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

Saddle Point Problem I

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,v) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,v) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

When the solution (u^*, λ^*) is solution of the saddle-point condition, it can be proved that

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,v) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

When the solution (u^*, λ^*) is solution of the saddle-point condition, it can be proved that

$$\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$$

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,v) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

When the solution (u^*, λ^*) is solution of the saddle-point condition, it can be proved that

$$\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$$

Assumes that $a(v, v) \geq 0$.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,v) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

When the solution (u^*, λ^*) is solution of the saddle-point condition, it can be proved that

$$\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$$

Assumes that $a(v, v) \ge 0$.

Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form *a*, but also of properties for the constraints *b* beyond simply linear independence.

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,v) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

When the solution (u^*, λ^*) is solution of the saddle-point condition, it can be proved that

$$\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$$

Assumes that $a(v, v) \ge 0$.

Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form a, but also of properties for the constraints b beyond simply linear independence.

Consider the overall linear mapping for the above problem

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,v) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

When the solution (u^*, λ^*) is solution of the saddle-point condition, it can be proved that

$$\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$$

Assumes that $a(v, v) \geq 0$.

Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form *a*, but also of properties for the constraints *b* beyond simply linear independence.

Consider the overall linear mapping for the above problem

$$L: X \times M \to X' \times M'$$
, maps $(u, \lambda) \mapsto (f, g)$.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,v) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

When the solution (u^*, λ^*) is solution of the saddle-point condition, it can be proved that

$$\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$$

Assumes that $a(v, v) \geq 0$.

Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form *a*, but also of properties for the constraints *b* beyond simply linear independence.

Consider the overall linear mapping for the above problem

$$L: X \times M \to X' \times M'$$
, maps $(u, \lambda) \mapsto (f, g)$.

Need ways to characterize when L is invertible (solvable) and the inverse is continuous (stable).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,v) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

When the solution (u^*, λ^*) is solution of the saddle-point condition, it can be proved that

$$\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$$

Assumes that $a(v, v) \geq 0$.

Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form *a*, but also of properties for the constraints *b* beyond simply linear independence.

Consider the overall linear mapping for the above problem

$$L: X \times M \to X' \times M'$$
, maps $(u, \lambda) \mapsto (f, g)$.

Need ways to characterize when L is invertible (solvable) and the inverse is continuous (stable).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Isomorphism

Isomorphism

A linear mapping $L:U\to V$ with U,V normed linear spaces is called an **isomorphism**

Isomorphism

A linear mapping $L: U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Isomorphism

A linear mapping $L: U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \ \forall v \in V.$

Isomorphism

A linear mapping $L: U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \ \forall v \in V.$

Variational problem: $a(u, v) = \langle f, v \rangle$, $\forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Isomorphism

A linear mapping $L: U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \forall v \in V.$

Variational problem: $a(u, v) = \langle f, v \rangle$, $\forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition:

Isomorphism

A linear mapping $L: U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \ \forall v \in V.$

Variational problem: $a(u, v) = \langle f, v \rangle$, $\forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition: For $V \subset X$ closed, the $V^0 := \{\ell \in X' : \langle \ell, \nu \rangle = 0, \ \forall \nu \in V \}$ is called the **polar set**.

Isomorphism

A linear mapping $L: U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \forall v \in V.$

Variational problem: $a(u, v) = \langle f, v \rangle$, $\forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition: For $V \subset X$ closed, the $V^0 := \{\ell \in X' : \langle \ell, \nu \rangle = 0, \ \forall \nu \in V \}$ is called the **polar set**.

Theorem (Inf-Sup Condition)

Isomorphism

A linear mapping $L: U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \forall v \in V.$

Variational problem: $a(u, v) = \langle f, v \rangle$, $\forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition: For $V \subset X$ closed, the $V^0 := \{\ell \in X' : \langle \ell, \nu \rangle = 0, \ \forall \nu \in V \}$ is called the **polar set**.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism

Isomorphism

A linear mapping $L: U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \ \forall v \in V$. **Variational problem:** $a(u, v) = \langle f, v \rangle, \ \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle,$ formally $u = L^{-1}f$. **Definition:** For $V \subset X$ closed, the $V^0 := \{\ell \in X' : \langle \ell, v \rangle = 0, \ \forall v \in V\}$ is called the **polar set**.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Isomorphism

A linear mapping $L: U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \ \forall v \in V.$

Variational problem: $a(u, v) = \langle f, v \rangle$, $\forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition: For $V \subset X$ closed, the $V^0 := \{\ell \in X' : \langle \ell, \nu \rangle = 0, \ \forall \nu \in V \}$ is called the **polar set**.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

(i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.

Isomorphism

A linear mapping $L: U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \ \forall v \in V.$

Variational problem: $a(u, v) = \langle f, v \rangle$, $\forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition: For $V \subset X$ closed, the $V^0 := \{\ell \in X' : \langle \ell, \nu \rangle = 0, \ \forall \nu \in V \}$ is called the **polar set**.

Theorem (Inf-Sup Condition)

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

Isomorphism

A linear mapping $L: U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu,v\rangle:=a(u,v),\ \forall v\in V.$

Variational problem: $a(u, v) = \langle f, v \rangle$, $\forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition: For $V \subset X$ closed, the $V^0 := \{\ell \in X' : \langle \ell, \nu \rangle = 0, \ \forall \nu \in V \}$ is called the **polar set**.

Theorem (Inf-Sup Condition)

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

Isomorphism

A linear mapping $L: U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \ \forall v \in V.$

Variational problem: $a(u, v) = \langle f, v \rangle$, $\forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition: For $V \subset X$ closed, the $V^0 := \{\ell \in X' : \langle \ell, \nu \rangle = 0, \ \forall \nu \in V \}$ is called the **polar set**.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Theorem (Inf-Sup Condition)

Theorem (Inf-Sup Condition)

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

(i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.

Theorem (Inf-Sup Condition)

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha>0$ such that

Theorem (Inf-Sup Condition)

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L,

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \ \forall v \in V$,

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \ \forall v \in V$, giving $sup_{v \in V} a(u_1 - u_2, v) = 0$.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$,

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$,

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity exists unique $u = L^{-1}f$.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity exists unique $u = L^{-1}f$. By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u,v)}{\|v\|_V}$

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity exists unique $u = L^{-1}f$. By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u,v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f,v \rangle}{\|v\|_V}$

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity exists unique $u = L^{-1}f$. By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u,v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f,v \rangle}{\|v\|_V} = \|f\|_{V'}$ $\Rightarrow \|Lu\|_{V'}$

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity exists unique $u = L^{-1}f$. By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u,v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f,v \rangle}{\|v\|_V} = \|f\|_{V'}$ $\Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U$

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity exists unique $u = L^{-1}f$. By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u,v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f,v \rangle}{\|v\|_V} = \|f\|_{V'}$ $\Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U$

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity exists unique $u = L^{-1}f$. By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u,v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f,v \rangle}{\|v\|_V} = \|f\|_{V'}$ $\Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \alpha^{-1} \|f\|_{V'}$,

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity exists unique $u = L^{-1}f$. By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u,v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f,v \rangle}{\|v\|_V} = \|f\|_{V'}$ $\Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \alpha^{-1} \|f\|_{V'}$, so L^{-1} is continuous on Im(L).

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity exists unique $u = L^{-1}f$. By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u,v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f,v \rangle}{\|v\|_V} = \|f\|_{V'}$ $\Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \alpha^{-1}\|f\|_{V'}$, so L^{-1} is continuous on Im(L). Continuity of L, L^{-1} implies L(U) closed.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity exists unique $u = L^{-1}f$. By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u,v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f,v \rangle}{\|v\|_V} = \|f\|_{V'}$ $\Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \alpha^{-1}\|f\|_{V'}$, so L^{-1} is continuous on $\operatorname{Im}(L)$. Continuity of L, L^{-1} implies L(U) closed. Condition (iii) ensures only element in *polar set* is $\{0\}$

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity exists unique $u = L^{-1}f$. By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u,v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f,v \rangle}{\|v\|_V} = \|f\|_{V'}$ $\Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \alpha^{-1} \|f\|_{V'}$, so L^{-1} is continuous on $\operatorname{Im}(L)$. Continuity of L, L^{-1} implies L(U) closed. Condition (iii) ensures only element in *polar set* is $\{0\}$ so L is surjective (thm).

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $||u_1 - u_2||_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity exists unique $u = L^{-1}f$. By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u,v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f,v \rangle}{\|v\|_V} = \|f\|_{V'}$ $\Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \alpha^{-1}\|f\|_{V'}$, so L^{-1} is continuous on $\operatorname{Im}(L)$. Continuity of L, L^{-1} implies L(U) closed. Condition (iii) ensures only element in *polar set* is $\{0\}$ so L is surjective (thm).

Theorem (Inf-Sup Condition)

Theorem (Inf-Sup Condition)

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

(i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.

Theorem (Inf-Sup Condition)

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

Theorem (Inf-Sup Condition)

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^0 where

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^0 where

$$W = \{v \in V \mid a(u,v) = 0, \forall u \in U\}, W^0 \subset V'.$$

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u,v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^0 where

$$W = \{v \in V \mid a(u,v) = 0, \forall u \in U\}, W^0 \subset V'.$$

This provides way to describe corresponding to set U, the equivalent functionals in V'.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u,v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^0 where

$$W = \{v \in V \mid a(u, v) = 0, \forall u \in U\}, W^0 \subset V'.$$

This provides way to describe corresponding to set U, the equivalent functionals in V'.

Remark:

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^0 where

$$W = \{v \in V \mid a(u,v) = 0, \forall u \in U\}, W^0 \subset V'.$$

This provides way to describe corresponding to set U, the equivalent functionals in V'.

Remark: Lax-Milgram follows as a special case, since

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \to \mathbb{R}$ satisfies the conditions:

- (i) Continuity: There exists $C \ge 0$ so that $|a(u, v)| \le C ||u||_U ||v||_V$.
- (ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^0 where

$$W = \{v \in V \mid a(u,v) = 0, \forall u \in U\}, W^0 \subset V'.$$

This provides way to describe corresponding to set U, the equivalent functionals in V'.

Remark: Lax-Milgram follows as a special case, since

$$\sup_{v} \frac{a(v,u)}{\|v\|} \geq \frac{a(u,u)}{\|u\|} \geq \alpha \|u\|.$$

Paul J. Atzberger, UCSB

Galerkin Method

Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional.

Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

Lemma (Convergence)

Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

Lemma (Convergence)

Consider $a:U\times V\to\mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions.

Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

Lemma (Convergence)

Consider $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

Lemma (Convergence)

Consider $a:U\times V\to\mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

Finite Element Methods http://atzberger.org/

Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

Lemma (Convergence)

Consider $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

Lemma (Convergence)

Consider $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Remark:

Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

Lemma (Convergence)

Consider $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Remark: When this criteria holds for the spaces U_h , V_h , we say they satisfy the Babuska-Brezzi Condition.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Consider bilinear form $a:U\times V\to\mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions.

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds.

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V, V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Proof:

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Proof:

$$a(u-u_h,v)=0, \ \forall v\in V_h$$

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Proof:

$$a(u-u_h,v)=0, \ \forall v\in V_h$$

For any $w_h \in U_h$ we have

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V, V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Proof:

$$a(u-u_h,v)=0, \ \forall v\in V_h$$

For any $w_h \in U_h$ we have

$$a(u_h - w_h, v) = a(u - w_h, v), \ \forall v \in V_h$$

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Proof:

$$a(u-u_h,v)=0, \ \forall v\in V_h$$

For any $w_h \in U_h$ we have

$$a(u_h - w_h, v) = a(u - w_h, v), \ \forall v \in V_h$$

For $\langle \ell, v \rangle := a(u - w)h, v$, we have $\|\ell\| \le C\|u - w_b\|$.

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Proof:

$$a(u-u_h,v)=0, \ \forall v\in V_h$$

For any $w_h \in U_h$ we have

$$a(u_h - w_h, v) = a(u - w_h, v), \forall v \in V_h$$

For $\langle \ell, v \rangle := a(u-w)h, v$), we have $\|\ell\| \le C\|u-w_h\|$. By conditions (i)–(iii), the mapping $L_h: U_h \to V_h'$ obtained from $a(u_h - w_h, \cdot)$ satisfies $\|L_h^{-1}\| \le \alpha^{-1}$.

