Elasticity Theory

Paul J. Atzberger
206D: Finite Element Methods
University of California Santa Barbara

Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^{3}.

Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^{3}. The current configuration of the material body is described by the deformation mapping

Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^{3}. The current configuration of the material body is described by the deformation mapping

$$
\phi: \bar{\Omega} \rightarrow \mathbb{R}^{3}, \quad \text { assumed } \operatorname{det} \nabla \phi>0 .
$$

Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^{3}.
The current configuration of the material body is described by the deformation mapping

$$
\phi: \bar{\Omega} \rightarrow \mathbb{R}^{3}, \quad \text { assumed } \operatorname{det} \nabla \phi>0 .
$$

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration.

Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^{3}.
The current configuration of the material body is described by the deformation mapping

$$
\phi: \bar{\Omega} \rightarrow \mathbb{R}^{3}, \quad \text { assumed } \operatorname{det} \nabla \phi>0 .
$$

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration.
The displacement u of the material is

$$
u(\mathbf{x})=\phi(\mathbf{x})-\mathbf{x} .
$$

Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^{3}.
The current configuration of the material body is described by the deformation mapping

$$
\phi: \bar{\Omega} \rightarrow \mathbb{R}^{3}, \quad \text { assumed } \operatorname{det} \nabla \phi>0 .
$$

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration.
The displacement u of the material is

$$
u(\mathbf{x})=\phi(\mathbf{x})-\mathbf{x} .
$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders.

Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^{3}.
The current configuration of the material body is described by the deformation mapping

$$
\phi: \bar{\Omega} \rightarrow \mathbb{R}^{3}, \quad \text { assumed } \operatorname{det} \nabla \phi>0 .
$$

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration.
The displacement u of the material is

$$
u(\mathbf{x})=\phi(\mathbf{x})-\mathbf{x} .
$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The deformation gradient is given by

Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^{3}.
The current configuration of the material body is described by the deformation mapping

$$
\phi: \bar{\Omega} \rightarrow \mathbb{R}^{3}, \quad \text { assumed } \operatorname{det} \nabla \phi>0 .
$$

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration.
The displacement u of the material is

$$
u(\mathbf{x})=\phi(\mathbf{x})-\mathbf{x} .
$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The deformation gradient is given by

$$
\nabla \phi=\left[\begin{array}{lll}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} & \frac{\partial \phi_{1}}{\partial x_{3}} \\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}} & \frac{\partial \phi_{2}}{\partial x_{3}} \\
\frac{\partial P_{3}}{\partial x_{1}} & \frac{\partial \phi_{3}}{\partial x_{2}} & \frac{\partial \phi_{3}}{\partial x_{3}}
\end{array}\right]=: F .
$$

Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^{3}.
The current configuration of the material body is described by the deformation mapping

$$
\phi: \bar{\Omega} \rightarrow \mathbb{R}^{3}, \quad \text { assumed } \operatorname{det} \nabla \phi>0 .
$$

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration.
The displacement u of the material is

$$
u(\mathbf{x})=\phi(\mathbf{x})-\mathbf{x} .
$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The deformation gradient is given by

$$
\nabla \phi=\left[\begin{array}{lll}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} & \frac{\partial \phi_{1}}{\partial x_{3}} \\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}} & \frac{\partial \phi_{2}}{\partial x_{3}} \\
\frac{\partial \phi_{3}}{\partial x_{1}} & \frac{\partial \phi_{3}}{\partial x_{2}} & \frac{\partial \phi_{3}}{\partial x_{3}}
\end{array}\right]=: F .
$$

This allows us to express variations in the deformation with position as

$$
\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})=\nabla \phi(\mathbf{x}) \cdot \mathbf{z}+o(\mathbf{z}) .
$$

Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^{3}.
The current configuration of the material body is described by the deformation mapping

$$
\phi: \bar{\Omega} \rightarrow \mathbb{R}^{3}, \quad \text { assumed } \operatorname{det} \nabla \phi>0 .
$$

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration.
The displacement u of the material is

$$
u(\mathbf{x})=\phi(\mathbf{x})-\mathbf{x} .
$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The deformation gradient is given by

$$
\nabla \phi=\left[\begin{array}{lll}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} & \frac{\partial \phi_{1}}{\partial x_{3}} \\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}} & \frac{\partial \phi_{2}}{\partial x_{3}} \\
\frac{\partial \phi_{3}}{\partial x_{1}} & \frac{\partial \phi_{3}}{\partial x_{2}} & \frac{\partial \phi_{3}}{\partial x_{3}}
\end{array}\right]=: F .
$$

This allows us to express variations in the deformation with position as

$$
\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})=\nabla \phi(\mathbf{x}) \cdot \mathbf{z}+o(\mathbf{z}) .
$$

