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MATH 206D: Finite Element Methods

Welcome to MATH 206D: Finite Element Methods!
We will use the following books:
@ Finite Elements: Theory, Fast Solvers, and

Applications in Solid Mechanics (third edition),
D. Braess.

TEXTS IN APPLIED MATHEMATICS

The Mathematical
Theory of Finite
Element Methods

@ The Mathematical Theory of Finite Element Methods
(third edition),
S. Brenner and R. Scott.

‘JJ‘,

For more information, see the course website:
http://teaching.atzberger.org/

| look forward to working with you this quarter.
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Introduction to Finite Element Methods
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Variational Approach

Variational Principle

1 1
E[u]:/0 (u'(x))2dx—/0 f(x)u(x)dx.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Variational Approach

Variational Principle
1 1
E[u]:/0 (u'(x))2dx—/0 f(x)u(x)dx.

What configuration of u(x) minimizes E[u]?
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Variational Approach

Variational Principle
1 1
E[u]:/0 (u'(x))2dx—/0 f(x)u(x)dx.

What configuration of u(x) minimizes E[u]? Minimizer satisfies:

(GEL]) (v) = &

E[u+ev]=0.
e=0

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Variational Approach

Variational Principle
1 1
E[u]:/0 (u'(x))2dx—/0 f(x)u(x)dx.

What configuration of u(x) minimizes E[u]? Minimizer satisfies:

(OE[u]) (v) = Bae E[u+ev]=0.

e=0

We find that
1 1
(0E[u]) (v) = /0 u’(x)v’(x)dx—/0 u(x)f(x)dx
= [u’(x)v(x)]0 —/0 (u”(x) + f(x)) v(x)dx.
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Variational Approach

Variational Principle
1 1
E[u]:/0 (u'(x))2dx—/0 f(x)u(x)dx.

What configuration of u(x) minimizes E[u]? Minimizer satisfies:

(OE[u]) (v) = Bae E[u+ev]=0.

e=0

We find that
1 1
(0E[u]) (v) = /0 u’(x)v’(x)dx—/0 u(x)f(x)dx
= [u’(x)v(x)]0 —/0 (u”(x) + f(x)) v(x)dx.

Suggests " natural boundary conditions” — /(0) = /(1) = 0.
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Variational Approach: Strong and Weak Forms

Variational Principle (¢/(0) = /(1) = 0)
1 1
(OE[u]) (v) = /0 U (x)V(x)dx — /o u(x)f(x)dx

1
= —/0 (u"(x) + f(x)) v(x)dx =0, Vv € V.
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Variational Approach: Strong and Weak Forms

Variational Principle (¢/(0) = /(1) = 0)
1 1
(OE[u]) (v) = /0 U (x)V(x)dx — /o u(x)f(x)dx

1
= —/0 (u"(x) + f(x)) v(x)dx =0, Vv € V.

Implies PDE holds (strong form)

{ u'(x) = —f(x), x € [0,1]
u'(0) = /(1) =0, x on boundary.
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Variational Approach: Strong and Weak Forms

Variational Principle (¢/(0) = /(1) = 0)
1 1
(OE[u]) (v) = /0 U (x)V(x)dx — /o u(x)f(x)dx
1
_ /0 (" (x) + F(x)) v(x)dx = 0, v € V.

Implies PDE holds (strong form)

{ u'(x) = —f(x), xe]l0,1]
u'(0) = /(1) =0, x on boundary.

Let a(u,v) = fol u'(x)v'(x)dx and (u,v) = fo u(x)v(
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Variational Approach: Strong and Weak Forms

Variational Principle (¢/(0) = /(1) = 0)
1 1
(OE[u]) (v) = /0 U (x)V(x)dx — /o u(x)f(x)dx
1
_ /0 (" (x) + F(x)) v(x)dx = 0, v € V.

Implies PDE holds (strong form)

{ u'(x) = —f(x), xe]l0,1]
u'(0) = /(1) =0, x on boundary.