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Proof:

$$a(u-u_h,v)=0, \ \forall v\in V_h$$

For any $w_h \in U_h$ we have

$$a(u_h - w_h, v) = a(u - w_h, v), \forall v \in V_h$$

For $\langle \ell, v \rangle := a(u-w)h, v$), we have $\|\ell\| \le C\|u-w_h\|$. By conditions (i)–(iii), the mapping $L_h: U_h \to V_h'$ obtained from $a(u_h - w_h, \cdot)$ satisfies $\|L_h^{-1}\| \le \alpha^{-1}$. This gives

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Proof:

$$a(u-u_h,v)=0, \ \forall v\in V_h$$

For any $w_h \in U_h$ we have

$$a(u_h - w_h, v) = a(u - w_h, v), \forall v \in V_h$$

For $\langle \ell, v \rangle := a(u-w)h, v$), we have $\|\ell\| \le C\|u-w_h\|$. By conditions (i)–(iii), the mapping $L_h: U_h \to V_h'$ obtained from $a(u_h - w_h, \cdot)$ satisfies $\|L_h^{-1}\| \le \alpha^{-1}$. This gives

$$||u_h - w_h|| \le \alpha^{-1} ||\ell|| \le \alpha^{-1} C ||u - w_h||.$$

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Proof:

$$a(u-u_h,v)=0, \ \forall v\in V_h$$

For any $w_h \in U_h$ we have

$$a(u_h - w_h, v) = a(u - w_h, v), \forall v \in V_h$$

For $\langle \ell, v \rangle := a(u-w)h, v$), we have $\|\ell\| \le C\|u-w_h\|$. By conditions (i)–(iii), the mapping $L_h: U_h \to V_h'$ obtained from $a(u_h - w_h, \cdot)$ satisfies $\|L_h^{-1}\| \le \alpha^{-1}$. This gives

$$||u_h - w_h|| \le \alpha^{-1} ||\ell|| \le \alpha^{-1} C ||u - w_h||.$$

From triangle inequality,

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Proof:

$$a(u-u_h,v)=0, \ \forall v\in V_h$$

For any $w_h \in U_h$ we have

$$a(u_h - w_h, v) = a(u - w_h, v), \ \forall v \in V_h$$

For $\langle \ell, v \rangle := a(u-w)h, v$), we have $\|\ell\| \le C\|u-w_h\|$. By conditions (i)–(iii), the mapping $L_h: U_h \to V_h'$ obtained from $a(u_h - w_h, \cdot)$ satisfies $\|L_h^{-1}\| \le \alpha^{-1}$. This gives

$$||u_h - w_h|| \le \alpha^{-1} ||\ell|| \le \alpha^{-1} C ||u - w_h||.$$

From triangle inequality,

$$||u-u_h|| \le ||u-w_h|| + ||w_h-u_h|| \le (1+\alpha^{-1}C)||u-w_h||.$$

Consider bilinear form $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$||u-u_h|| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h \in U_h} ||u-w_h||.$$

Proof:

$$a(u-u_h,v)=0, \ \forall v\in V_h$$

For any $w_h \in U_h$ we have

$$a(u_h - w_h, v) = a(u - w_h, v), \forall v \in V_h$$

For $\langle \ell, v \rangle := a(u-w)h, v$), we have $\|\ell\| \le C\|u-w_h\|$. By conditions (i)–(iii), the mapping $L_h: U_h \to V_h'$ obtained from $a(u_h - w_h, \cdot)$ satisfies $\|L_h^{-1}\| \le \alpha^{-1}$. This gives

$$||u_h - w_h|| \le \alpha^{-1} ||\ell|| \le \alpha^{-1} C ||u - w_h||.$$

From triangle inequality,

$$||u-u_h|| \le ||u-w_h|| + ||w_h-u_h|| \le (1+\alpha^{-1}C)||u-w_h||.$$

Returning to our original motivation.

Returning to our original motivation.

Saddle Point Problem I

Returning to our original motivation.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

Returning to our original motivation.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,\mu) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

Returning to our original motivation.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,\mu) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure solution.

Returning to our original motivation.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,\mu) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure solution.

Consider the overall linear mapping for the above problem

Returning to our original motivation.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,\mu) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure solution.

Consider the overall linear mapping for the above problem

$$L: X \times M \to X' \times M'$$
, maps $(u, \lambda) \mapsto (f, g)$.

Returning to our original motivation.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

 $b(u,\mu) = \langle g, \mu \rangle, \quad \forall \mu \in M.$

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure solution.

Consider the overall linear mapping for the above problem

$$L: X \times M \to X' \times M'$$
, maps $(u, \lambda) \mapsto (f, g)$.

We need to establish conditions for this to be an isomorphism.

Notation:

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \},$

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$ Since b is continuous, V is a closed subspace of X.

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$A: X \to X'$$

 $\langle Au, v \rangle = a(u, v), \forall v \in X.$

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot,\cdot)$

$$A: X \to X'$$

 $\langle Au, v \rangle = a(u, v), \forall v \in X.$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B' as

Notation: $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M\}, \ V := \{v \in X : b(v, \mu) = 0, \ \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot,\cdot)$

$$A: X \to X'$$

 $\langle Au, v \rangle = a(u, v), \forall v \in X.$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B' as

$$\begin{array}{ll} B: X \to M', & B': M \to X' \\ \langle Bu, \mu \rangle = b(u, \mu), \ \forall \mu \in M, & \langle B' \lambda, v \rangle = b(v, \lambda), \ \forall v \in X. \end{array}$$

Notation: $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M\}, \ V := \{v \in X : b(v, \mu) = 0, \ \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot,\cdot)$

$$A: X \to X'$$

 $\langle Au, v \rangle = a(u, v), \forall v \in X.$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B' as

$$\begin{array}{ll} B: X \to M', & B': M \to X' \\ \langle Bu, \mu \rangle = b(u, \mu), \ \forall \mu \in M, & \langle B' \lambda, v \rangle = b(v, \lambda), \ \forall v \in X. \end{array}$$

The Saddle Point Problem I can be expressed as

Notation: $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M\}, \ V := \{v \in X : b(v, \mu) = 0, \ \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$A: X \to X'$$

 $\langle Au, v \rangle = a(u, v), \forall v \in X.$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B' as

$$\begin{array}{ll} B: X \to M', & B': M \to X' \\ \langle Bu, \mu \rangle = b(u, \mu), & \forall \mu \in M, & \langle B' \lambda, v \rangle = b(v, \lambda), & \forall v \in X. \end{array}$$

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Notation: $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M\}, \ V := \{v \in X : b(v, \mu) = 0, \ \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$A: X \to X'$$

 $\langle Au, v \rangle = a(u, v), \forall v \in X.$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B' as

$$\begin{array}{ll} B: X \to M', & B': M \to X' \\ \langle Bu, \mu \rangle = b(u, \mu), & \forall \mu \in M, & \langle B' \lambda, v \rangle = b(v, \lambda), & \forall v \in X. \end{array}$$

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Find $(u, \lambda) \in X \times M$ satisfying

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$A: X \to X'$$

 $\langle Au, v \rangle = a(u, v), \forall v \in X.$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B' as

$$\begin{array}{ll} B: X \to M', & B': M \to X' \\ \langle Bu, \mu \rangle = b(u, \mu), \ \forall \mu \in M, & \langle B' \lambda, v \rangle = b(v, \lambda), \ \forall v \in X. \end{array}$$

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Find $(u, \lambda) \in X \times M$ satisfying

$$\begin{array}{rcl} Au + B'\lambda & = f, \\ Bu & = g. \end{array}$$

Notation: $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M\}, \ V := \{v \in X : b(v, \mu) = 0, \ \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$A: X \to X'$$

 $\langle Au, v \rangle = a(u, v), \forall v \in X.$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B' as

$$\begin{array}{ll} B: X \to M', & B': M \to X' \\ \langle Bu, \mu \rangle = b(u, \mu), \ \forall \mu \in M, & \langle B' \lambda, v \rangle = b(v, \lambda), \ \forall v \in X. \end{array}$$

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Find $(u, \lambda) \in X \times M$ satisfying

$$Au + B'\lambda = f,$$

 $Bu = g.$

Inf-Sup Lemma

Inf-Sup Lemma

The following conditions are equivalent

Inf-Sup Lemma

The following conditions are equivalent (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \geq \beta > 0.$

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||, \ \forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||, \ \forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||, \ \forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{\nu \in X} \frac{b(\nu, \mu)}{\|\nu\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||, \ \forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii) \Rightarrow (ii).

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{\nu \in X} \frac{b(\nu, \mu)}{\|\nu\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^0$ defined by mapping $w \mapsto (v, w)$.

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^0$ defined by mapping $w \mapsto (v, w)$. By (iii) B' is an isomorphism so there exists $\lambda \in M$ so that

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^0$ defined by mapping $w \mapsto (v, w)$. By (iii) B' is an isomorphism so there exists $\lambda \in M$ so that

$$b(w,\lambda)=(v,w), \ \forall w\in V.$$

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{\nu \in X} \frac{b(\nu, \mu)}{\|\nu\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^0$ defined by mapping $w \mapsto (v, w)$. By (iii) B' is an isomorphism so there exists $\lambda \in M$ so that

$$b(w,\lambda)=(v,w), \forall w\in V.$$

From the definition of the functional ||g|| = ||v||.

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B': M \to V^0 \subset X'$ is an isomorphism and $\|B'\mu\| \ge \beta \|\mu\|$, $\forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^0$ defined by mapping $w \mapsto (v, w)$. By (iii) B' is an isomorphism so there exists $\lambda \in M$ so that

$$b(w,\lambda)=(v,w), \forall w\in V.$$

From the definition of the functional $\|g\| = \|v\|$. Also, $\|B'\mu\| \ge \beta \|\mu\|$ so $\|v\| = \|g\| = \|B'\lambda\| \ge \beta \|\lambda\|$.

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{\nu \in X} \frac{b(\nu, \mu)}{\|\nu\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^0$ defined by mapping $w \mapsto (v, w)$. By (iii) B' is an isomorphism so there exists $\lambda \in M$ so that

$$b(w,\lambda)=(v,w), \forall w\in V.$$

From the definition of the functional $\|g\| = \|v\|$. Also, $\|B'\mu\| \ge \beta \|\mu\|$ so $\|v\| = \|g\| = \|B'\lambda\| \ge \beta \|\lambda\|$. Substituting into $b(\cdot, \cdot)$ above w = v, we have

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0$.
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B': M \to V^0 \subset X'$ is an isomorphism and $\|B'\mu\| \ge \beta \|\mu\|$, $\forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^0$ defined by mapping $w \mapsto (v, w)$. By (iii) B' is an isomorphism so there exists $\lambda \in M$ so that

$$b(w, \lambda) = (v, w), \forall w \in V.$$

From the definition of the functional $\|g\| = \|v\|$. Also, $\|B'\mu\| \ge \beta \|\mu\|$ so $\|v\| = \|g\| = \|B'\lambda\| \ge \beta \|\lambda\|$. Substituting into $b(\cdot,\cdot)$ above w = v, we have

$$\sup_{\mu \in \mathcal{M}} \frac{b(v,\mu)}{\|\mu\|} \geq \frac{b(v,\mu)}{\|\mu\|} = \frac{(v,v)}{\|\lambda\|} \geq \beta \|v\|.$$

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B': M \to V^0 \subset X'$ is an isomorphism and $\|B'\mu\| \ge \beta \|\mu\|$, $\forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^0$ defined by mapping $w \mapsto (v, w)$. By (iii) B' is an isomorphism so there exists $\lambda \in M$ so that

$$b(w,\lambda)=(v,w), \forall w\in V.$$

From the definition of the functional $\|g\| = \|v\|$. Also, $\|B'\mu\| \ge \beta \|\mu\|$ so $\|v\| = \|g\| = \|B'\lambda\| \ge \beta \|\lambda\|$.

Substituting into $b(\cdot, \cdot)$ above w = v, we have

$$\sup_{\mu \in M} \frac{b(v,\mu)}{\|\mu\|} \geq \frac{b(v,\mu)}{\|\mu\|} = \frac{(v,v)}{\|\lambda\|} \geq \beta \|v\|.$$

The $B:V^{\perp}\to M'$ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0$.
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B': M \to V^0 \subset X'$ is an isomorphism and $\|B'\mu\| \ge \beta \|\mu\|$, $\forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^0$ defined by mapping $w \mapsto (v, w)$. By (iii) B' is an isomorphism so there exists $\lambda \in M$ so that

$$b(w,\lambda)=(v,w), \forall w\in V.$$

From the definition of the functional $\|g\| = \|v\|$. Also, $\|B'\mu\| \ge \beta \|\mu\|$ so $\|v\| = \|g\| = \|B'\lambda\| \ge \beta \|\lambda\|$. Substituting into $b(\cdot, \cdot)$ above w = v, we have

$$\sup_{\mu \in \mathcal{M}} \frac{b(v,\mu)}{\|\mu\|} \geq \frac{b(v,\mu)}{\|\mu\|} = \frac{(v,v)}{\|\lambda\|} \geq \beta \|v\|.$$

The $B:V^{\perp}\to M'$ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism. Therefore, (iii) \Rightarrow (ii).

