Exercises

ODEs and Dynamical Systems
MATH 243A
Paul J. Atzberger
http://atzberger.org/

1. Consider the dynamical system $\dot{x}=f(x)$ with equilibrium point x_{0} so $f\left(x_{0}\right)=0$.
(a) Derive an approximating differential equation for the local behaviors, $\tilde{x}(t)=x(t)-x_{0}$, by truncating the Taylor expansion at third order to obtain the form $\dot{\tilde{x}}=a \tilde{x}+b \tilde{x}^{2}+c \tilde{x}^{3}$.
(b) When $f^{\prime}\left(x_{0}\right) \neq 0$ and $f^{\prime}\left(x_{0}\right)<0$ what can you say about the stability?
(c) Suppose that $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right) \neq 0$ what can you now say about the stability?
(d) Suppose that $f^{\prime}\left(x_{0}\right)=0, f^{\prime \prime}\left(x_{0}\right)=0$, and $f^{\prime \prime \prime}\left(x_{0}\right) \neq 0$ with $f^{\prime \prime \prime}\left(x_{0}\right)<0$, what can you now say about stability?
2. Consider the forced harmonic oscillator with dynamics $\dot{\mathbf{x}}=A \mathbf{x}+\mathbf{h}(t)$ where

$$
A=\left[\begin{array}{rr}
0 & 1 / m \\
-k & -\gamma / m
\end{array}\right] .
$$

The $m>0$ is the mass, $k>0$ the spring stiffness, and $\gamma \geq 0$ the friction coefficient. The $\mathbf{x}=(q, p)$ with q the configuration and $p=m v$ the momentum. The forcing $\mathbf{h}=[0, f(t)]$.
(a) Show the total energy is preserved in the case that $\gamma=0$ and $f=0$, where $E(q, p)=$ $\frac{1}{2 m} p^{2}+\frac{1}{2} k q^{2}$.
(b) Show when $f \neq 0$ that the total energy changes by $d E(q, p) / d t=-\gamma v^{2}+v f(t)$ which is the rate work is done on the system.
(c) Derive the general solution for this linear system when $f=0$.
3. For the forced harmonic oscillator consider the following.
(a) For fixed m, k for what values of γ does A have purely real eigenvalues (overdamped regime)? For what values of γ does A have complex eigenvalues (underdamped regime)?
(b) Concerning the stability, answer the following when $f=0$.
i. What type of stability occurs for $\mathbf{x}_{0}=(0,0)$ when $\gamma=0$?
ii. What type of stability occurs for $\mathbf{x}_{0}=(0,0)$ when $\gamma>0$?
iii. Do the different regimes of $\gamma>0$ make a difference?
(c) Let $f(t)=\cos (\alpha t)$, show there is a value for α so that the system has a periodic solution. State if there are restrictions on γ.
(d) Bonus (optional): At what frequency α is the amplitude of the oscillation maximum?
4. Consider the dynamical system $\dot{x}=\beta x+\cos (\alpha t)$.
(a) Derive the general solution for this differential equation.

Hint: Can use integrating factor and integration by parts twice.
(b) When $\alpha=1$ and $\beta=1$, show there is a unique periodic solution.
(c) For $\alpha=1$ and $\beta=1$, derive the Poincare' map $g(x)=\phi_{T}(x)$ using that the period is $T=2 \pi \alpha^{-1}$.
(d) Show there is only one fixed point for the Poincare' map.
(e) Perform analysis of the stability of the periodic solution using the Poincare' map.
(f) For $\alpha=1$ and $\beta=-1$, derive the Poincare' map $g(x)=\phi_{T}(x)$ using that the period is $T=2 \pi \alpha^{-1}$.
(g) Perform analysis of the stability of the periodic solution using the Poincare' map.