Let a(u, v) fo x)dx and (u,v) = fo u(x)v(
Then (0E[u]) (v) = 0 |mp||es (weak form)

a(u,v) =(—f,v), Vv € V.
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Variational Approach: Strong and Weak Forms

Variational Principle (¢/(0) = /(1) = 0)
1 1
(OE[u]) (v) = /0 U (x)V(x)dx — /o u(x)f(x)dx
1
_ /0 (" (x) + F(x)) v(x)dx = 0, v € V.

Implies PDE holds (strong form)

{ u'(x) = —f(x), xe]l0,1]
u'(0) = /(1) =0, x on boundary.

Let a(u, v) fo x)dx and (u,v) = fo u(x)v(
Then (0E[u]) (v) = 0 |mp||es (weak form)

a(u,v) =(—f,v), Vv € V.
We take for now V = {v € L2[0,1],a(v, v) < oo, v(0) = 0}
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Variational Approach: Strong and Weak Forms

Variational Principle (¢/(0) = /(1) = 0)
1 1
(OE[u]) (v) = /0 U (x)V(x)dx — /o u(x)f(x)dx
1
_ /0 (" (x) + F(x)) v(x)dx = 0, v € V.

Implies PDE holds (strong form)

{ u'(x) = —f(x), xe]l0,1]
u'(0) = /(1) =0, x on boundary.

Let a(u, v) fo x)dx and (u,v) = fo u(x)v(
Then (0E[u]) (v) = 0 |mp||es (weak form)
a(u,v) =(—f,v), Vv € V.
We take for now V = {v € 2?[0,1], a(v, v) < o0, v(0) = 0} (need to refine later).
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v)=(—f,v), veSs. (Ps)
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v) =(—f,v), veS. (Ps)
The us provides the Ritz-Galerkin Approximation to solutuon u.
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v)=(—f,v), veSs. (Ps)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v)=(—f,v), veSs. (Ps)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof Given that S is finite dimensional it has a basis {¢;}Y;.
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v)=(—f,v), veSs. (Ps)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof Given that S is finite dimensional it has a basis {¢;}" ;. Any function us € S can be expressed

as
N

U5(X) = Z u,-gi),-(x).

i=1
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v)=(—f,v), veSs. (Ps)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof Given that S is finite dimensional it has a basis {¢;}" ;. Any function us € S can be expressed

as
N

U5(X) = Z u,-gi),-(x).
i=1
Plugging this into the weak form, we obtain the linear system

Ku =f.
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v)=(—f,v), veSs. (Ps)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof Given that S is finite dimensional it has a basis {¢;}" ;. Any function us € S can be expressed

as
N

us(x) = Z uidi(x).
i=1
Plugging this into the weak form, we obtain the linear system
Ku =f.

We have "stiffness matrix” [K];; = a(¢i, ¢;) and "load vector” [f]; = (—f, ¢;).
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0.
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us. \

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us. \

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0 = fol v/ (x)V/(x)dx = fol (V/(x))?dx =0
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0 = fol v/ (x)V/(x)dx = fol (V(x))?dx =0 =
V(x)=0
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0 = fol v/ (x)V/(x)dx = fol (V(x))?dx =0 =
Vi(x)=0= v(x)=c.
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0 = fol v/ (x)V/(x)dx = fol (V(x))?dx =0 =
V(x)=0=v(x)=c.NowveSCV,
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0 = fol v/ (x)V/(x)dx = fol (V(x))?dx =0 =
Vix)=0=v(x)=c.NowveSCV,sov(0)=0= c=0.
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0 = fol v/ (x)V/(x)dx = fol (V(x))?dx =0 =
Vix)=0=v(x)=c.NowveSCV,sov(0)=0= c=0.
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(“va):(_fv V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/


http://atzberger.org/

Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(“va):(_fv V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)
Hence, if two solutions us and iig, then let v = ug — is.
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(“va):(_fv V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)
Hence, if two solutions us and s, then let v = us — iis. We then have a(v, ¢;) = 0, Vi,
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(“va):(_fv V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)

Hence, if two solutions us and ds, then let v = us — ds. We then have a(v, ¢;) = 0,Vi, so
v=20
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(“va):(_fv V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)

Hence, if two solutions us and ds, then let v = us — ds. We then have a(v, ¢;) = 0,Vi, so
v=0 = us = is and Ker{K} = 0.