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \forall\mu\in M.$

Proof:

We show (ii) \Rightarrow (i).

Inf-Sup Lemma

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \forall\mu\in M.$

Proof:

We show (ii) \Rightarrow (i). By (ii), $B: V^{\perp} \to M'$ is an isomorphism.

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \forall\mu\in M.$

Proof:

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

$$\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|}$$

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

$$\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^{\perp}} \frac{\langle Bv, \mu \rangle}{\|Bv\|}$$

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

$$\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^{\perp}} \frac{\langle Bv, \mu \rangle}{\|Bv\|} = \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\|Bv\|}$$

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \forall\mu\in M.$

Proof:

$$\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^{\perp}} \frac{\langle Bv, \mu \rangle}{\|Bv\|} = \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\|Bv\|} \leq \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\beta \|v\|}.$$

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

We show (ii) \Rightarrow (i). By (ii), $B: V^{\perp} \to M'$ is an isomorphism. For $\mu \in M$, we have by duality of the norms

$$\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^{\perp}} \frac{\langle Bv, \mu \rangle}{\|Bv\|} = \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\|Bv\|} \leq \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\beta \|v\|}.$$

Therefore, (ii) \Rightarrow (i).

The following conditions are equivalent

- (i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \ge \beta > 0.$
- (ii) The operator $B: V^{\perp} \to M'$ is an isomorphism and $||Bv|| \ge \beta ||v||$, $\forall v \in V^{\perp}$.
- (iii) The operator $B':M\to V^0\subset X'$ is an isomorphism and $\|B'\mu\|\geq \beta\|\mu\|,\ \ \forall \mu\in M.$

Proof:

We show (ii) \Rightarrow (i). By (ii), $B: V^{\perp} \to M'$ is an isomorphism. For $\mu \in M$, we have by duality of the norms

$$\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^{\perp}} \frac{\langle Bv, \mu \rangle}{\|Bv\|} = \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\|Bv\|} \leq \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\beta \|v\|}.$$

Therefore, (ii) \Rightarrow (i).

Notation:

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \},$

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \to X' \times M'$

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \to X' \times M'$ if and only if the following two conditions are satisfied

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \to X' \times M'$ if and only if the following two conditions are satisfied

(i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in V, $a(v, v) \ge \alpha ||v||^2$, $\forall v \in V$ with $\alpha > 0$, V given above.

Notation: $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \to X' \times M'$ if and only if the following two conditions are satisfied

- (i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in V, $a(v, v) \ge \alpha ||v||^2$, $\forall v \in V$ with $\alpha > 0$, V given above.
- (ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

Notation: $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \to X' \times M'$ if and only if the following two conditions are satisfied

- (i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in V, $a(v, v) \ge \alpha ||v||^2$, $\forall v \in V$ with $\alpha > 0$, V given above.
- (ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \ge \beta.$$

Notation: $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \to X' \times M'$ if and only if the following two conditions are satisfied

- (i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in V, $a(v, v) \ge \alpha ||v||^2$, $\forall v \in V$ with $\alpha > 0$, V given above.
- (ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \ge \beta.$$

Remark:

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \to X' \times M'$ if and only if the following two conditions are satisfied

- (i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in V, $a(v, v) \ge \alpha ||v||^2$, $\forall v \in V$ with $\alpha > 0$, V given above.
- (ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \ge \beta.$$

Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V).

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \to X' \times M'$ if and only if the following two conditions are satisfied

- (i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in V, $a(v, v) \ge \alpha ||v||^2$, $\forall v \in V$ with $\alpha > 0$, V given above.
- (ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \ge \beta.$$

Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V).

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \to X' \times M'$ if and only if the following two conditions are satisfied

- (i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in V, $a(v, v) \ge \alpha ||v||^2$, $\forall v \in V$ with $\alpha > 0$, V given above.
- (ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \ge \beta.$$

Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V).

Provides conditions directly in terms of the bilinear forms a and b concerning solveability.

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \to X' \times M'$ if and only if the following two conditions are satisfied

- (i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in V, $a(v, v) \ge \alpha ||v||^2$, $\forall v \in V$ with $\alpha > 0$, V given above.
- (ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \ge \beta.$$

Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V).

Provides conditions directly in terms of the bilinear forms a and b concerning solveability.

Referred to as the Brezzi Conditions or Ladyzhenskaya-Babuska-Brezzi (LBB-Conditions).

Mixed FEM I

Mixed FEM I

Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

Mixed FEM I

Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

$$a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h$$

 $b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.$

Mixed FEM I

Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

$$a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h$$

 $b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.$

Remark:

Mixed FEM I

Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

$$a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h$$

 $b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.$

Remark: Need to chose the spaces X_h and M_h carefully so have compatibility so the inf-sup conditions satisfied.

Mixed FEM I

Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

$$a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h$$

 $b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.$

Remark: Need to chose the spaces X_h and M_h carefully so have compatibility so the inf-sup conditions satisfied. **Notation:**

Mixed FEM I

Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

$$a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h$$

 $b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.$

Remark: Need to chose the spaces X_h and M_h carefully so have compatibility so the inf-sup conditions satisfied.

Notation: $V_h := \{ v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h \}.$

Definition: Babuska-Brezzi Condition

Mixed FEM I

Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

$$a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h$$

 $b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.$

Remark: Need to chose the spaces X_h and M_h carefully so have compatibility so the inf-sup conditions satisfied. **Notation:** $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.$

Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces X_h , M_h if there exists $\alpha > 0$, $\beta > 0$ independent of h so that

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Mixed FEM I

Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

$$a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h$$

 $b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.$

Remark: Need to chose the spaces X_h and M_h carefully so have compatibility so the inf-sup conditions satisfied. **Notation:** $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.$

Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces X_h , M_h if there exists $\alpha > 0$, $\beta > 0$ independent of h so that

(i) Bilinear form $a(\cdot, \cdot)$ is V_h -elliptic with constant $\alpha > 0$.

Mixed FEM I

Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

$$a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h$$

 $b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.$

Remark: Need to chose the spaces X_h and M_h carefully so have compatibility so the inf-sup conditions satisfied.

Notation: $V_h := \{ v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h \}.$

Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces X_h , M_h if there exists $\alpha > 0$, $\beta > 0$ independent of h so that

- (i) Bilinear form $a(\cdot, \cdot)$ is V_h -elliptic with constant $\alpha > 0$.
- (ii) The condition holds

Mixed FEM I

Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

$$a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h$$

 $b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.$

Remark: Need to chose the spaces X_h and M_h carefully so have compatibility so the inf-sup conditions satisfied. **Notation:** $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.$

Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces X_h , M_h if there exists $\alpha > 0$, $\beta > 0$ independent of h so that

- (i) Bilinear form $a(\cdot, \cdot)$ is V_h -elliptic with constant $\alpha > 0$.
- (ii) The condition holds

$$\sup_{\mathbf{v}\in X_h}\frac{b(\mathbf{v},\lambda_h)}{\|\mathbf{v}\|}\geq \beta\|\lambda_h\|, \ \forall \lambda_h\in M_h.$$

Mixed FEM I

Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

$$a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h$$

 $b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.$

Remark: Need to chose the spaces X_h and M_h carefully so have compatibility so the inf-sup conditions satisfied. **Notation:** $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.$

Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces X_h , M_h if there exists $\alpha > 0$, $\beta > 0$ independent of h so that

- (i) Bilinear form $a(\cdot, \cdot)$ is V_h -elliptic with constant $\alpha > 0$.
- (ii) The condition holds

$$\sup_{\mathbf{v}\in X_h}\frac{b(\mathbf{v},\lambda_h)}{\|\mathbf{v}\|}\geq \beta\|\lambda_h\|, \ \forall \lambda_h\in M_h.$$

Remark:

Mixed FEM I

Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

$$a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h$$

 $b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.$

Remark: Need to chose the spaces X_h and M_h carefully so have compatibility so the inf-sup conditions satisfied. **Notation:** $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.$

Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces X_h , M_h if there exists $\alpha > 0$, $\beta > 0$ independent of h so that

- (i) Bilinear form $a(\cdot, \cdot)$ is V_h -elliptic with constant $\alpha > 0$.
- (ii) The condition holds

$$\sup_{\mathbf{v}\in X_h}\frac{b(\mathbf{v},\lambda_h)}{\|\mathbf{v}\|}\geq \beta\|\lambda_h\|, \ \forall \lambda_h\in M_h.$$

Remark: Also referred to as the Inf-Sup Conditions.

Mixed Methods

Theorem

Mixed Methods

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

Mixed Methods

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$||u - u_h|| + ||\lambda - \lambda_h|| \le c \left(\inf_{v_h \in X_h} ||u - v_h|| + \inf_{\mu_h \in M_h} ||\lambda - \mu_h||\right)$$

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$||u - u_h|| + ||\lambda - \lambda_h|| \le c \left(\inf_{v_h \in X_h} ||u - v_h|| + \inf_{\mu_h \in M_h} ||\lambda - \mu_h||\right)$$

Remark:

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$||u - u_h|| + ||\lambda - \lambda_h|| \le c \left(\inf_{v_h \in X_h} ||u - v_h|| + \inf_{\mu_h \in M_h} ||\lambda - \mu_h||\right)$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$||u - u_h|| + ||\lambda - \lambda_h|| \le c \left(\inf_{v_h \in X_h} ||u - v_h|| + \inf_{\mu_h \in M_h} ||\lambda - \mu_h||\right)$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition

The spaces $X_h \subset X$ and $M_h \subset M$, are said to satisfy **condition (C)** provided $V_h \subset V$.

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$||u - u_h|| + ||\lambda - \lambda_h|| \le c \left(\inf_{v_h \in X_h} ||u - v_h|| + \inf_{\mu_h \in M_h} ||\lambda - \mu_h||\right)$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition

The spaces $X_h \subset X$ and $M_h \subset M$, are said to satisfy **condition (C)** provided $V_h \subset V$.

Significance:

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$||u - u_h|| + ||\lambda - \lambda_h|| \le c \left(\inf_{v_h \in X_h} ||u - v_h|| + \inf_{\mu_h \in M_h} ||\lambda - \mu_h||\right)$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition

The spaces $X_h \subset X$ and $M_h \subset M$, are said to satisfy **condition (C)** provided $V_h \subset V$.

Significance: Condition (C) $\Rightarrow \forall v_h \in X_h$, $b(v_h, \mu_h) = 0$, $\forall \mu_h \in M_h \Rightarrow b(v_h, \mu) = 0$, $\forall \mu \in M$.

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$||u - u_h|| + ||\lambda - \lambda_h|| \le c \left(\inf_{v_h \in X_h} ||u - v_h|| + \inf_{\mu_h \in M_h} ||\lambda - \mu_h||\right)$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition

The spaces $X_h \subset X$ and $M_h \subset M$, are said to satisfy **condition (C)** provided $V_h \subset V$.

Significance: Condition (C) $\Rightarrow \forall v_h \in X_h$, $b(v_h, \mu_h) = 0$, $\forall \mu_h \in M_h \Rightarrow b(v_h, \mu) = 0$, $\forall \mu \in M$.

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

Finite Element Methods http://atzberger.org/

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$||u - u_h|| + ||\lambda - \lambda_h|| \le c \left(\inf_{v_h \in X_h} ||u - v_h|| + \inf_{\mu_h \in M_h} ||\lambda - \mu_h||\right)$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition

The spaces $X_h \subset X$ and $M_h \subset M$, are said to satisfy **condition (C)** provided $V_h \subset V$.

Significance: Condition (C) $\Rightarrow \forall v_h \in X_h$, $b(v_h, \mu_h) = 0$, $\forall \mu_h \in M_h \Rightarrow b(v_h, \mu) = 0$, $\forall \mu \in M$.

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u - u_h|| \le c \inf_{v_h \in X_h} ||u - v_h||.$$

Theorem

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u-u_h|| \leq c \inf_{v_h \in X_h} ||u-v_h||.$$

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u - u_h|| \le c \inf_{v_h \in X_h} ||u - v_h||.$$

Proof:

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u-u_h|| \leq c \inf_{v_h \in X_h} ||u-v_h||.$$

Proof:

Consider $v_h \in V_h(g)$.

