Finite Element Methods: Supplemental Exercises Paul J. Atzberger

1. (Regularity of Elements) Consider the following elements:

Show that each of the elements have the stated regularity as follows:

- (a) Lagrange triangular element based on \mathcal{P}_k with k+1 distinct nodes along each edge is C^0 .
- (b) Hermite triangular element based on \mathcal{P}_3 is C^0 .
- (c) Argyris triangular element based on \mathcal{P}_5 is C^1 in the normal direction across edges.
- 2. (1D Finite Element Methods) Consider the differential equation

$$u''(x) = -f(x), \quad x \in [0, L],$$

 $u(0) = u'(L) = 0, \quad x \text{ on boundary}$

- (a) Formulate the variational problem associated with this differential equation.
- (b) For the linear Lagrange elements and quadradic Lagrange elements state precisely the elements $(\mathcal{K}, \mathcal{P}, \mathcal{N})$ and the Ritz-Galerkin approximation.

- (c) Implement the Linear Lagrange finite element method and the Quadratic Lagrange finite element method. Do this for an arbitrary distribution of distinct nodes. Compute numerically the *stiffness matrix* and *mass matrix* for the differential equation and boundary conditions above. State for each method the matrices when n = 4 for a uniform node distribution.
- (d) Consider the case when $f(x) = -\sin(5\pi x/2L)$. Derive the exact solution $u^*(x)$ for the differential equation.
- (e) For uniformly spaced nodes in the case $f(x) = -\sin(5\pi x/2L)$, compute as $h \to 0$ for each finite element method the following measures of error (i) $\max_i |u_S(x_i) - u^*(x_i)|$, (ii) $||u_S - u^*||_{L^2}$, (iii) $||u_S - u^*||_E$, and (iv) $||u_S - u^*||_{W_2^1}$. The u^* is the exact solution, u_S is the Ritz-Galerkin approximation. Make a log-log plot of the error vs h^{-1} for each measure of error above.
- (f) When the log-log plot is approximately linear the error satisfies $\log(\text{error}) \sim -\alpha \log(h^{-1}) + \tilde{c}$ and scales like error $\sim h^{\alpha}$. By fitting a line to the log-log plots as $h \to 0$ estimate the slope α . State the rates of convergence with respect to each measure of error above for each finite element method.