[ |
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(u57v):(—f-, V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)

Hence, if two solutions us and ds, then let v = us — ds. We then have a(v, ¢;) = 0,Vi, so
v=0 = us = is and Ker{K} = 0.

[ |

Shows the problem has a solution.
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(u57v):(—f-, V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)

Hence, if two solutions us and ds, then let v = us — ds. We then have a(v, ¢;) = 0,Vi, so
v=0 = us = is and Ker{K} = 0.

|

Shows the problem has a solution.

Still, need theory to show us — u as & — V (i.e. we recover solution to the PDE in limit).
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Linear Elements
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Linear Elements

Consider space S generated by

Zo Ti—1 Ti Tit1 Tnt1
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Linear Elements

Consider space S generated by

where ¢;(x) = Nj(x),

Zo Ti—1 Ti Tit1 Tnt1

(x = xi—1)/hi—1, x € [xi—1,xi]
Ni(x) =< (xi+1—x)/hi,  x € [xj, xi+1] (Hat Functions).
0, otherwise
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Linear Elements

Consider space S generated by

where ¢;(x) = Nj(x),

Zo Ti—1 Ti Tit1 Tnt1

(x = xi—1)/hi—1, x € [xi—1,xi]
Ni(x) =< (xi+1—x)/hi,  x € [xj, xi+1] (Hat Functions).
0, otherwise

Here, h,‘ = Xj4+1 — Xj and N,'(Xj) = (S,J
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Linear Elements

Consider space S generated by

where ¢;(x) = Nj(x),

Zo Ti—1 Ti Tit1 Tnt1

(x = xi—1)/hi—1, x € [xi—1,xi]
Ni(x) =< (xi+1—x)/hi,  x € [xj, xi+1] (Hat Functions).
0, otherwise

Here, h,‘ = Xj4+1 — Xj and N,'(Xj) = (S,J
Mesh: xg, xi,...,xp+1. Elements: e; = {x|x;—_1 < x < x;31}. Shape Functions: N;(x).
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Linear Elements

Consider space S generated by

where ¢;(x) = Nj(x),

Zo Ti—1 Ti Tit1 Tnt1

(x = xi—1)/hi—1, x € [xi—1,xi]
Ni(x) =< (xi+1—x)/hi,  x € [xj, xi+1] (Hat Functions).
0, otherwise
Here, h,‘ = Xj4+1 — Xj and N,'(Xj) = (S,J
Mesh: xg, xi,...,xp+1. Elements: e; = {x|x;—_1 < x < x;31}. Shape Functions: N;(x).

Let S = {v|v € C[0, L], v(x) = >_i_; viNj(x)}, referred to as the shape space.
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Linear Elements

Consider space S generated by

where ¢;(x) = Nj(x),

Zo Ti—1 Tj Ti+l T4l
(X — X,'_]_)/h,'_]_, X € [X,'_]_,X,']
Ni(x) =< (xi+1—x)/hi,  x € [xj, xi+1] (Hat Functions).
0, otherwise
Here, h,‘ = Xj4+1 — Xj and N,'(Xj) = (S,J
Mesh: xg, xi,...,xp+1. Elements: e; = {x|x;—_1 < x < x;31}. Shape Functions: N;(x).

Let S = {v|v € C[0, L], v(x) = >_i_; viNj(x)}, referred to as the shape space.