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u-u_h|| \leq c \inf_{v_h \in X_h} ||u-v_h||.$$

Proof:

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u-u_h||\leq c\inf_{v_h\in X_h}||u-v_h||.$$

Proof:

$$a(u_h - v_h, v) = a(u_h, v) - a(u, v) + a(u - v_h, v)$$

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u-u_h||\leq c\inf_{v_h\in X_h}||u-v_h||.$$

Proof:

$$a(u_h - v_h, v) = a(u_h, v) - a(u, v) + a(u - v_h, v)$$

= $b(v, \lambda - \lambda_h) + a(u - v_h, v)$

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u-u_h||\leq c\inf_{v_h\in X_h}||u-v_h||.$$

Proof:

$$\begin{array}{rcl} a(u_{h}-v_{h},v) & = & a(u_{h},v)-a(u,v)+a(u-v_{h},v) \\ & = & b(v,\lambda-\lambda_{h})+a(u-v_{h},v) \\ & \leq & C\|u-v_{h}\|\cdot\|v\|. \end{array}$$

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u - u_h|| \le c \inf_{v_h \in X_h} ||u - v_h||.$$

Proof:

Consider $v_h \in V_h(g)$. It follows that

Holds $\forall v \in V_h$ since $b(v, \lambda - \lambda_h) = 0$ from Condition (C).

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u - u_h|| \le c \inf_{v_h \in X_h} ||u - v_h||.$$

Proof:

Consider $v_h \in V_h(g)$. It follows that

$$\begin{array}{rcl}
a(u_{h} - v_{h}, v) & = & a(u_{h}, v) - a(u, v) + a(u - v_{h}, v) \\
& = & b(v, \lambda - \lambda_{h}) + a(u - v_{h}, v) \\
& \leq & C\|u - v_{h}\| \cdot \|v\|.
\end{array}$$

Holds $\forall v \in V_h$ since $b(v, \lambda - \lambda_h) = 0$ from Condition (C).

Let
$$v := u_h - v_h$$
, then $||u_h - v_h||^2 \le \alpha^{-1} C ||u_h - v_h|| \cdot ||u - v_h||$.

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u-u_h||\leq c\inf_{v_h\in X_h}||u-v_h||.$$

Proof:

Consider $v_h \in V_h(g)$. It follows that

$$\begin{array}{rcl} a(u_h - v_h, v) & = & a(u_h, v) - a(u, v) + a(u - v_h, v) \\ & = & b(v, \lambda - \lambda_h) + a(u - v_h, v) \\ & \leq & C\|u - v_h\| \cdot \|v\|. \end{array}$$

Holds $\forall v \in V_h$ since $b(v, \lambda - \lambda_h) = 0$ from Condition (C).

Let
$$v := u_h - v_h$$
, then $||u_h - v_h||^2 \le \alpha^{-1} C ||u_h - v_h|| \cdot ||u - v_h||$. Dividing by $||u_h - v_h||$, we have $||u_h - v_h|| \le \alpha^{-1} C ||u - v_h||$.

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u-u_h||\leq c\inf_{v_h\in X_h}||u-v_h||.$$

Proof:

Consider $v_h \in V_h(g)$. It follows that

Holds $\forall v \in V_h$ since $b(v, \lambda - \lambda_h) = 0$ from Condition (C).

Let $v := u_h - v_h$, then $||u_h - v_h||^2 \le \alpha^{-1}C||u_h - v_h|| \cdot ||u - v_h||$. Dividing by $||u_h - v_h||$, we have $||u_h - v_h|| \le \alpha^{-1}C||u - v_h||$.

By triangle inequality, $||u - u_h|| \le ||u - v_h|| + ||v_h - u_h||$

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u - u_h|| \le c \inf_{v_h \in X_h} ||u - v_h||.$$

Proof:

Consider $v_h \in V_h(g)$. It follows that

$$\begin{array}{rcl} a(u_{h}-v_{h},v) & = & a(u_{h},v)-a(u,v)+a(u-v_{h},v) \\ & = & b(v,\lambda-\lambda_{h})+a(u-v_{h},v) \\ & \leq & C\|u-v_{h}\|\cdot\|v\|. \end{array}$$

Holds $\forall v \in V_h$ since $b(v, \lambda - \lambda_h) = 0$ from Condition (C).

Let $v := u_h - v_h$, then $||u_h - v_h||^2 \le \alpha^{-1} C ||u_h - v_h|| \cdot ||u - v_h||$. Dividing by $||u_h - v_h||$, we have $||u_h - v_h|| \le \alpha^{-1} C ||u - v_h||$.

By triangle inequality, $||u - u_h|| \le ||u - v_h|| + ||v_h - u_h||$ and the result follows.

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u - u_h|| \le c \inf_{v_h \in X_h} ||u - v_h||.$$

Proof:

Consider $v_h \in V_h(g)$. It follows that

$$\begin{array}{rcl} a(u_{h}-v_{h},v) & = & a(u_{h},v)-a(u,v)+a(u-v_{h},v) \\ & = & b(v,\lambda-\lambda_{h})+a(u-v_{h},v) \\ & \leq & C\|u-v_{h}\|\cdot\|v\|. \end{array}$$

Holds $\forall v \in V_h$ since $b(v, \lambda - \lambda_h) = 0$ from Condition (C).

Let $v := u_h - v_h$, then $||u_h - v_h||^2 \le \alpha^{-1}C||u_h - v_h|| \cdot ||u - v_h||$. Dividing by $||u_h - v_h||$, we have $||u_h - v_h|| \le \alpha^{-1}C||u - v_h||$.

By triangle inequality, $||u - u_h|| \le ||u - v_h|| + ||v_h - u_h||$ and the result follows.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

$$\Delta u = -f, \ x \in \Omega,$$

$$\Delta u = -f, \ x \in \Omega, \quad u = 0, \ x \in \Gamma_0,$$

$$\Delta u = -f, \ x \in \Omega, \quad u = 0, \ x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, \ x \in \Gamma_1.$$

Poisson Problem:

$$\Delta u = -f, \ x \in \Omega, \quad u = 0, \ x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, \ x \in \Gamma_1.$$

We use that $\Delta u = \operatorname{div} \operatorname{grad} u$.

Poisson Problem:

$$\Delta u = -f, \ x \in \Omega, \quad u = 0, \ x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, \ x \in \Gamma_1.$$

We use that $\Delta u = \operatorname{div} \operatorname{grad} u$. Let $\sigma = \operatorname{grad} u$,

Poisson Problem:

$$\Delta u = -f, \ x \in \Omega, \quad u = 0, \ x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, \ x \in \Gamma_1.$$

We use that $\Delta u = \operatorname{div}\operatorname{grad} u$. Let $\sigma = \operatorname{grad} u$, then the Poisson problem becomes

$$\operatorname{grad} u = \sigma$$

Poisson Problem:

$$\Delta u = -f, \ x \in \Omega, \quad u = 0, \ x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, \ x \in \Gamma_1.$$

We use that $\Delta u = \operatorname{div}\operatorname{grad} u$. Let $\sigma = \operatorname{grad} u$, then the Poisson problem becomes

$$\operatorname{grad} u = \sigma$$

 $\operatorname{div}\sigma = -f$

Poisson Problem:

$$\Delta u = -f, \ x \in \Omega, \quad u = 0, \ x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, \ x \in \Gamma_1.$$

We use that $\Delta u = \operatorname{div}\operatorname{grad} u$. Let $\sigma = \operatorname{grad} u$, then the Poisson problem becomes

$$grad u = \sigma$$

$$div \sigma = -f$$

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_2(\Omega)^d \times H_0^1(\Omega)$ so that

Poisson Problem:

$$\Delta u = -f, \ x \in \Omega, \quad u = 0, \ x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, \ x \in \Gamma_1.$$

We use that $\Delta u = \operatorname{div}\operatorname{grad} u$. Let $\sigma = \operatorname{grad} u$, then the Poisson problem becomes

$$\operatorname{grad} u = \sigma$$
 $\operatorname{div} \sigma = -f$

Poisson Problem: Mixed Formulation

Find $(\sigma,u)\in L_2(\Omega)^d imes H^1_0(\Omega)$ so that

$$(\sigma,\tau)_{0,\Omega}-(\tau,\nabla u)_{0,\Omega}=0,\ \forall \tau\in L_2(\Omega)^d$$

Poisson Problem:

$$\Delta u = -f, \ x \in \Omega, \quad u = 0, \ x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, \ x \in \Gamma_1.$$

We use that $\Delta u = \operatorname{div}\operatorname{grad} u$. Let $\sigma = \operatorname{grad} u$, then the Poisson problem becomes

$$\operatorname{grad} u = \sigma$$
 $\operatorname{div} \sigma = -f$

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_2(\Omega)^d \times H_0^1(\Omega)$ so that

$$(\sigma,\tau)_{0,\Omega}-(\tau,\nabla u)_{0,\Omega} = 0, \forall \tau \in L_2(\Omega)^d$$

$$-(\sigma,\nabla v)_{0,\Omega} = -(f,v)_{0,\Omega}, \forall v \in H_0^1(\Omega).$$

Poisson Problem:

$$\Delta u = -f, \ x \in \Omega, \quad u = 0, \ x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, \ x \in \Gamma_1.$$

We use that $\Delta u = \operatorname{div}\operatorname{grad} u$. Let $\sigma = \operatorname{grad} u$, then the Poisson problem becomes

$$\operatorname{grad} u = \sigma$$
 $\operatorname{div} \sigma = -f$

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_2(\Omega)^d \times H_0^1(\Omega)$ so that

$$(\sigma,\tau)_{0,\Omega}-(\tau,\nabla u)_{0,\Omega} = 0, \forall \tau \in L_2(\Omega)^d$$

$$-(\sigma,\nabla v)_{0,\Omega} = -(f,v)_{0,\Omega}, \forall v \in H_0^1(\Omega).$$

Poisson Problem: Mixed Formulation

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_2(\Omega)^d \times H_0^1(\Omega)$ so that

Poisson Problem: Mixed Formulation

Find $(\sigma,u)\in L_2(\Omega)^d imes H^1_0(\Omega)$ so that

$$(\sigma,\tau)_{0,\Omega}-(\tau,\nabla u)_{0,\Omega}=0,\ \forall \tau\in L_2(\Omega)^d$$

Poisson Problem: Mixed Formulation

Find $(\sigma,u)\in L_2(\Omega)^d imes H^1_0(\Omega)$ so that

$$(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} = 0, \forall \tau \in L_2(\Omega)^d$$
$$- (\sigma, \nabla v)_{0,\Omega} = -(f, v)_{0,\Omega}, \forall v \in H_0^1(\Omega).$$

Poisson Problem: Mixed Formulation

Find $(\sigma,u)\in L_2(\Omega)^d imes H^1_0(\Omega)$ so that

$$(\sigma,\tau)_{0,\Omega} - (\tau,\nabla u)_{0,\Omega} = 0, \forall \tau \in L_2(\Omega)^d$$

$$- (\sigma,\nabla v)_{0,\Omega} = -(f,v)_{0,\Omega}, \forall v \in H_0^1(\Omega).$$

Poisson Problem: Saddle-Point Formulation

Poisson Problem: Mixed Formulation

Find $(\sigma,u)\in L_2(\Omega)^d imes H^1_0(\Omega)$ so that

$$(\sigma,\tau)_{0,\Omega} - (\tau,\nabla u)_{0,\Omega} = 0, \forall \tau \in L_2(\Omega)^d$$
$$-(\sigma,\nabla v)_{0,\Omega} = -(f,v)_{0,\Omega}, \forall v \in H_0^1(\Omega).$$

Poisson Problem: Saddle-Point Formulation

Let

Poisson Problem: Mixed Formulation

Find $(\sigma,u)\in L_2(\Omega)^d imes H^1_0(\Omega)$ so that

$$(\sigma,\tau)_{0,\Omega}-(\tau,\nabla u)_{0,\Omega} = 0, \forall \tau \in L_2(\Omega)^d$$

$$-(\sigma,\nabla v)_{0,\Omega} = -(f,v)_{0,\Omega}, \forall v \in H_0^1(\Omega).$$

Poisson Problem: Saddle-Point Formulation

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$

Poisson Problem: Mixed Formulation

Find $(\sigma,u)\in L_2(\Omega)^d imes H^1_0(\Omega)$ so that

$$(\sigma,\tau)_{0,\Omega}-(\tau,\nabla u)_{0,\Omega} = 0, \forall \tau \in L_2(\Omega)^d$$

$$-(\sigma,\nabla v)_{0,\Omega} = -(f,v)_{0,\Omega}, \forall v \in H_0^1(\Omega).$$

Poisson Problem: Saddle-Point Formulation

Let

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega)$$

$$a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ b(\tau,\nu):=-(\tau,\nabla\nu)_{0,\Omega}.$$

Poisson Problem: Mixed Formulation

Find $(\sigma,u)\in L_2(\Omega)^d imes H^1_0(\Omega)$ so that

$$(\sigma,\tau)_{0,\Omega} - (\tau,\nabla u)_{0,\Omega} = 0, \forall \tau \in L_2(\Omega)^d$$

$$- (\sigma,\nabla v)_{0,\Omega} = -(f,v)_{0,\Omega}, \forall v \in H_0^1(\Omega).$$