The Euclidean distance between deformations to leading order is

Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^{3}.
The current configuration of the material body is described by the deformation mapping

$$
\phi: \bar{\Omega} \rightarrow \mathbb{R}^{3}, \quad \text { assumed } \operatorname{det} \nabla \phi>0 .
$$

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration.
The displacement u of the material is

$$
u(\mathbf{x})=\phi(\mathbf{x})-\mathbf{x} .
$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The deformation gradient is given by

$$
\nabla \phi=\left[\begin{array}{lll}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} & \frac{\partial \phi_{1}}{\partial x_{3}} \\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}} & \frac{\partial \phi_{2}}{\partial x_{3}} \\
\frac{\partial P_{3}}{\partial x_{1}} & \frac{\partial \phi_{3}}{\partial x_{2}} & \frac{\partial \phi_{3}}{\partial x_{3}}
\end{array}\right]=: F .
$$

This allows us to express variations in the deformation with position as

$$
\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})=\nabla \phi(\mathbf{x}) \cdot \mathbf{z}+o(\mathbf{z}) .
$$

The Euclidean distance between deformations to leading order is

$$
\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^{2}=\|\nabla \phi \cdot \mathbf{z}\|^{2}+o\left(\|\mathbf{z}\|^{2}\right)=\mathbf{z}^{\prime} \nabla \phi^{T} \nabla \phi \mathbf{z}+o\left(\|\mathbf{z}\|^{2}\right) \Rightarrow C:=\nabla \phi^{T} \nabla \phi=F^{T} F .
$$

Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^{3}.
The current configuration of the material body is described by the deformation mapping

$$
\phi: \bar{\Omega} \rightarrow \mathbb{R}^{3}, \quad \text { assumed } \operatorname{det} \nabla \phi>0 .
$$

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration.
The displacement u of the material is

$$
u(\mathbf{x})=\phi(\mathbf{x})-\mathbf{x} .
$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The deformation gradient is given by

$$
\nabla \phi=\left[\begin{array}{lll}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} & \frac{\partial \phi_{1}}{\partial x_{3}} \\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}} & \frac{\partial \phi_{2}}{\partial x_{3}} \\
\frac{\partial P_{3}}{\partial x_{1}} & \frac{\partial \phi_{3}}{\partial x_{2}} & \frac{\partial \phi_{3}}{\partial x_{3}}
\end{array}\right]=: F .
$$

This allows us to express variations in the deformation with position as

$$
\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})=\nabla \phi(\mathbf{x}) \cdot \mathbf{z}+o(\mathbf{z}) .
$$

The Euclidean distance between deformations to leading order is

$$
\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^{2}=\|\nabla \phi \cdot \mathbf{z}\|^{2}+o\left(\|\mathbf{z}\|^{2}\right)=\mathbf{z}^{\prime} \nabla \phi^{T} \nabla \phi \mathbf{z}+o\left(\|\mathbf{z}\|^{2}\right) \Rightarrow C:=\nabla \phi^{T} \nabla \phi=F^{T} F .
$$

Elasticity Theory

This allows us to express variations in the deformation with position as

$$
\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})=\nabla \phi(\mathbf{x}) \cdot \mathbf{z}+o(\mathbf{z})
$$

The Euclidean distance between deformations to leading order is

$$
\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^{2}=\|\nabla \phi \cdot \mathbf{z}\|^{2}+o\left(\|\mathbf{z}\|^{2}\right)=\mathbf{z}^{\prime} \nabla \phi^{T} \nabla \phi \mathbf{z}+o\left(\|\mathbf{z}\|^{2}\right) .
$$

Elasticity Theory

This allows us to express variations in the deformation with position as

$$
\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})=\nabla \phi(\mathbf{x}) \cdot \mathbf{z}+o(\mathbf{z})
$$

The Euclidean distance between deformations to leading order is

$$
\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^{2}=\|\nabla \phi \cdot \mathbf{z}\|^{2}+o\left(\|\mathbf{z}\|^{2}\right)=\mathbf{z}^{\prime} \nabla \phi^{T} \nabla \phi \mathbf{z}+o\left(\|\mathbf{z}\|^{2}\right) .
$$

The right Cauchy-Green Tensor is $C:=\nabla \phi^{T} \nabla \phi=F^{T} F$, where $F=\nabla \phi$.