We would like to carry-out the Ritz-Galerkin approximations over this space.
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Linear Elements

Shape functions:

(x =xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = ¢ (xie1 = x)/hiy  x € [x5, Xi41]
0, otherwise

Zo Ti—1 Ti Tit+1 Tnt1
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Linear Elements

Shape functions:

(x =xi—1)/hi—1, x € [xj—1,xi]

Ni(x) = (Xix1 — x)/hj, X € [xi, Xi41]
0, otherwise
Consider the heat equation in 1D on [0, L] 2 o
T4 = —f(x), x e [0,L]
u(0) = Ty, u(L) = T2, x on boundary
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Linear Elements

Shape functions:

(x =xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = ¢ (xie1 = x)/hiy  x € [x5, Xi41]
0, otherwise

Consider the heat equation in 1D on [0, L]

T4 = —f(x), x e [0,L]
u(0) = Ty, u(L) = T2, x on boundary

Zo Ti—1 Ti Tit+1 Tnt1

Boundary conditions: up = T; and u,+1 = T; throughout.
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Linear Elements

Shape functions:

(x =xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = ¢ (xie1 = x)/hiy  x € [x5, Xi41]
0, otherwise

Consider the heat equation in 1D on [0, L]

T4 = —f(x), x e [0,L]
u(0) = Ty, u(L) = T2, x on boundary

Zo Ti—1 Ti Tit1 Tnt1

Boundary conditions: up = T; and u,41 = T; throughout. Weak form

a(u,v) = (-f,v), V'veV, WLOGV = {v|ve C[0,L],v(0) = v(L) =0}
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Linear Elements

Shape functions:

(x =xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = ¢ (xie1 = x)/hiy  x € [x5, Xi41]
0, otherwise

Consider the heat equation in 1D on [0, L]

T4 = —f(x), x e [0,L]
u(0) = Ty, u(L) = T2, x on boundary

Zo Ti—1 Ti Tit1 Tnt1

Boundary conditions: up = T; and u,41 = T; throughout. Weak form
a(u,v) = (-f,v), V'veV, WLOGV = {v|ve C[0,L],v(0) = v(L) =0}
We obtain Ritz-Galerkin Approximation by considering finite dimensional problem

3(U57 V) = (_fa V)7 Vv € 8? WLOG § = {V|V = 27:1 V,'N,'(X)}
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Linear Elements

Shape functions:

(x =xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = ¢ (xie1 = x)/hiy  x € [x5, Xi41]
0, otherwise

Consider the heat equation in 1D on [0, L]

T4 = —f(x), x e [0,L]
u(0) = Ty, u(L) = T2, x on boundary

Zo Ti—1 Ti Tit1 Tnt1

Boundary conditions: up = T; and u,41 = T; throughout. Weak form
a(u,v) = (-f,v), V'veV, WLOGV = {v|ve C[0,L],v(0) = v(L) =0}
We obtain Ritz-Galerkin Approximation by considering finite dimensional problem
a(us,v) = (—f,v), Vv €S, WLOG 8 = {v|v =", v;N;(x)}

To obtain stiffness matrix K and load vector f, we need to compute the inner-products.
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, X € [xj—1, Xi]
Ni(x) = ¢ (xiv1 — x)/hi, X € [xi, Xit1]
0, otherwise

Ritz-Galerkin Approximation
a(us,v) = (—f,v),VWwesS, S={vv=XT vN(x)} . " Tiot Ti Tit1  Tnl
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, X € [xj—1, Xi]
Ni(x) = (xiy1 — x)/hi, X € [xi, xi41]
0, otherwise
Ritz-Galerkin Approximation

a(us,v) = (—f,v),VWwesS, S={vv=XT vN(x)} . " Tiot Ti Tit1  Tnl
Stiffness matrix Kjj = a(N;, Nj) when |i — j| <1, Kjj = 0 otherwise.
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, X € [xj—1, Xi]
Ni(x) = (xiy1 — x)/hi, X € [xi, xi41]
0, otherwise
Ritz-Galerkin Approximation

a(us,v) = (—f,v),VWwesS, S={vv=XT vN(x)} . " Tiot Ti Tit1  Tnl
Stiffness matrix Kjj = a(N;, Nj) when |i — j| <1, Kjj = 0 otherwise.