Poisson Problem: Saddle-Point Formulation

Let

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega)$$

$$a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ b(\tau,\nu):=-(\tau,\nabla\nu)_{0,\Omega}.$$

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_2(\Omega)^d \times H^1_0(\Omega)$ so that

$$(\sigma,\tau)_{0,\Omega} - (\tau,\nabla u)_{0,\Omega} = 0, \forall \tau \in L_2(\Omega)^d$$

$$- (\sigma,\nabla v)_{0,\Omega} = -(f,v)_{0,\Omega}, \forall v \in H_0^1(\Omega).$$

Poisson Problem: Saddle-Point Formulation

Let

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega)$$

$$a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ b(\tau,\nu):=-(\tau,\nabla\nu)_{0,\Omega}.$$

$$a(\sigma, \tau) - b(\tau, v) = 0$$

Poisson Problem: Mixed Formulation

Find $(\sigma,u)\in L_2(\Omega)^d imes H^1_0(\Omega)$ so that

$$(\sigma,\tau)_{0,\Omega} - (\tau,\nabla u)_{0,\Omega} = 0, \ \forall \tau \in L_2(\Omega)^d$$
$$-(\sigma,\nabla v)_{0,\Omega} = -(f,v)_{0,\Omega}, \ \forall v \in H_0^1(\Omega).$$

Poisson Problem: Saddle-Point Formulation

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$
$$a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, \nu) := -(\tau, \nabla \nu)_{0,\Omega}.$$

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

Poisson Problem: Saddle-Point Formulation

Let

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega)$$

$$a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}.$$

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

Poisson Problem: Saddle-Point Formulation

Let

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega)$$

$$a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}.$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

Poisson Problem: Saddle-Point Formulation

Let

$$\begin{split} X := L_2(\Omega)^d, M := H^1_0(\Omega) \\ a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, & b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}. \end{split}$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

$$\frac{b(\tau,v)}{\|\tau\|_0}$$

Poisson Problem: Saddle-Point Formulation

Let

$$\begin{split} X := L_2(\Omega)^d, M := H^1_0(\Omega) \\ a(\sigma,\tau) := (\sigma,\tau)_{0,\Omega}, & b(\tau,v) := -(\tau,\nabla v)_{0,\Omega}. \end{split}$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

$$\frac{b(\tau, v)}{\|\tau\|_{0}} = \frac{-(\tau, \nabla v)_{0,\Omega}}{\|\tau\|_{0}}$$

Poisson Problem: Saddle-Point Formulation

Let

$$\begin{split} X := L_2(\Omega)^d, M := H^1_0(\Omega) \\ a(\sigma,\tau) := (\sigma,\tau)_{0,\Omega}, & b(\tau,v) := -(\tau,\nabla v)_{0,\Omega}. \end{split}$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

$$\frac{b(\tau, v)}{\|\tau\|_0} = \frac{-(\tau, \nabla v)_{0,\Omega}}{\|\tau\|_0} = \frac{(\nabla v, \nabla v)_{0,\Omega}}{\|\nabla v\|_0}$$

Poisson Problem: Saddle-Point Formulation

Let

$$\begin{split} X := L_2(\Omega)^d, M := H^1_0(\Omega) \\ a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, & b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}. \end{split}$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

$$\frac{b(\tau, v)}{\|\tau\|_0} = \frac{-(\tau, \nabla v)_{0,\Omega}}{\|\tau\|_0} = \frac{(\nabla v, \nabla v)_{0,\Omega}}{\|\nabla v\|_0} = |v|_1$$

Poisson Problem: Saddle-Point Formulation

Let

$$\begin{split} X := L_2(\Omega)^d, M := H^1_0(\Omega) \\ a(\sigma,\tau) := (\sigma,\tau)_{0,\Omega}, & b(\tau,v) := -(\tau,\nabla v)_{0,\Omega}. \end{split}$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

The Inf-Sup Condition holds since

$$\frac{b(\tau, v)}{\|\tau\|_0} = \frac{-(\tau, \nabla v)_{0,\Omega}}{\|\tau\|_0} = \frac{(\nabla v, \nabla v)_{0,\Omega}}{\|\nabla v\|_0} = |v|_1 \ge \frac{1}{c} \|v\|_1.$$

Poisson Problem: Saddle-Point Formulation

Let

$$\begin{split} X := L_2(\Omega)^d, M := H^1_0(\Omega) \\ a(\sigma,\tau) := (\sigma,\tau)_{0,\Omega}, & b(\tau,v) := -(\tau,\nabla v)_{0,\Omega}. \end{split}$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

The Inf-Sup Condition holds since

$$\frac{b(\tau, v)}{\|\tau\|_0} = \frac{-(\tau, \nabla v)_{0,\Omega}}{\|\tau\|_0} = \frac{(\nabla v, \nabla v)_{0,\Omega}}{\|\nabla v\|_0} = |v|_1 \ge \frac{1}{c} \|v\|_1.$$

This establishes stability of the formulation.

Poisson Problem: Saddle-Point Formulation

$$X := L_2(\Omega)^d, M := H_0^1(\Omega), \ \ a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \ \ b(\tau, \nu) := -(\tau, \nabla \nu)_{0,\Omega}.$$

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

Poisson Problem: Saddle-Point Formulation

$$X := L_2(\Omega)^d, M := H_0^1(\Omega), \ \ a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \ \ b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_h .

Poisson Problem: Saddle-Point Formulation

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega), \ \ a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ \ b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}.$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_h . For $k \geq 1$, let

Poisson Problem: Saddle-Point Formulation

$$X := L_2(\Omega)^d, M := H_0^1(\Omega), \ \ a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \ \ b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_h . For $k \geq 1$, let

Poisson Problem: Stable Mixed Finite Element Spaces

Poisson Problem: Saddle-Point Formulation

$$X := L_2(\Omega)^d, M := H_0^1(\Omega), \ \ a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \ \ b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_h . For $k \geq 1$, let

Poisson Problem: Stable Mixed Finite Element Spaces

$$\textit{X}_{\textit{h}} := \left(\mathcal{M}^{\textit{k}-1}\right)^{\textit{d}} = \{\sigma_{\textit{h}} \in \textit{L}_{2}(\Omega)^{\textit{d}}; \sigma_{\textit{h}}|_{\textit{T}} \in \mathcal{P}_{\textit{k}-1}, \; \forall \textit{T} \in \mathcal{T}_{\textit{h}}\}$$

Poisson Problem: Saddle-Point Formulation

$$X := L_2(\Omega)^d, M := H_0^1(\Omega), \ \ a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \ \ b(\tau, \nu) := -(\tau, \nabla \nu)_{0,\Omega}.$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_h . For $k \geq 1$, let

Poisson Problem: Stable Mixed Finite Element Spaces

$$\begin{aligned} X_h := \left(\mathcal{M}^{k-1}\right)^d &= \{\sigma_h \in L_2(\Omega)^d; \sigma_h|_T \in \mathcal{P}_{k-1}, \ \forall T \in \mathcal{T}_h\} \\ M_h := \mathcal{M}_{0,0}^k &= \{v_h \in H_0^1(\Omega); \ v_h|_T \in \mathcal{P}_k, \ \ \forall T \in \mathcal{T}_h\} \end{aligned}$$

Poisson Problem: Saddle-Point Formulation

$$X := L_2(\Omega)^d, M := H_0^1(\Omega), \ \ a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \ \ b(\tau, \nu) := -(\tau, \nabla \nu)_{0,\Omega}.$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_h . For $k \geq 1$, let

Poisson Problem: Stable Mixed Finite Element Spaces

$$X_h := \left(\mathcal{M}^{k-1}\right)^d = \left\{\sigma_h \in L_2(\Omega)^d; \sigma_h|_T \in \mathcal{P}_{k-1}, \ \forall T \in \mathcal{T}_h\right\}$$
$$M_h := \mathcal{M}_{0,0}^k = \left\{v_h \in H_0^1(\Omega); \ v_h|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h\right\}$$

Note that $\nabla \mathcal{M}_h \subset X_h$, allow us to verify same as in continuous case.

Poisson Problem: Saddle-Point Formulation

$$X := L_2(\Omega)^d, M := H_0^1(\Omega), \ \ a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \ \ b(\tau, \nu) := -(\tau, \nabla \nu)_{0,\Omega}.$$

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

 $b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.$

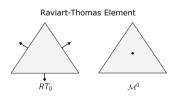
We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_h . For $k \geq 1$, let

Poisson Problem: Stable Mixed Finite Element Spaces

$$X_h := \left(\mathcal{M}^{k-1}\right)^d = \left\{\sigma_h \in L_2(\Omega)^d; \sigma_h|_T \in \mathcal{P}_{k-1}, \ \forall T \in \mathcal{T}_h\right\}$$
$$M_h := \mathcal{M}_{0,0}^k = \left\{v_h \in H_0^1(\Omega); \ v_h|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h\right\}$$

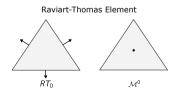
Note that $\nabla \mathcal{M}_h \subset X_h$, allow us to verify same as in continuous case.

Raviart-Thomas Element



Raviart-Thomas Element

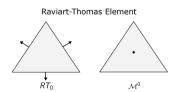
$$X_h := RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau|_{\mathcal{T}} = \begin{pmatrix} a_{\mathcal{T}} \\ b_{\mathcal{T}} \end{pmatrix} + c_{\mathcal{T}} \begin{pmatrix} x \\ y \end{pmatrix}, \ a_{\mathcal{T}}, b_{\mathcal{T}}, c_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial \mathcal{T}) \right\}$$



Raviart-Thomas Element

$$X_h := RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \ a_T, b_T, c_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\}$$

$$M_h := \mathcal{M}^k(\mathcal{T}_h) := \left\{ v \in L_2(\Omega); \ v|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h \right\}$$

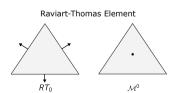


Raviart-Thomas Element

$$X_h := RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \ a_T, b_T, c_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\}$$

$$M_h := \mathcal{M}^k(\mathcal{T}_h) := \{ v \in L_2(\Omega); \ v|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h \}$$

The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.



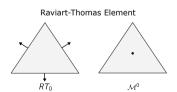
Raviart-Thomas Element

$$X_h := RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \ a_T, b_T, c_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\}$$

$$M_h := \mathcal{M}^k(\mathcal{T}_h) := \left\{ v \in L_2(\Omega); \ v|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h \right\}$$

The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.



Raviart-Thomas Element

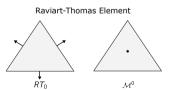
$$X_h := RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \ a_T, b_T, c_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\}$$

$$M_h := \mathcal{M}^k(\mathcal{T}_h) := \left\{ v \in L_2(\Omega); \ v|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h \right\}$$

The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For
$$k=0$$
, $p\in (\mathcal{P}_1)^2$ has



Raviart-Thomas Element

$$\begin{aligned} X_h &:= & RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \ a_T, b_T, c_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\} \\ M_h &:= & \mathcal{M}^k(\mathcal{T}_h) := \{ v \in L_2(\Omega); \ v|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h \} \end{aligned}$$

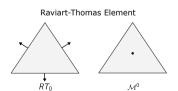
The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For
$$k=0$$
, $p\in (\mathcal{P}_1)^2$ has

$$p(x,y) = \binom{a}{b} + c \binom{x}{y}.$$

The $n \cdot p$ is constant on $\alpha x + \beta y = c_0$ when n orthogonal to the line.



Raviart-Thomas Element

$$\begin{aligned} X_h &:= & RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \ a_T, b_T, c_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\} \\ M_h &:= & \mathcal{M}^k(\mathcal{T}_h) := \{ v \in L_2(\Omega); \ v|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h \} \end{aligned}$$

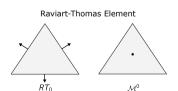
The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For
$$k = 0$$
, $p \in (\mathcal{P}_1)^2$ has

$$p(x,y) = \binom{a}{b} + c \binom{x}{y}.$$

The $n \cdot p$ is constant on $\alpha x + \beta y = c_0$ when n orthogonal to the line. Edge values determine the polynomial p.



Raviart-Thomas Element

$$X_h := RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \ a_T, b_T, c_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\}$$

$$M_h := \mathcal{M}^k(\mathcal{T}_h) := \left\{ v \in L_2(\Omega); \ v|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h \right\}$$

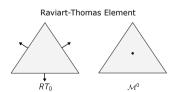
The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For
$$k=0$$
, $p\in (\mathcal{P}_1)^2$ has

$$p(x,y) = \binom{a}{b} + c \binom{x}{y}.$$

The $n \cdot p$ is constant on $\alpha x + \beta y = c_0$ when n orthogonal to the line. Edge values determine the polynomial p. Formally, elements are triple



Raviart-Thomas Element

$$X_h := RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \ a_T, b_T, c_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\}$$

$$M_h := \mathcal{M}^k(\mathcal{T}_h) := \left\{ v \in L_2(\Omega); \ v|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h \right\}$$

The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.

