Exercises

ODEs and Dynamical Systems MATH 243A

Paul J. Atzberger http://atzberger.org/

- 1. Consider the dynamical system $\dot{x} = f(x)$ with equilibrium point x_0 so $f(x_0) = 0$.
 - (a) Derive an approximating differential equation for the local behaviors, $\tilde{x}(t) = x(t) x_0$, by truncating the Taylor expansion at third order to obtain the form $\dot{\tilde{x}} = a\tilde{x} + b\tilde{x}^2 + c\tilde{x}^3$.
 - (b) When $f'(x_0) \neq 0$ and $f'(x_0) < 0$ what can you say about the stability?
 - (c) Suppose that $f'(x_0) = 0$ and $f''(x_0) \neq 0$ what can you now say about the stability?
 - (d) Suppose that $f'(x_0) = 0$, $f''(x_0) = 0$, and $f'''(x_0) \neq 0$ with $f'''(x_0) < 0$, what can you now say about stability?
- 2. Consider the forced harmonic oscillator with dynamics $\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{h}(t)$ where

$$A = \left[\begin{array}{cc} 0 & 1/m \\ -k & -\gamma/m \end{array} \right].$$

The m > 0 is the mass, k > 0 the spring stiffness, and $\gamma \ge 0$ the friction coefficient. The $\mathbf{x} = (q, p)$ with q the configuration and p = mv the momentum. The forcing $\mathbf{h} = [0, f(t)]$.

- (a) Show the total energy is preserved in the case that $\gamma = 0$ and f = 0, where $E(q, p) = \frac{1}{2m}p^2 + \frac{1}{2}kq^2$.
- (b) Show when $f \neq 0$ that the total energy changes by $dE(q, p)/dt = -\gamma v^2 + vf(t)$ which is the rate work is done on the system.
- (c) Derive the general solution for this linear system when f = 0.
- 3. For the forced harmonic oscillator consider the following.
 - (a) For fixed m, k for what values of γ does A have purely real eigenvalues (overdamped regime)? For what values of γ does A have complex eigenvalues (underdamped regime)?
 - (b) Concerning the stability, answer the following when f = 0.
 - i. What type of stability occurs for $\mathbf{x}_0 = (0,0)$ when $\gamma = 0$?
 - ii. What type of stability occurs for $\mathbf{x}_0 = (0,0)$ when $\gamma > 0$?
 - iii. Do the different regimes of $\gamma > 0$ make a difference?
 - (c) Let $f(t) = \cos(\alpha t)$, show there is a value for α so that the system has a periodic solution. State if there are restrictions on γ .
 - (d) Bonus (optional): At what frequency α is the amplitude of the oscillation maximum?
- 4. Consider the dynamical system $\dot{x} = \beta x + \cos(\alpha t)$.
 - (a) Derive the general solution for this differential equation.Hint: Can use integrating factor and integration by parts twice.
 - (b) When $\alpha = 1$ and $\beta = 1$, show there is a unique periodic solution.

- (c) For $\alpha = 1$ and $\beta = 1$, derive the Poincare' map $g(x) = \phi_T(x)$ using that the period is $T = 2\pi \alpha^{-1}$.
- (d) Show there is only one fixed point for the Poincare' map.
- (e) Perform analysis of the stability of the periodic solution using the Poincare' map.
- (f) For $\alpha = 1$ and $\beta = -1$, derive the Poincare' map $g(x) = \phi_T(x)$ using that the period is $T = 2\pi \alpha^{-1}$.
- (g) Perform analysis of the stability of the periodic solution using the Poincare' map.