Xi 1
a(N,-_l,N,-):/ *l/h?_ldxth' 171SISI’I+1
Xj—1 =

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Linear Elements

Shape functions:

(x = xi—1)/hi—1, X € [xj—1, Xi]
Ni(x) = (xiy1 — x)/hi, X € [xi, xi41]
0, otherwise
Ritz-Galerkin Approximation

a(us,v) = (—f,v),VWwesS, S={vv=XT vN(x)} . " Tiot Ti Tit1  Tnl
Stiffness matrix Kjj = a(N;, Nj) when |i — j| <1, Kjj = 0 otherwise.

Xi 1
a(N,-_l,N,-):/ *l/h?_ldxth' 171SISI’I+1
Xj—1 =

i X 1 1
a(N,-7N,-):/ l/h,?ildx—l-/ 1/h,2dX: . +F'
Xj—1 Xi I— i
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, X € [xj—1, Xi]
Ni(x) = (xiy1 — x)/hi, X € [xi, xi41]
0, otherwise
Ritz-Galerkin Approximation

a(us,v) = (—f,v),VWwesS, S={vv=XT vN(x)} . " Tiot Ti Tit1  Tnl
Stiffness matrix Kjj = a(N;, Nj) when |i — j| <1, Kjj = 0 otherwise.

Xi 1
a(N,-_l,N,-):/ *l/h?_ldxth' 171SISI’I+1
Xj—1 =

i X 1 1
a(N,-7N,-):/ l/h,?ildx—l-/ 1/h,2dX: . +F'
Xj—1 Xi I— i

(—=f,N;) = /Xi+1 f(x)Ni(x)dx.

Xi—1
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, X € [xj—1, Xi]
Ni(x) = (xiy1 — x)/hi, X € [xi, xi41]
0, otherwise
Ritz-Galerkin Approximation

a(us,v) = (—f,v),VWwesS, S={vv=XT vN(x)} . " Timl i Tl Tntl
Stiffness matrix Kjj = a(N;, Nj) when |i — j| <1, Kjj = 0 otherwise.

Xi 1
a(N,-_l,N,-):/ *l/h?_ldxth' 171SISI’I+1
Xj—1 =

i X 1 1
a(N,-7N,-):/ l/h,?ildx—l-/ 1/h,2dX: . +F'
Xj—1 Xi I— i

Xi+1

(—=F,Ny) = / f(x)N;(x)dx.
Xi—1

When f = Zfiol fiNi(x), compute via "mass matrix" M;; = (N;, N;), and [f]; = —Mf;.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Linear Elements

Shape functions:

(x =xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = q (Xig1 = x)/hi,  x € [x, xi11]
0, otherwise

Ritz-Galerkin Approximation T e -
{ a(u57 V) = (_fa V)7 Yves 0 i—1 i Lt n+1

S={viv=3", viNi(x)}
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Linear Elements

Shape functions:

(x =xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = q (Xig1 = x)/hi,  x € [x, xi11]
0, otherwise

Ritz-Galerkin Approximation

Zo Ti—1 Ti Tit+1 Tnt1

{ a(us,v) =(—f,v), Vv eS
S =A{vlv =320 viNi(x)}

Stiffness matrix when h; = hg = h and load vector when f(x) = f;,

2 1 0 0
o2 0
k-1l o 1 -2 0
h )
0o 0 1 1
0 0 0 -2
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Linear Elements

Shape functions:

(x =xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = q (Xig1 = x)/hi,  x € [x, xi11]
0, otherwise

Ritz-Galerkin Approximation

Zo Ti—1 Ti Tit+1 Tnt1

{ a(us,v) =(—f,v), Vv eS
S =A{vlv =320 viNi(x)}

Stiffness matrix when h; = hg = h and load vector when f(x) = f;,

_9 1 0o --- 0 fy

1 -2 1 - 0 f

k-l o 1 -2 0| - _plh
h ’ .

0 0 1 . 1 :

0 0 0 - -2 i
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Linear Elements

Shape functions:

(x =xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = q (Xig1 = x)/hi,  x € [x, xi11]
0, otherwise

Ritz-Galerkin Approximation

Zo Ti—1 Ti Tit+1 Tnt1

{ a(us,v) =(—f,v), Vv eS
S =A{vlv =320 viNi(x)}

Stiffness matrix when h; = hg = h and load vector when f(x) = f;,

_9 1 0o --- 0 fy

1 -2 1 - 0 f

kLl o 1 2 o ol s__plh
h ’ .