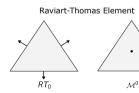
These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For
$$k = 0$$
, $p \in (\mathcal{P}_1)^2$ has

$$p(x,y) = \binom{a}{b} + c \binom{x}{y}.$$

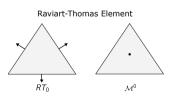
The $n \cdot p$ is constant on $\alpha x + \beta y = c_0$ when n orthogonal to the line. Edge values determine the polynomial p. Formally, elements are triple

$$\left(T, (\mathcal{P}_0)^2 + \mathbf{x} \cdot \mathcal{P}_0, \ n_i \cdot p(z_i), i = 1, 2, 3, \ z_i \text{ is edge midpoint.}\right)$$



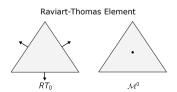
Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:



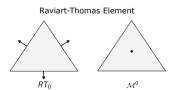
Mesh-Dependent Norms:

$$\| au\|_{0,h} := \left(\| au\|_0^2 + h \sum_{e \in \Gamma_h} \| au n\|_{0,e}^2
ight)^{1/2}$$



Mesh-Dependent Norms:

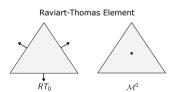
$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$



Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

The $a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}$ and $b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}$ defined for $\tau,\sigma\in L_2(\Omega)^d$.



Mesh-Dependent Norms:

Properties of a:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

The $a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}$ and $b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}$ defined for $\tau,\sigma\in L_2(\Omega)^d$.

Raviart-Thomas Element

 RT_0

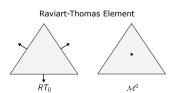
 \mathcal{M}^0

Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

The $a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}$ and $b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}$ defined for $\tau,\sigma\in L_2(\Omega)^d$.

Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from

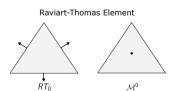


Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

The $a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}$ and $b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}$ defined for $\tau,\sigma\in L_2(\Omega)^d$. **Properties of a:** Ellipticity of $a(\cdot,\cdot)$ follows from

$$\|\tau\|_{0,h} \le C \|\tau\|_0, \ \forall \tau \in RT_k \Rightarrow a(\tau,\tau) = \|\tau\|_{0,\Omega}^2 \ge C^{-2} \|\tau\|_{0,h}^2.$$



Mesh-Dependent Norms:

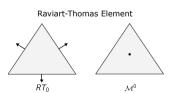
$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

The $a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}$ and $b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}$ defined for $\tau,\sigma\in L_2(\Omega)^d$.

Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from

$$\|\tau\|_{0,h} \leq C \|\tau\|_0, \ \forall \tau \in RT_k \Rightarrow \textit{a}(\tau,\tau) = \|\tau\|_{0,\Omega}^2 \geq C^{-2} \|\tau\|_{0,h}^2.$$

Properties of *b*:



Mesh-Dependent Norms:

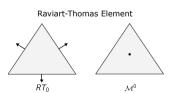
$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

The $a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}$ and $b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}$ defined for $\tau,\sigma\in L_2(\Omega)^d$.

Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from

$$\|\tau\|_{0,h} \leq C \|\tau\|_{0}, \ \forall \tau \in RT_{k} \Rightarrow a(\tau,\tau) = \|\tau\|_{0,\Omega}^{2} \geq C^{-2} \|\tau\|_{0,h}^{2}.$$

Properties of b: Use Green's Identity to rewrite as



Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

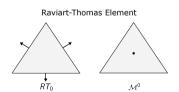
The $a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}$ and $b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}$ defined for $\tau,\sigma\in L_2(\Omega)^d$.

Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from

$$\|\tau\|_{0,h} \leq C \|\tau\|_{0}, \ \forall \tau \in RT_{k} \Rightarrow a(\tau,\tau) = \|\tau\|_{0,\Omega}^{2} \geq C^{-2} \|\tau\|_{0,h}^{2}.$$

Properties of b: Use Green's Identity to rewrite as

$$b(au, v) = -\sum_{T \in \mathcal{T}} \int_T au \cdot \operatorname{grad} v \, dx + \int_{\Gamma_h} J(v) au \, n ds.$$



Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

The $a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}$ and $b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}$ defined for $\tau,\sigma\in L_2(\Omega)^d$.

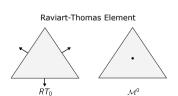
Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from

$$\|\tau\|_{0,h} \leq C \|\tau\|_{0}, \ \forall \tau \in RT_{k} \Rightarrow a(\tau,\tau) = \|\tau\|_{0,\Omega}^{2} \geq C^{-2} \|\tau\|_{0,h}^{2}.$$

Properties of b: Use Green's Identity to rewrite as

$$b(au, v) = -\sum_{T \in \mathcal{T}} \int_T au \cdot \operatorname{grad} v \, dx + \int_{\Gamma_h} J(v) au \, n ds.$$

J(v) is jump of v in normal direction n. $\Gamma_h := \bigcup_{\mathcal{T}} (\partial \mathcal{T} \cap \Omega)$ interior bnds.



Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

The $a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}$ and $b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}$ defined for $\tau,\sigma\in L_2(\Omega)^d$.

Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from

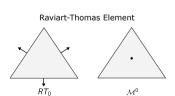
$$\|\tau\|_{0,h} \leq C \|\tau\|_{0}, \ \forall \tau \in RT_{k} \Rightarrow a(\tau,\tau) = \|\tau\|_{0,\Omega}^{2} \geq C^{-2} \|\tau\|_{0,h}^{2}.$$

Properties of *b*: Use Green's Identity to rewrite as

$$b(au, v) = -\sum_{T \in \mathcal{T}} \int_T au \cdot \operatorname{grad} v \, dx + \int_{\Gamma_h} J(v) au \, n ds.$$

J(v) is jump of v in normal direction n. $\Gamma_h := \bigcup_T (\partial T \cap \Omega)$ interior bnds.

The b continuity with Mesh-Norms follows readily.



Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

The $a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}$ and $b(\tau,v):=-(\tau,\nabla v)_{0,\Omega}$ defined for $\tau,\sigma\in L_2(\Omega)^d$.

Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from

$$\|\tau\|_{0,h} \leq C \|\tau\|_{0}, \ \forall \tau \in RT_{k} \Rightarrow a(\tau,\tau) = \|\tau\|_{0,\Omega}^{2} \geq C^{-2} \|\tau\|_{0,h}^{2}.$$

Properties of *b*: Use Green's Identity to rewrite as

$$b(au, v) = -\sum_{T \in \mathcal{T}} \int_T au \cdot \operatorname{grad} v \, dx + \int_{\Gamma_h} J(v) au \, n ds.$$

J(v) is jump of v in normal direction n. $\Gamma_h := \bigcup_T (\partial T \cap \Omega)$ interior bnds.

The b continuity with Mesh-Norms follows readily.

Inf-Sup Condition must be established.

Raviart-Thomas Element

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Lemma: The Inf-Sup Condition

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, \boldsymbol{v})}{\|\tau\|_{0,h}} \geq \beta |\boldsymbol{v}|_{1,h}, \ \forall \boldsymbol{v} \in \mathcal{M}^k,$$

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \ge \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch):

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \ge \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch):

Consider case k = 0, then J(v) is constant along each edge $e \subset \Gamma_h$.

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \ge \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch):

Consider case k=0, then J(v) is constant along each edge $e\subset \Gamma_h$.

This implies there exists $\tau \in RT_0$ so that

$$\tau n = h^{-1}J(v)$$

on each edge $e \subset \Gamma_h$.

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch):

Consider case k = 0, then J(v) is constant along each edge $e \subset \Gamma_h$.

This implies there exists $\tau \in RT_0$ so that

$$\tau n = h^{-1}J(v)$$

on each edge $e \subset \Gamma_h$. Since in this case the area term in Green's Identity

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch):

Consider case k = 0, then J(v) is constant along each edge $e \subset \Gamma_h$.

This implies there exists $\tau \in RT_0$ so that

$$\tau n = h^{-1}J(v)$$

on each edge $e\subset \Gamma_h$. Since in this case the area term in Green's Identity for b vanishes, we have

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch):

Consider case k=0, then J(v) is constant along each edge $e\subset \Gamma_h$.

This implies there exists $\tau \in RT_0$ so that

$$\tau n = h^{-1}J(v)$$

on each edge $e \subset \Gamma_h$. Since in this case the area term in Green's Identity for b vanishes, we have

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds$$

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \ge \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch):

Consider case k=0, then J(v) is constant along each edge $e\subset \Gamma_h$.

This implies there exists $\tau \in RT_0$ so that

$$\tau n = h^{-1}J(v)$$

on each edge $e\subset \Gamma_h$. Since in this case the area term in Green's Identity for b vanishes, we have

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} ||J(v)||_{0,e}^2$$

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \ge \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch):

Consider case k = 0, then J(v) is constant along each edge $e \subset \Gamma_h$.

This implies there exists $\tau \in RT_0$ so that

$$\tau n = h^{-1}J(v)$$

on each edge $e \subset \Gamma_h$. Since in this case the area term in Green's Identity for b vanishes, we have

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} ||J(v)||_{0,e}^2 = |v|_{1,h}^2.$$

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \ge \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} ||J(v)||_{0,e}^2 = |v|_{1,h}^2.$$

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \ge \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} ||J(v)||_{0,e}^2 = |v|_{1,h}^2.$$

We also have

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \ge \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = |v|_{1,h}^2.$$

We also have

$$\|\tau\|_{0,h}^2 \le ch \sum_{e \subset \Gamma_h} \|\tau\|_{0,e}^2 = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \ge \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} ||J(v)||_{0,e}^2 = |v|_{1,h}^2.$$

We also have

$$\|\tau\|_{0,h}^2 \le ch \sum_{e \subset \Gamma_h} \|\tau\|_{0,e}^2 = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$

By taking $|v|_{1,h}^2 = |v|_{1,h}c^{-1/2}||\tau||_{0,h}$,

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \ge \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} ||J(v)||_{0,e}^2 = |v|_{1,h}^2.$$

We also have

$$\|\tau\|_{0,h}^2 \leq ch \sum_{e \subset \Gamma_h} \|\tau\|_{0,e}^2 = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$

By taking $|v|_{1,h}^2 = |v|_{1,h}c^{-1/2}\|\tau\|_{0,h}$, we have $b(\tau,v) \geq c^{-1/2}|v|_{1,h}\|\tau\|_{0,h}$.

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \ge \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} ||J(v)||_{0,e}^2 = |v|_{1,h}^2.$$

We also have

$$\|\tau\|_{0,h}^2 \leq ch \sum_{e \subset \Gamma_h} \|\tau\|_{0,e}^2 = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$

By taking $|v|_{1,h}^2 = |v|_{1,h}c^{-1/2}\|\tau\|_{0,h}$, we have $b(\tau,v) \geq c^{-1/2}|v|_{1,h}\|\tau\|_{0,h}$. Establishes the Inf-Sup Condition.

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \ge \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h .

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} ||J(v)||_{0,e}^2 = |v|_{1,h}^2.$$

We also have

$$\|\tau\|_{0,h}^2 \leq ch \sum_{e \subset \Gamma_h} \|\tau\|_{0,e}^2 = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$

By taking $|v|_{1,h}^2 = |v|_{1,h}c^{-1/2}\|\tau\|_{0,h}$, we have $b(\tau,v) \geq c^{-1/2}|v|_{1,h}\|\tau\|_{0,h}$. Establishes the Inf-Sup Condition.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$

$$\begin{array}{rcl} \Delta u + \operatorname{grad} p & = & -f, \ x \in \Omega \\ & \operatorname{div} u & = & 0, \ x \in \Omega \end{array}$$

$$\Delta u + \operatorname{grad} p = -f, x \in \Omega$$
$$\operatorname{div} u = 0, x \in \Omega$$
$$u = u_0, x \in \partial \Omega.$$

Stokes Flow

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$

 $\operatorname{div} u = 0, \ x \in \Omega$
 $u = u_0, \ x \in \partial \Omega.$

The $u: \Omega \to \mathbb{R}^n$ is **fluid velocity** and $p: \Omega \to \mathbb{R}$ is **pressure**.

Stokes Flow

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$
$$\operatorname{div} u = 0, \ x \in \Omega$$
$$u = u_0, \ x \in \partial \Omega.$$

The $u:\Omega\to\mathbb{R}^n$ is **fluid velocity** and $p:\Omega\to\mathbb{R}$ is **pressure**.