Elasticity Theory

This allows us to express variations in the deformation with position as

$$
\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})=\nabla \phi(\mathbf{x}) \cdot \mathbf{z}+o(\mathbf{z})
$$

The Euclidean distance between deformations to leading order is

$$
\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^{2}=\|\nabla \phi \cdot \mathbf{z}\|^{2}+o\left(\|\mathbf{z}\|^{2}\right)=\mathbf{z}^{\prime} \nabla \phi^{T} \nabla \phi \mathbf{z}+o\left(\|\mathbf{z}\|^{2}\right) .
$$

The right Cauchy-Green Tensor is $C:=\nabla \phi^{T} \nabla \phi=F^{T} F$, where $F=\nabla \phi$.
The material strain is modeled by

$$
E:=\frac{1}{2}(C-\mathcal{I}) .
$$

Elasticity Theory

This allows us to express variations in the deformation with position as

$$
\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})=\nabla \phi(\mathbf{x}) \cdot \mathbf{z}+o(\mathbf{z})
$$

The Euclidean distance between deformations to leading order is

$$
\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^{2}=\|\nabla \phi \cdot \mathbf{z}\|^{2}+o\left(\|\mathbf{z}\|^{2}\right)=\mathbf{z}^{\prime} \nabla \phi^{T} \nabla \phi \mathbf{z}+o\left(\|\mathbf{z}\|^{2}\right) .
$$

The right Cauchy-Green Tensor is $C:=\nabla \phi^{T} \nabla \phi=F^{T} F$, where $F=\nabla \phi$.
The material strain is modeled by

$$
E:=\frac{1}{2}(C-\mathcal{I}) .
$$

This is one of the most fundamental concepts in elasticity theory.

Elasticity Theory

This allows us to express variations in the deformation with position as

$$
\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})=\nabla \phi(\mathbf{x}) \cdot \mathbf{z}+o(\mathbf{z}) .
$$

The Euclidean distance between deformations to leading order is

$$
\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^{2}=\|\nabla \phi \cdot \mathbf{z}\|^{2}+o\left(\|\mathbf{z}\|^{2}\right)=\mathbf{z}^{\prime} \nabla \phi^{T} \nabla \phi \mathbf{z}+o\left(\|\mathbf{z}\|^{2}\right) .
$$

The right Cauchy-Green Tensor is $C:=\nabla \phi^{T} \nabla \phi=F^{T} F$, where $F=\nabla \phi$.
The material strain is modeled by

$$
E:=\frac{1}{2}(C-\mathcal{I}) .
$$

This is one of the most fundamental concepts in elasticity theory.
In matrix form these tensors can be expressed as

Elasticity Theory

This allows us to express variations in the deformation with position as

$$
\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})=\nabla \phi(\mathbf{x}) \cdot \mathbf{z}+o(\mathbf{z}) .
$$

The Euclidean distance between deformations to leading order is

$$
\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^{2}=\|\nabla \phi \cdot \mathbf{z}\|^{2}+o\left(\|\mathbf{z}\|^{2}\right)=\mathbf{z}^{\prime} \nabla \phi^{T} \nabla \phi \mathbf{z}+o\left(\|\mathbf{z}\|^{2}\right) .
$$

The right Cauchy-Green Tensor is $C:=\nabla \phi^{T} \nabla \phi=F^{T} F$, where $F=\nabla \phi$.
The material strain is modeled by

$$
E:=\frac{1}{2}(C-\mathcal{I}) .
$$

This is one of the most fundamental concepts in elasticity theory.
In matrix form these tensors can be expressed as

$$
E_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\frac{1}{2} \sum_{k} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{j}} .
$$

Elasticity Theory

This allows us to express variations in the deformation with position as

$$
\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})=\nabla \phi(\mathbf{x}) \cdot \mathbf{z}+o(\mathbf{z}) .
$$

The Euclidean distance between deformations to leading order is

$$
\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^{2}=\|\nabla \phi \cdot \mathbf{z}\|^{2}+o\left(\|\mathbf{z}\|^{2}\right)=\mathbf{z}^{\prime} \nabla \phi^{T} \nabla \phi \mathbf{z}+o\left(\|\mathbf{z}\|^{2}\right) .
$$

The right Cauchy-Green Tensor is $C:=\nabla \phi^{T} \nabla \phi=F^{T} F$, where $F=\nabla \phi$.
The material strain is modeled by

$$
E:=\frac{1}{2}(C-\mathcal{I}) .
$$

This is one of the most fundamental concepts in elasticity theory.
In matrix form these tensors can be expressed as

$$
E_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\frac{1}{2} \sum_{k} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{j}} .
$$

In practice, the second quadratic term is often neglected to obtain an approximation.
The symmetric gradient approximation for strain is denoted by

Elasticity Theory

This allows us to express variations in the deformation with position as

$$
\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})=\nabla \phi(\mathbf{x}) \cdot \mathbf{z}+o(\mathbf{z}) .
$$