0 0 1 . 1 :

0 0 0 - -2 i

The Ku = f equivalent system to Finite Difference Method for heat equation.
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Error Estimates

We have for any solution us to the Ritz-Galerkin approximation

a(u—us,w)=0,YyweS
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Error Estimates

We have for any solution us to the Ritz-Galerkin approximation
a(u—us,w)=0,YyweS

Geometric interpretation = us is projection of u to hyperplane spanned by members of S.
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Error Estimates

We have for any solution us to the Ritz-Galerkin approximation
a(u—us,w)=0,YyweS

Geometric interpretation = us is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: ||v|lg = +/a(v, v).

)
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Error Estimates

We have for any solution us to the Ritz-Galerkin approximation
a(u—us,w)=0,YyweS

Geometric interpretation = us is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: ||v|lg = +/a(v, v).

)

Swartz Inequality: |a(v, w)| < ||v|el|w| g, Vv, w € V.
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Error Estimates

We have for any solution us to the Ritz-Galerkin approximation
a(u—us,w)=0,YyweS

Geometric interpretation = us is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: ||v|lg = +/a(v, v).

Swartz Inequality: |a(v, w)| < ||v|el|w| g, Vv, w € V.

This gives for any v € S that
|lu—usl|z = a(u—us,u—us)=a(u—us,u—v)+a(u— us,v— us)

= a(u—us,u—v)<|lu—uslellu—vl|e (swartz)

http://atzberger.org/

Finite Element Methods
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Error Estimates

We have for any solution us to the Ritz-Galerkin approximation

a(u—us,w)=0,YyweS

Geometric interpretation = us is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: ||v|lg = +/a(v, v).

Swartz Inequality: |a(v, w)| < ||v|el|w| g, Vv, w € V.

This gives for any v € S that
|lu—usl|z = a(u—us,u—us)=a(u—us,u—v)+a(u— us,v— us)
= a(u—us,u—v)<|lu—uslellu—vl|e (swartz)

If ||u — us||g # 0 we can divide to obtain

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Error Estimates

We have for any solution us to the Ritz-Galerkin approximation

a(u—us,w)=0,YyweS

Geometric interpretation = us is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: ||v|lg = +/a(v, v).

Swartz Inequality: |a(v, w)| < ||v|el|w| g, Vv, w € V.

This gives for any v € S that
|lu—usl|z = a(u—us,u—us)=a(u—us,u—v)+a(u— us,v— us)
= a(u—us,u—v)<|lu—uslellu—vl|e (swartz)
If ||u — us||g # 0 we can divide to obtain

lu—us|le < ||lu—vl|Eg, VveES.
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Error Estimates

This gives
lu— us|le < inf{||u— v|glv e S}.

Note, S C V.

Zo Ti—1 Ti Tit+1 Tnt1
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Error Estimates

This gives
lu— us|le < inf{||u— v|glv e S}.

Note, S C V. Since us € S, we have

llu— us||le = inf{||u— v|glv € S}.

Zo Ti—1 Ti Tit+1 Tnt1
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Error Estimates

This gives
lu— us|le < inf{||u— v|glv e S}.
Note, S C V. Since us € S, we have

llu— us||le = inf{||u— v|glv € S}.

The us is the best approximation possible when using energy norm T Tio1 T Titl Tnt1
to measure errors.
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Error Estimates

This gives
lu— us|le < inf{||u— v|glv e S}.
Note, S C V. Since us € S, we have

llu— us||le = inf{||u— v|glv € S}.

The us is the best approximation possible when using energy norm T Til1 T4
to measure errors.

Tit1 Tn+1

Example (linear elements):
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Error Estimates

This gives
lu— us|le < inf{||u— v|glv e S}.
Note, S C V. Since us € S, we have

llu— us||le = inf{||u— v|glv € S}.