The div u = 0 is constraint for fluid to be **incompressible**.

Stokes Flow

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$

 $\operatorname{div} u = 0, \ x \in \Omega$
 $u = u_0, \ x \in \partial \Omega.$

The $u: \Omega \to \mathbb{R}^n$ is fluid velocity and $p: \Omega \to \mathbb{R}$ is pressure.

The div u = 0 is constraint for fluid to be **incompressible**.

Only imposes p up to constant, usually use condition $\int p dx = 0$.

Stokes Flow

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$
$$\operatorname{div} u = 0, \ x \in \Omega$$
$$u = u_0, \ x \in \partial \Omega.$$

The $u: \Omega \to \mathbb{R}^n$ is **fluid velocity** and $p: \Omega \to \mathbb{R}$ is **pressure**.

The div u = 0 is constraint for fluid to be **incompressible**.

Only imposes p up to constant, usually use condition $\int p dx = 0$.

 $\textbf{Variational Formulation:} \ X = H^1_0(\Omega)^n, \ M = L_{2,0}(\Omega) := \big\{ q \in L_2(\Omega); \ \int q dx = 0 \big\}.$

Stokes Flow

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$

 $\operatorname{div} u = 0, \ x \in \Omega$
 $u = u_0, \ x \in \partial \Omega.$

The $u: \Omega \to \mathbb{R}^n$ is fluid velocity and $p: \Omega \to \mathbb{R}$ is pressure.

The div u = 0 is constraint for fluid to be **incompressible**.

Only imposes p up to constant, usually use condition $\int pdx = 0$.

Variational Formulation: $X = H_0^1(\Omega)^n$, $M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \int q dx = 0\}$.

$$a(u,v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx,$$

Stokes Flow

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$
$$\operatorname{div} u = 0, \ x \in \Omega$$
$$u = u_0, \ x \in \partial \Omega.$$

The $u: \Omega \to \mathbb{R}^n$ is **fluid velocity** and $p: \Omega \to \mathbb{R}$ is **pressure**.

The div u = 0 is constraint for fluid to be **incompressible**.

Only imposes p up to constant, usually use condition $\int pdx = 0$.

Variational Formulation: $X = H_0^1(\Omega)^n$, $M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \int q dx = 0\}$.

$$a(u,v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v,q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

Variational Formulation:
$$X = H_0^1(\Omega)^n$$
, $M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \ \int q dx = 0\}$.

$$a(u,v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v,q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

Variational Formulation:
$$X = H_0^1(\Omega)^n$$
, $M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \ \int q dx = 0\}$.

$$a(u,v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v,q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

Variational Formulation:
$$X = H_0^1(\Omega)^n$$
, $M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \ \int q dx = 0\}$.

$$a(u,v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v,q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

$$X = H_0^1(\Omega)^n, \ M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \ \int q dx = 0 \}.$$

Variational Formulation:
$$X = H_0^1(\Omega)^n$$
, $M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \int q dx = 0 \}$.

$$a(u,v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v,q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

$$X = H_0^1(\Omega)^n, \ M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \ \int q dx = 0 \}.$$

$$a(u,v) + b(v,p) = (f,v)_0 \forall v \in X$$

Variational Formulation:
$$X = H_0^1(\Omega)^n$$
, $M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \ \int q dx = 0\}$.

$$a(u,v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v,q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

$$X=H^1_0(\Omega)^n,\ M=L_{2,0}(\Omega):=\big\{q\in L_2(\Omega);\ \int qdx=0\big\}.$$

$$a(u,v) + b(v,p) = (f,v)_0 \forall v \in X$$

$$b(u,q) = 0, \forall q \in M.$$

Variational Formulation:
$$X = H_0^1(\Omega)^n$$
, $M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \ \int q dx = 0\}$.

$$a(u,v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v,q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

Saddle-Point Problem (Stokes)

$$X = H_0^1(\Omega)^n, \ M = L_{2,0}(\Omega) := \big\{ q \in L_2(\Omega); \ \int q dx = 0 \big\}.$$

$$a(u,v) + b(v,p) = (f,v)_0 \ \forall v \in X$$

$$b(u,q) = 0, \ \forall q \in M.$$

Need to establish the Inf-Sup Conditions.

For Stokes we have

For Stokes we have

$$V:=\left\{v\in X;\; (\operatorname{div} v,q)_{0,\Omega}=0,\; \forall q\in L_2(\Omega)\right\},\quad V^\perp:=\left\{u\in X;\; (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0,\; \forall v\in V\right\}.$$

For Stokes we have

$$V:=\left\{v\in X;\; (\operatorname{div} v,q)_{0,\Omega}=0,\; \forall q\in L_2(\Omega)\right\},\quad V^\perp:=\left\{u\in X;\; (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0,\; \forall v\in V\right\}.$$

The V^{\perp} is H^1 -orthogonal complement of V.

For Stokes we have

$$V:=\left\{v\in X;\; (\operatorname{div} v,q)_{0,\Omega}=0,\; \forall q\in L_2(\Omega)\right\},\quad V^\perp:=\left\{u\in X;\; (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0,\; \forall v\in V\right\}.$$

The V^{\perp} is H^1 -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

For Stokes we have

$$V:=\left\{v\in X;\; (\operatorname{div} v,q)_{0,\Omega}=0,\; \forall q\in L_2(\Omega)\right\},\quad V^\perp:=\left\{u\in X;\; (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0,\; \forall v\in V\right\}.$$

The V^{\perp} is H^1 -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

For Stokes we have

$$V:=\left\{v\in X;\; (\operatorname{div} v,q)_{0,\Omega}=0,\; \forall q\in L_2(\Omega)\right\},\quad V^\perp:=\left\{u\in X;\; (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0,\; \forall v\in V\right\}.$$

The V^{\perp} is H^1 -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

For Stokes we have

$$V:=\left\{v\in X;\; (\operatorname{div} v,q)_{0,\Omega}=0,\; \forall q\in L_2(\Omega)\right\},\quad V^\perp:=\left\{u\in X;\; (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0,\; \forall v\in V\right\}.$$

The V^{\perp} is H^1 -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$\mathsf{div}\,:\,V^\perp\quad\to\quad L_{2,0}(\Omega)$$

For Stokes we have

$$V:=\left\{v\in X;\; (\operatorname{div} v,q)_{0,\Omega}=0,\; \forall q\in L_2(\Omega)\right\},\quad V^\perp:=\left\{u\in X;\; (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0,\; \forall v\in V\right\}.$$

The V^{\perp} is H^1 -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$\operatorname{\mathsf{div}} : V^{\perp} \to L_{2,0}(\Omega)$$
 $v \mapsto \operatorname{\mathsf{div}} v.$

For Stokes we have

$$V:=\left\{v\in X;\; (\operatorname{div} v,q)_{0,\Omega}=0,\; \forall q\in L_2(\Omega)\right\},\quad V^\perp:=\left\{u\in X;\; (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0,\; \forall v\in V\right\}.$$

The V^{\perp} is H^1 -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$\operatorname{\mathsf{div}} : V^{\perp} \to L_{2,0}(\Omega)$$
 $v \mapsto \operatorname{\mathsf{div}} v.$

For any $q \in L_2(\Omega)$ with $\int q \, dx = 0$,

For Stokes we have

$$V:=\left\{v\in X;\; (\operatorname{div} v,q)_{0,\Omega}=0,\; \forall q\in L_2(\Omega)\right\},\quad V^\perp:=\left\{u\in X;\; (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0,\; \forall v\in V\right\}.$$

The V^{\perp} is H^1 -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$\operatorname{\mathsf{div}}: V^\perp \quad o \quad L_{2,0}(\Omega) \ v \quad \mapsto \quad \operatorname{\mathsf{div}} v.$$

For any $q\in L_2(\Omega)$ with $\int q\,dx=0$, there exists $v\in V^\perp\subset H^1_0(\Omega)^n$

For Stokes we have

$$V:=\left\{v\in X;\; (\operatorname{div} v,q)_{0,\Omega}=0,\; \forall q\in L_2(\Omega)\right\},\quad V^\perp:=\left\{u\in X;\; (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0,\; \forall v\in V\right\}.$$

The V^{\perp} is H^1 -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega\subset\mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$\operatorname{\mathsf{div}} : V^\perp \quad o \quad L_{2,0}(\Omega)$$
 $v \quad \mapsto \quad \operatorname{\mathsf{div}} v.$

For any $q \in L_2(\Omega)$ with $\int q \, dx = 0$, there exists $v \in V^{\perp} \subset H_0^1(\Omega)^n$ with

$$\operatorname{div} v = q \text{ and } \|v\|_{1,\Omega} \leq c \|q\|_{0,\Omega},$$

For Stokes we have

$$V:=\left\{v\in X;\; (\operatorname{div} v,q)_{0,\Omega}=0,\; \forall q\in L_2(\Omega)\right\},\quad V^\perp:=\left\{u\in X;\; (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0,\; \forall v\in V\right\}.$$

The V^{\perp} is H^1 -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$\operatorname{\mathsf{div}} : V^\perp \quad o \quad L_{2,0}(\Omega)$$
 $v \quad \mapsto \quad \operatorname{\mathsf{div}} v.$

For any $q \in L_2(\Omega)$ with $\int q \, dx = 0$, there exists $v \in V^\perp \subset H^1_0(\Omega)^n$ with

$$\operatorname{div} v = q \text{ and } \|v\|_{1,\Omega} \leq c \|q\|_{0,\Omega},$$

where $c = c(\Omega)$ constant.

Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^n$

Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^n$

$$\mathsf{grad}\,:\, L_2(\Omega) \to H^{-1}(\Omega)^n$$

Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^n$

$$\mathsf{grad}\,:\, L_2(\Omega) \to H^{-1}(\Omega)^n$$

(2) For $f \in H^{-1}(\Omega)^n$, if

Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^n$

$$\operatorname{\mathsf{grad}}\,:\, L_2(\Omega) \to H^{-1}(\Omega)^n$$

(2) For
$$f \in H^{-1}(\Omega)^n$$
, if

$$\langle f, v \rangle = 0, \ \forall v \in V.$$

Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^n$

$$\mathsf{grad}\,:\, L_2(\Omega) \to H^{-1}(\Omega)^n$$

(2) For
$$f \in H^{-1}(\Omega)^n$$
, if

$$\langle f, v \rangle = 0, \ \forall v \in V.$$

(3) There is constant $c = c(\Omega)$ so that

Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^n$

$$\operatorname{\mathsf{grad}}\,:\, L_2(\Omega) \to H^{-1}(\Omega)^n$$

(2) For $f \in H^{-1}(\Omega)^n$, if

$$\langle f, v \rangle = 0, \ \forall v \in V.$$

(3) There is constant $c = c(\Omega)$ so that

$$\|q\|_{0,\Omega} \le c \left(\|\operatorname{\mathsf{grad}} q\|_{-1,\Omega} + \|q\|_{-1,\Omega}\right) \quad \forall q \in L_2(\Omega),$$

Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^n$

$$\mathsf{grad}\,:\, L_2(\Omega) \to H^{-1}(\Omega)^n$$

(2) For $f \in H^{-1}(\Omega)^n$, if

$$\langle f, v \rangle = 0, \ \forall v \in V.$$

(3) There is constant $c = c(\Omega)$ so that

$$\begin{array}{lcl} \|q\|_{0,\Omega} & \leq & c \, (\|\mathrm{grad} \, q\|_{-1,\Omega} + \|q\|_{-1,\Omega}) & \forall q \in L_2(\Omega), \\ \|q\|_{0,\Omega} & \leq & c \|\mathrm{grad} \, q\|_{-1,\Omega} & \forall q \in L_{2,0}(\Omega). \end{array}$$

Lemma: Inf-Sup for Stokes

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

Lemma: Inf-Sup for Stokes

$$\sup_{v\in X}\frac{b(v,q)}{\|v\|_1}\geq \beta\|q\|_0.$$

Proof (sketch):

(By Theorem I):

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

Lemma: Inf-Sup for Stokes

$$\sup_{v\in X}\frac{b(v,q)}{\|v\|_1}\geq \beta\|q\|_0.$$

Proof (sketch):

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1}$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} = \frac{(\operatorname{div} v, q)}{\|v\|_1}$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} = \frac{(\operatorname{div} v,q)}{\|v\|_1} = \frac{\|q\|_0^2}{\|v\|_1}$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} = \frac{(\operatorname{div} v,q)}{\|v\|_1} = \frac{\|q\|_0^2}{\|v\|_1} \ge \frac{\|q\|_0^2}{c\|q\|_0}$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} = \frac{(\operatorname{div} v,q)}{\|v\|_1} = \frac{\|q\|_0^2}{\|v\|_1} \ge \frac{\|q\|_0^2}{c\|q\|_0} = \frac{1}{c}\|q\|_0.$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem 1): For a $q \in L_{2,0}$, exists $v \in H_0^1(\Omega)^n$ satisfying div v = q and $||v||_{1,\Omega} \le c||q||_{0,\Omega}$ (from previous thm.) This implies

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} = \frac{(\mathsf{div}\, v,q)}{\|v\|_1} = \frac{\|q\|_0^2}{\|v\|_1} \geq \frac{\|q\|_0^2}{c\|q\|_0} = \frac{1}{c}\|q\|_0.$$

This gives the Brezzi Condition for b.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem II):

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1} \|q\|_{0}$.

