Exercises

ODEs and Dynamical Systems MATH 243A

Paul J. Atzberger http://atzberger.org/

1. Consider the ODE given by

$$\dot{x} = (1 - x^2 - y^2)x - y \dot{y} = x + (1 - x^2 - y^2)y$$

- (a) Find the Poincare' Map $g(\mathbf{x})$ for the section given by $S = \{[x, y] \mid \frac{1}{2} < x < \frac{3}{2}, y = 0\}$. Hint: Express the ODE in polar coordinates.
- (b) Linearize the Poincare' Map $g(\mathbf{x})$ at $\bar{\mathbf{x}} = [1, 0]$ to obtain $Dg(\bar{\mathbf{x}})$.
- (c) Compute the eigenvalues of $Dg(\bar{\mathbf{x}})$.
- (d) Show the orbit $\gamma = {\mathbf{x}(t) = [\cos(t), \sin(t)]}$ is asymptotically stable.
- 2. Consider the gradient flow

$$\dot{\mathbf{x}} = -\operatorname{grad} V(\mathbf{x}),$$

for the potential $V(\mathbf{x})$ with $\mathbf{x} = (x, y)$. As a qualiative method, draw a sketch by hand of the phase portrait and sample solution trajectories for the following systems.

(a) $V(x, y) = x^2 - y^2 - x$. Hint: Use completing the square.

(b)
$$V(x, y) = y \sin(x)$$
.

- (c) $V(x,y) = x^2(1-x)^2$.
- 3. Consider the ODE

$$\dot{x} = -2x - y^3 \dot{y} = -y - x^3.$$

- (a) Find a strict Liapunov Function for equilibrium $\bar{\mathbf{x}} = (0, 0)$.
- (b) Show that $\bar{\mathbf{x}}$ is asymptotically stable.