The us is the best approximation possible when using energy norm T Tio1 T Titl
to measure errors.

Tnt1

Example (linear elements):
The Green's function for —d?u/dx? = f is given by

2
G(x,xo)—{x’ X < Xo } dG{l, X < Xo }, dG:—(S(x—xo).

X0, Xp, otherwise [’ dx = | 0, xg, otherwise
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Error Estimates

This gives
lu— us|le < inf{||u— v|glv e S}.

Note, S C V. Since us € S, we have

llu— us||le = inf{||u— v|glv € S}.

The us is the best approximation possible when using energy norm T Tio1 T Titl Tnt1
to measure errors.

Example (linear elements):
The Green's function for —d?u/dx? = f is given by

2
G(x,xo)—{x’ X < Xo }’ dG{ 1, x<xo }, ﬁ:—(S(X—Xo).

Xp, Xg, otherwise dx ~ | 0, xp, otherwise

The solution u above can be expressed as
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Error Estimates

Example (linear elements) (continued)

xo Ti—1 Ti Tit1 Tn+1
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Error Estimates

Example (linear elements) (continued)
The Green's function also has the property that

v(xo) = a(v, G(-, x0)), Yv eV

xo Ti—1 Ti Tit1 Tn+1
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Error Estimates

Example (linear elements) (continued)
The Green's function also has the property that

v(xo) = a(v, G(-, x0)), Yv eV

xo Ti—1 Ti Tit1 Tn+1

Putting this together we have the error can be expressed as

(u—us)(x)=a(u—us,G(-,x0)) = a(u — us, G(-, x0) — v), VveS
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Error Estimates

Example (linear elements) (continued)
The Green's function also has the property that

v(xo) = a(v, G(-, x0)), Yv eV

. . Lo Ti—1 Xy Titl Tntl
Putting this together we have the error can be expressed as

(u—us)(x)=a(u—us,G(-,x0)) = a(u — us, G(-, x0) — v), VveS
Since G € S we have at the nodes x1, xo, ..., x, that

(u—us)(x;)) =a(u—us,G(-,x0) —v) =0, YvesS

Paul J. Atzberger, UCSB
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Error Estimates

Example (linear elements) (continued)
The Green's function also has the property that

v(xo) = a(v, G(-, x0)), Yv eV

xo Ti—1 Ti Tit1 Tn+1

Putting this together we have the error can be expressed as
(u—us)(x)=a(u—us,G(-,x0)) = a(u — us, G(-, x0) — v), VveS
Since G € S we have at the nodes x1, xo, ..., x, that
(u—us)(x;)) =a(u—us,G(-,x0) —v) =0, YvesS

This means us is piece-wise linear with us(x;) = u(x;). We denote us = u; where u; is the
linear interpolation of the solution.
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Error Estimates

Lemma: The error of linear interpolation satisfies
lu = uplloc < CH2[|u"[|ox

xo Ti—1 T Ti+l Tp41
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Error Estimates

Lemma: The error of linear interpolation satisfies
lu = uflloc < CH2[|u"[|ox.

Proof: We have (v — u;)(0) = 0 = (u — uy)(h) since these are
node locations.

xo Ti—1 T Ti+l Tp41
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Error Estimates

Lemma: The error of linear interpolation satisfies

Ju = uilloo < CH2[[u"|oo.

Proof: We have (v — u;)(0) = 0 = (u — uy)(h) since these are
node locations.

By Rolle's Lemma we have there exists x, € [0, h] s.t.

u'(x) — uj(x) = 0.

xo Ti—1 T Ti+l Tp41
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Error Estimates

Lemma: The error of linear interpolation satisfies

Ju— t]loc < CPlu" |

Proof: We have (v — u;)(0) = 0 = (u — uy)(h) since these are
node locations.

By Rolle's Lemma we have there exists x, € [0, h] s.t.

u'(x.) — uj(x.) = 0. Note this will be maximum or minimum, or on Zo Tiol T Tirl  Tog
boundary. WLOG interior case, then (v — u;)(x) = ||u — uy||0o-

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Error Estimates

Lemma: The error of linear interpolation satisfies

Ju— t]loc < CPlu" |

Proof: We have (v — u;)(0) = 0 = (u — uy)(h) since these are
node locations.