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_0$. From def. of negative norm, there exists $v \in H_0^1(\Omega)^n$ with $\|v\|_1 = 1$ and

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \ge c^{-1}\|q\|_0$. From def. of negative norm, there exists $v \in H_0^1(\Omega)^n$ with $\|v\|_1 = 1$ and

$$(v, \operatorname{grad} q)_{0,\Omega}$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\text{grad }q\|_{-1} \ge c^{-1}\|q\|_0$. From def. of negative norm, there exists $v \in H_0^1(\Omega)^n$ with $\|v\|_1 = 1$ and

$$(v,\operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \|v\|_1 \|\operatorname{\mathsf{grad}} q\|_{-1}$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\text{grad }q\|_{-1} \ge c^{-1}\|q\|_0$. From def. of negative norm, there exists $v \in H_0^1(\Omega)^n$ with $\|v\|_1 = 1$ and

$$(v, \operatorname{grad} q)_{0,\Omega} \geq rac{1}{2} \|v\|_1 \|\operatorname{grad} q\|_{-1} \geq rac{1}{2c} \|q\|_0.$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \ge c^{-1}\|q\|_0$. From def. of negative norm, there exists $v \in H_0^1(\Omega)^n$ with $\|v\|_1 = 1$ and

$$(v, \operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \|v\|_1 \|\operatorname{\mathsf{grad}} q\|_{-1} \geq rac{1}{2c} \|q\|_0.$$

By Greens Identity $b(v,q) = -\int v \cdot \operatorname{grad} q \, dx$ we have

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \ge c^{-1}\|q\|_0$. From def. of negative norm, there exists $v \in H_0^1(\Omega)^n$ with $\|v\|_1 = 1$ and

$$(v, \operatorname{\sf grad} q)_{0,\Omega} \geq rac{1}{2} \|v\|_1 \|\operatorname{\sf grad} q\|_{-1} \geq rac{1}{2c} \|q\|_0.$$

By Greens Identity $b(v,q) = -\int v \cdot \operatorname{grad} q \, dx$ we have

$$\frac{b(-v,q)}{\|v\|_1}$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \ge c^{-1}\|q\|_0$. From def. of negative norm, there exists $v \in H_0^1(\Omega)^n$ with $\|v\|_1 = 1$ and

$$(v, \operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \|v\|_1 \|\operatorname{\mathsf{grad}} q\|_{-1} \geq rac{1}{2c} \|q\|_0.$$

By Greens Identity $b(v,q) = -\int v \cdot \operatorname{grad} q \, dx$ we have

$$rac{b(-v,q)}{\|v\|_1}=(v,\operatorname{\mathsf{grad}} q)_{0,\Omega}$$

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \ge c^{-1}\|q\|_0$. From def. of negative norm, there exists $v \in H_0^1(\Omega)^n$ with $\|v\|_1 = 1$ and

$$(v, \operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \|v\|_1 \|\operatorname{\mathsf{grad}} q\|_{-1} \geq rac{1}{2c} \|q\|_0.$$

By Greens Identity $b(v,q) = -\int v \cdot \operatorname{grad} q \, dx$ we have

$$rac{b(-v,q)}{\|v\|_1} = (v,\operatorname{grad} q)_{0,\Omega} \geq rac{1}{2c}\|q\|_0.$$

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \ge c^{-1}\|q\|_0$. From def. of negative norm, there exists $v \in H_0^1(\Omega)^n$ with $\|v\|_1 = 1$ and

$$(v, \operatorname{grad} q)_{0,\Omega} \geq rac{1}{2} \|v\|_1 \|\operatorname{grad} q\|_{-1} \geq rac{1}{2c} \|q\|_0.$$

By Greens Identity $b(v,q) = -\int v \cdot \operatorname{grad} q \, dx$ we have

$$rac{b(-v,q)}{\|v\|_1}=(v,\operatorname{\mathsf{grad}} q)_{0,\Omega}\geq rac{1}{2c}\|q\|_0.$$

This gives the Brezzi Condition for b.

Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} \ge \beta \|q\|_0.$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_0$. From def. of negative norm, there exists $v \in H_0^1(\Omega)^n$ with $\|v\|_1 = 1$ and

$$(v, \operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \|v\|_1 \|\operatorname{\mathsf{grad}} q\|_{-1} \geq rac{1}{2c} \|q\|_0.$$

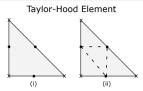
By Greens Identity $b(v,q) = -\int v \cdot \operatorname{grad} q \, dx$ we have

$$rac{b(-v,q)}{\|v\|_1} = (v,\operatorname{grad} q)_{0,\Omega} \geq rac{1}{2c}\|q\|_0.$$

This gives the Brezzi Condition for b.

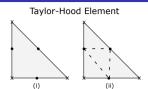
Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Consider triangulation \mathcal{T}_h and polymomial shape spaces \mathcal{P}_j .



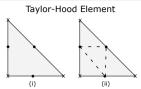
Consider triangulation \mathcal{T}_h and polymomial shape spaces \mathcal{P}_j .

Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.



Consider triangulation \mathcal{T}_h and polymomial shape spaces \mathcal{P}_j .

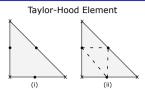
Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.



$$X_h := \left(\mathcal{M}_{0,0}^2\right)^d = \left\{v_h \in C(\bar{\Omega})^d \bigcap H_0^1(\Omega)^d; \ v_h|_T \in \mathcal{P}_2, \ \forall T \in \mathcal{T}_h\right\}$$

Consider triangulation \mathcal{T}_h and polymomial shape spaces \mathcal{P}_j .

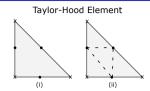
Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.



$$egin{array}{lll} X_h &:=& \left(\mathcal{M}_{0,0}^2
ight)^d = \left\{v_h \in C(ar{\Omega})^d igcap H_0^1(\Omega)^d; \; v_h|_T \in \mathcal{P}_2, \, orall \, T \in \mathcal{T}_h
ight\} \ M_h &:=& \left\{q_h \in C(\Omega) igcap L_{2,0}(\Omega); \; q_h|_T \in \mathcal{P}_1, \; T \in \mathcal{T}_h
ight\} \end{array}$$

Consider triangulation \mathcal{T}_h and polymomial shape spaces \mathcal{P}_j .

Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.

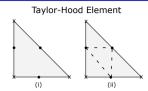


$$\begin{array}{lll} X_h &:=& \left(\mathcal{M}_{0,0}^2\right)^d = \left\{v_h \in C(\bar{\Omega})^d \bigcap H_0^1(\Omega)^d; \ v_h|_T \in \mathcal{P}_2, \ \forall \, T \in \mathcal{T}_h\right\} \\ M_h &:=& \mathcal{M}_0^1 \bigcap L_{2,0} = \left\{q_h \in C(\Omega) \bigcap L_{2,0}(\Omega); \ q_h|_T \in \mathcal{P}_1, \ T \in \mathcal{T}_h\right\} \end{array}$$

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Consider triangulation \mathcal{T}_h and polymomial shape spaces \mathcal{P}_j .

Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.



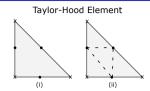
$$\begin{array}{lll} X_h &:=& \left(\mathcal{M}_{0,0}^2\right)^d = \left\{v_h \in C(\bar{\Omega})^d \bigcap H_0^1(\Omega)^d; \ v_h|_T \in \mathcal{P}_2, \ \forall T \in \mathcal{T}_h\right\} \\ M_h &:=& \left.\mathcal{M}_0^1 \bigcap L_{2,0} = \left\{q_h \in C(\Omega) \bigcap L_{2,0}(\Omega); \ q_h|_T \in \mathcal{P}_1, \ T \in \mathcal{T}_h\right\} \end{array}$$

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

$$X_h := \mathcal{M}^1_{0,0} \left(\mathcal{T}_{h/2}\right)^2 = \left\{ v_h \in C(\bar{\Omega})^d \bigcap H^1_0(\Omega)^d; \ v_h|_{\mathcal{T}} \in \mathcal{P}_2, \, \forall \, \mathcal{T} \in \mathcal{T}_{h/2}
ight\}$$

Consider triangulation \mathcal{T}_h and polymomial shape spaces \mathcal{P}_j .

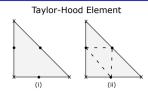
Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.



Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Consider triangulation \mathcal{T}_h and polymomial shape spaces \mathcal{P}_j .

Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.

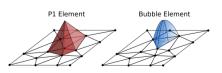


$$\begin{array}{lll} X_h &:=& \left(\mathcal{M}_{0,0}^2\right)^d = \left\{v_h \in C(\bar{\Omega})^d \bigcap H_0^1(\Omega)^d; \ v_h|_T \in \mathcal{P}_2, \ \forall T \in \mathcal{T}_h\right\} \\ M_h &:=& \left.\mathcal{M}_0^1 \bigcap L_{2,0} = \left\{q_h \in C(\Omega) \bigcap L_{2,0}(\Omega); \ q_h|_T \in \mathcal{P}_1, \ T \in \mathcal{T}_h\right\} \end{array}$$

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Figure: x denotes pressure values, · denotes velocity values.

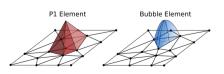
MINI Elements: Achieves stability by using interior "bubble" elements.



MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let $\lambda_1, \lambda_2, \lambda_3$ denotes the **barycentric coordinates** of a points ${\bf x}.$

MINI Element



MINI Element

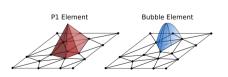
MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let $\lambda_1, \lambda_2, \lambda_3$ denotes the **barycentric coordinates** of a points \mathbf{x} .

Add to the shape space the "bubble" function

$$b(\mathbf{x}) = \lambda_1 \lambda_2 \lambda_3.$$

Note, b vanishes on boundary of T.



MINI Element

MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let $\lambda_1, \lambda_2, \lambda_3$ denotes the **barycentric coordinates** of a points \mathbf{x} .

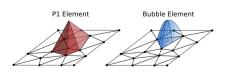
Add to the shape space the "bubble" function

$$b(\mathbf{x}) = \lambda_1 \lambda_2 \lambda_3.$$

Note, b vanishes on boundary of T.

The finite element spaces are

$$X_h := \left[\mathcal{M}_{0,0}^1 \oplus B_3\right]^2, \quad M_h := \mathcal{M}_0^1 \bigcap L_{2,0}(\Omega),$$



MINI Element

MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let $\lambda_1, \lambda_2, \lambda_3$ denotes the **barycentric coordinates** of a points \mathbf{x} .

Add to the shape space the "bubble" function

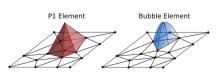
$$b(\mathbf{x}) = \lambda_1 \lambda_2 \lambda_3.$$

Note, b vanishes on boundary of T.

The finite element spaces are

$$X_h := \left[\mathcal{M}_{0,0}^1 \oplus B_3
ight]^2, \quad M_h := \mathcal{M}_0^1 \bigcap L_{2,0}(\Omega),$$

where $B_3:=\{v\in C^0(\bar\Omega);\ v|_T\in {\sf span}[\lambda_1\lambda_2\lambda_3],\ \forall\, T\in \mathcal{T}_h\}.$



MINI Element

MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let $\lambda_1, \lambda_2, \lambda_3$ denotes the **barycentric coordinates** of a points \mathbf{x} .

Add to the shape space the "bubble" function

$$b(\mathbf{x}) = \lambda_1 \lambda_2 \lambda_3.$$

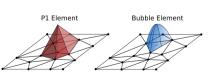
Note, b vanishes on boundary of T.

The finite element spaces are

$$X_h := \left[\mathcal{M}_{0,0}^1 \oplus B_3
ight]^2, \quad M_h := \mathcal{M}_0^1 \bigcap L_{2,0}(\Omega),$$

where $B_3 := \{ v \in C^0(\bar{\Omega}); \ v|_T \in \text{span}[\lambda_1 \lambda_2 \lambda_3], \ \forall T \in \mathcal{T}_h \}.$

Figure: x denotes pressure values, · denotes velocity values.



Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/