Exercises

ODEs and Dynamical Systems
Paul J. Atzberger
MATH 243A

1. Consider the ODE given by

$$
\begin{aligned}
\dot{x} & =\left(1-x^{2}-y^{2}\right) x-y \\
\dot{y} & =x+\left(1-x^{2}-y^{2}\right) y
\end{aligned}
$$

(a) Find the Poincare' Map $g(\mathbf{x})$ for the section given by $\mathcal{S}=\left\{[x, y] \left\lvert\, \frac{1}{2}<x<\frac{3}{2}\right., y=0\right\}$. Hint: Express the ODE in polar coordinates.
(b) Linearize the Poincare' Map $g(\mathbf{x})$ at $\overline{\mathbf{x}}=[1,0]$ to obtain $D g(\overline{\mathbf{x}})$.
(c) Compute the eigenvalues of $D g(\overline{\mathbf{x}})$.
(d) Show the orbit $\gamma=\{\mathbf{x}(t)=[\cos (t), \sin (t)]\}$ is asymptotically stable.
2. Consider the gradient flow

$$
\dot{\mathrm{x}}=-\operatorname{grad} V(\mathbf{x}),
$$

for the potential $V(\mathbf{x})$ with $\mathbf{x}=(x, y)$. As a qualiative method, draw a sketch by hand of the phase portrait and sample solution trajectories for the following systems.
(a) $V(x, y)=x^{2}-y^{2}-x$.

Hint: Use completing the square.
(b) $V(x, y)=y \sin (x)$.
(c) $V(x, y)=x^{2}(1-x)^{2}$.
3. Consider the ODE

$$
\begin{aligned}
\dot{x} & =-2 x-y^{3} \\
\dot{y} & =-y-x^{3} .
\end{aligned}
$$

(a) Find a strict Liapunov Function for equilibrium $\overline{\mathbf{x}}=(0,0)$.
(b) Show that $\overline{\mathbf{x}}$ is asymptotically stable.