By Rolle's Lemma we have there exists x, € [0, h] s.t.

u'(x.) — uj(x.) = 0. Note this will be maximum or minimum, or on Zo Tiol T Tirl  Tog
boundary. WLOG interior case, then (v — u;)(x) = ||u — uy||0o-

By the Taylor Remainder theorem we have for some & € [0, h] that

(0= )() = (=)o) + (1 — ) 0)x = 30) + 3 (" — e )(E)(x — o)
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Error Estimates

Lemma: The error of linear interpolation satisfies

Ju— t]loc < CPlu" |

Proof: We have (v — u;)(0) = 0 = (u — uy)(h) since these are
node locations.

By Rolle's Lemma we have there exists x, € [0, h] s.t.

u'(x.) — uj(x.) = 0. Note this will be maximum or minimum, or on Zo Tiol T Tirl  Tog
boundary. WLOG interior case, then (v — u;)(x) = ||u — uy||0o-

By the Taylor Remainder theorem we have for some & € [0, h] that

(0= )() = (=)o) + (1 — ) 0)x = 30) + 3 (" — e )(E)(x — o)

Let x =0, xp = X, then

0= (= )() + 0 (1" — d)(Ex — x)° = (u— w)(x.) = e (€)(x — x.)
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Error Estimates

Lemma: The error of linear interpolation satisfies

Ju— t]loc < CPlu" |

Proof: We have (v — u;)(0) = 0 = (u — uy)(h) since these are
node locations.

By Rolle's Lemma we have there exists x, € [0, h] s.t.

u'(x.) — uj(x.) = 0. Note this will be maximum or minimum, or on Zo Tiol T Tirl  Tog
boundary. WLOG interior case, then (v — u;)(x) = ||u — uy||0o-

By the Taylor Remainder theorem we have for some & € [0, h] that

(0= )() = (=)o) + (1 — ) 0)x = 30) + 3 (" — e )(E)(x — o)

Let x =0, xp = X, then

0= (= )() + 0 (1" — d)(Ex — x)° = (u— w)(x.) = e (€)(x — x.)

= lu—u]loo < CH|U" .M
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Error Estimates

For & = "space of piecewise linear functions” (linear elements) the solution us has the error

lu— uslloo < CH[|u" |
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Error Estimates

For & = "space of piecewise linear functions” (linear elements) the solution us has the error

lu— uslloo < CH[|u" |

Remark:
Shows the Ritz-Galerkin approximation with linear elements has error that decays like O(h?).
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Error Estimates

For & = "space of piecewise linear functions” (linear elements) the solution us has the error

lu— uslloo < CH[|u" |

Remark:
Shows the Ritz-Galerkin approximation with linear elements has error that decays like O(h?).

We have h ~ 1/n, where n is the number of elements. If we double the number of elements = error
reduced by factor of 1/4.

Finite Element Methods http://atzberger.org/
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Error Estimates

For & = "space of piecewise linear functions” (linear elements) the solution us has the error

lu— uslloo < CH[|u" |

Remark:
Shows the Ritz-Galerkin approximation with linear elements has error that decays like O(h?).

We have h ~ 1/n, where n is the number of elements. If we double the number of elements = error
reduced by factor of 1/4.

For computational efficiency we ideally would like high-order methods with e = O(h®), with « as large
as possible.
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Error Estimates

For & = "space of piecewise linear functions” (linear elements) the solution us has the error

lu— uslloo < CH[|u" |

Remark:
Shows the Ritz-Galerkin approximation with linear elements has error that decays like O(h?).

We have h ~ 1/n, where n is the number of elements. If we double the number of elements = error
reduced by factor of 1/4.

For computational efficiency we ideally would like high-order methods with e = O(h®), with « as large
as possible.

Key is to design function spaces and study their interpolation theory, since this indicates FEM errors.
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