Exercises

ODEs and Dynamical Systems MATH 243A

Paul J. Atzberger
http://atzberger.org/

1. Consider the ODE

$$
\begin{aligned}
\dot{x} & =-2 x-y^{3} \\
\dot{y} & =-y-x^{3}
\end{aligned}
$$

(a) For the equilibrium $\overline{\mathbf{x}}=(0,0)$ give the linearized system based on $D f(\overline{\mathbf{x}})$.
(b) Show the equilibrium is a sink.
(c) Show if $\overline{\mathbf{x}}$ is a sink, show there can not be any other equilibria in a neighborhood. In other words, show there is a disk with $\delta>0$ containing $\overline{\mathbf{x}}$ and no other equilibria in the disk.
2. Consider the ODE

$$
\begin{aligned}
\dot{\theta} & =1 \\
\dot{r} & = \begin{cases}r^{3} \sin (1 / r), & r>0 \\
0, & r=0 .\end{cases}
\end{aligned}
$$

This gives dynamics in \mathbb{R}^{2} given by $\mathbf{x}(t)=[r(t) \cos (\theta(t)), r(t) \sin (\theta(t))]$.
(a) Show this system has a stable equilibrium for $\overline{\mathbf{x}}=(0,0)$.
(b) Show while the equilibrium is stable it is not asymptotically stable.
(c) Show that for any disk with radius $\delta>0$ containing $\overline{\mathbf{x}}$, there is always a closed trajectory within it looping around the equilibrium $\overline{\mathbf{x}}$.
3. Consider the non-linear ODE

$$
\dot{\mathbf{x}}=-\alpha\left(x^{2}+y^{2}\right) \mathbf{x}+[-y, x],
$$

where $\mathbf{x}=[x, y]$.
(a) Show the linearization $D f(\overline{\mathbf{x}})$ does not have eigenvalues with negative real part for any α, where $\overline{\mathbf{x}}=(0,0)$.
(b) Show for $\alpha \neq 0$ with $\alpha>0$ the non-linear system still has an asymptotically stable equilibrium at $\overline{\mathbf{x}}$.
(c) Show for $\alpha=0$ the equilibrium $\overline{\mathbf{x}}=(0,0)$ is not asymptotically stable, but still stable.

