Exercises

ODEs and Dynamical Systems
MATH 243A
Paul J. Atzberger
http://atzberger.org/

1. Consider the Lipschitz function $g(x)$ and continuous function $f(x)$ for the ODE

$$
\dot{x}=g(x), \quad \dot{y}=f(x) y .
$$

Show for a given initial condition x_{0}, y_{0} if a solution exists on an interval then there is at most one solution. (Hint: Use Gronwall's Inequality).
2. Consider the ODE

$$
\dot{x}=x^{2 / 3} .
$$

(a) Show that $x^{2 / 3}$ is not a Lipschitz function on any interval $[0, b]$ with $b>0$.
(b) Show there are infinitely many solutions satisfying the initial value problem when $x(0)=$ 0.
3. For the ODE $\dot{x}=f(x)$ consider the Forward-Euler Method $w_{k+1}=w_{k}+h f\left(w_{k}\right)$. Show for the ODE $\dot{x}=-\lambda x$ with $\lambda>0$ that the Forward-Euler Method is only stable provided that $0<h<2 / \lambda$. By stability here, we mean that when $\lim _{t \rightarrow \infty} x(t)=0$ we have that $\lim _{k \rightarrow \infty} w_{k}=0$. If we were to modify the numerical approximation to be the Implicit-Euler Method with $w_{k+1}=w_{k}+h f\left(w_{k+1}\right)$ for $\dot{x}=-\lambda x$ what do the conditions for h for stability become?
4. Consider the $\mathrm{ODE} \dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ with $f_{1}\left(x_{1}, x_{2}\right)=x_{2}$ and $f_{2}\left(x_{1}, x_{2}\right)=\mu\left(1-x_{1}^{2}\right) x_{2}-x_{1}$. This is the Van der Pol oscillator. Integrate the dynamics of this ODE using the Runge-Kutta Methods below

$$
\begin{array}{l|rr|rrrrrrr}
0 & & & & & & 0 & 0 & & \\
1 & 1 & 0
\end{array} \quad \begin{array}{rlr}
0 & 1 / 4 & -1 / 4 \\
2 / 3 & 1 / 4 & 5 / 12 \\
1 & 1 / 2 & 1 / 2
\end{array} \quad \begin{array}{rlrrrr}
1 / 2 & 1 / 2 & & & \\
\hline & & 1 / 4 & 3 / 4 & 0 & 1 / 2 \\
& 1 & 0 & 0 & 1 & \\
\hline
\end{array}
$$

(a) Consider the cases when $\mu=0,2,4$ and initial conditions $\mathbf{x}_{0}=(-3,-3), \mathbf{x}_{0}=(-3,3)$ and $\mathbf{x}_{0}=(1,1)$.
(b) Plot the 2D trajectories obtain for each of the methods along with the direction field.
(c) Discuss the behaviors of the different methods.
5. Consider the mechanical system with dynamics $m \ddot{\mathbf{x}}=F(\mathbf{x})$. This can also be expressed as the system $\dot{\mathbf{x}}=\mathbf{v}, \dot{\mathbf{v}}=F(\mathbf{x})$. The Velocity-Verlet Method is given by

$$
\begin{aligned}
w_{2, k+\frac{1}{2}} & =w_{2, k}+\frac{1}{2} h f\left(w_{1, k}\right) \\
w_{1, k+1} & =w_{1, k}+h w_{2, k+\frac{1}{2}} \\
w_{2, k+1} & =w_{2, k+\frac{1}{2}}+\frac{1}{2} h f\left(w_{1, k+1}\right)
\end{aligned}
$$

In the notation, $\mathbf{w}=\left(w_{1}, w_{2}\right) \approx(x, \dot{x})=(x, v)$.
(a) Consider the mechanical system when $F(\mathbf{x})=-k_{0} \mathbf{x}$ with $k_{0}=1, m=1$ and $\mathbf{x} \in \mathbb{R}^{1}$. Derive the exact analytic solution when $\mathbf{x}(0)=1$ and $\dot{\mathbf{x}}(0)=0$.
(b) Numerically approximate the solution using the Velocity-Verlet Method, Forward-Euler, and RK4. Compare your results for each of the methods when taking $h=1,10^{-1}, 10^{-2}$ at time $T=3 \pi$.
(c) Plot the error vs time for each of the methods for $t \in[0, T]$ with $T \gg 2 \pi$.
(d) Discuss the behaviors of these different methods for approximating the dynamics of the mechanical system.

