Exercises

ODEs and Dynamical Systems MATH 243A

1. Prove that for any $A \in \mathbb{C}^{n \times n}$ with $n<\infty$ that the matrix exponential $S(t)=\exp (t A)=$ $\sum_{k=0}^{\infty} \frac{1}{k!}(t A)^{k}$ has series that converges to a well-defined operator $S(t)$ for any choice of A and $t<\infty$.
2. Draw the phase-portrait for the ODE given by

$$
\dot{x}=A x, \quad A=\left[\begin{array}{rr}
-3 & -1 \\
1 & -3
\end{array}\right] .
$$

Show the solution when $x(0)=[1,0]^{T}$.
3. Compute the matrix exponentials for the following
(a) $A=\left[\begin{array}{rr}-2 & 0 \\ 0 & -3\end{array}\right]$,
(b) $A=\left[\begin{array}{rr}-3 & -1 \\ 1 & -3\end{array}\right]$,
(c) $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$,
(d) $A=\left[\begin{array}{rrr}3 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 3\end{array}\right]$.
4. If the matrix A is diagonalizable show that

$$
\operatorname{det}(\exp (A))=\exp (\operatorname{tr}(A))
$$

where $\operatorname{det}(\cdot)$ denotes the determinant and $\operatorname{tr}(\cdot)$ denotes the trace.
5. Let $\phi\left(x_{0} ; t\right)$ be the solution map for $\dot{x}=A x$ with $x(0)=x_{0}$. Show that for any t that

$$
\lim _{x_{0}^{\prime} \rightarrow x_{0}} \phi\left(x_{0}^{\prime} ; t\right)=\phi\left(x_{0} ; t\right) .
$$

This shows continuity for finite dimensional linear systems in their dependence on the initial conditions.
6. Put the following matrices into the Jordan canonical form
(a) $A=\left[\begin{array}{rr}0 & 1 \\ -1 & 2\end{array}\right]$,
(b) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$,
(c) $A=\left[\begin{array}{rr}1 & -1 \\ 1 & 3\end{array}\right]$,
(d) $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 2\end{array}\right]$.
7. Give the solution for $x_{0}=\mathbf{e}_{1}$ for $\dot{x}=A x$ for each of the matrices in problem 6. Here, the \mathbf{e}_{1} denotes the standard basis element with components $\left[\mathbf{e}_{1}\right]_{i}=\delta_{1 i}$.
8. State the stable, unstable, and center spaces for the dynamics given by $\dot{x}=A x$ for the matrices in problem 3ac and $6 a d$.