The Euclidean distance between deformations to leading order is

$$
\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^{2}=\|\nabla \phi \cdot \mathbf{z}\|^{2}+o\left(\|\mathbf{z}\|^{2}\right)=\mathbf{z}^{\prime} \nabla \phi^{T} \nabla \phi \mathbf{z}+o\left(\|\mathbf{z}\|^{2}\right) .
$$

The right Cauchy-Green Tensor is $C:=\nabla \phi^{T} \nabla \phi=F^{T} F$, where $F=\nabla \phi$.
The material strain is modeled by

$$
E:=\frac{1}{2}(C-\mathcal{I}) .
$$

This is one of the most fundamental concepts in elasticity theory.
In matrix form these tensors can be expressed as

$$
E_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\frac{1}{2} \sum_{k} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{j}} .
$$

In practice, the second quadratic term is often neglected to obtain an approximation.
The symmetric gradient approximation for strain is denoted by

$$
\epsilon_{i j}:=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) .
$$

Elasticity Theory

Assumptions for Equilibrium

Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:

Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces \mathbf{t} which apply over the boundaries of the body, $($ force $=\mathbf{t}(\mathbf{x}, \mathbf{n}) d A)$.

Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces \mathbf{t} which apply over the boundaries of the body, (force $=\mathbf{t}(\mathbf{x}, \mathbf{n}) d A$).
(b) body forces \mathbf{f} which apply throughout the volume, (force $=\mathbf{f}(\mathbf{x}) d V$).

Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces \mathbf{t} which apply over the boundaries of the body, (force $=\mathbf{t}(\mathbf{x}, \mathbf{n}) d A$).
(b) body forces \mathbf{f} which apply throughout the volume, (force $=\mathbf{f}(\mathbf{x}) d V$).

Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces \mathbf{t} which apply over the boundaries of the body, (force $=\mathbf{t}(\mathbf{x}, \mathbf{n}) d A$).
(b) body forces \mathbf{f} which apply throughout the volume, (force $=\mathbf{f}(\mathbf{x}) d V)$.

The $\mathbf{t}(\mathbf{x}, \mathbf{n})$ is called the Cauchy stress vector.

Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces \mathbf{t} which apply over the boundaries of the body, (force $=\mathbf{t}(\mathbf{x}, \mathbf{n}) d A)$.
(b) body forces \mathbf{f} which apply throughout the volume, (force $=\mathbf{f}(\mathbf{x}) d V)$.

The $\mathbf{t}(\mathbf{x}, \mathbf{n})$ is called the Cauchy stress vector. The $\mathbf{f}(\mathbf{x})$ is called the body force.

Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces \mathbf{t} which apply over the boundaries of the body, (force $=\mathbf{t}(\mathbf{x}, \mathbf{n}) d A)$.
(b) body forces \mathbf{f} which apply throughout the volume, (force $=\mathbf{f}(\mathbf{x}) d V)$.

The $\mathbf{t}(\mathbf{x}, \mathbf{n})$ is called the Cauchy stress vector. The $\mathbf{f}(\mathbf{x})$ is called the body force.

Axiom of Static Equilibrium

Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces \mathbf{t} which apply over the boundaries of the body, (force $=\mathbf{t}(\mathbf{x}, \mathbf{n}) d A)$.
(b) body forces \mathbf{f} which apply throughout the volume, (force $=\mathbf{f}(\mathbf{x}) d V)$.

The $\mathbf{t}(\mathbf{x}, \mathbf{n})$ is called the Cauchy stress vector. The $\mathbf{f}(\mathbf{x})$ is called the body force.

Axiom of Static Equilibrium

For a body \mathcal{B} in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field \mathbf{t} so that for every smooth volume \mathcal{V} of \mathcal{B} we have

Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces \mathbf{t} which apply over the boundaries of the body, (force $=\mathbf{t}(\mathbf{x}, \mathbf{n}) d A)$.
(b) body forces \mathbf{f} which apply throughout the volume, (force $=\mathbf{f}(\mathbf{x}) d V)$.

The $\mathbf{t}(\mathbf{x}, \mathbf{n})$ is called the Cauchy stress vector. The $\mathbf{f}(\mathbf{x})$ is called the body force.

Axiom of Static Equilibrium

For a body \mathcal{B} in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field \mathbf{t} so that for every smooth volume \mathcal{V} of \mathcal{B} we have

$$
\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) d V_{\mathrm{x}}+\int_{\partial V} \mathbf{t}(\mathbf{x}, \mathbf{n}) d A_{\mathbf{x}}=0
$$

Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces \mathbf{t} which apply over the boundaries of the body, (force $=\mathbf{t}(\mathbf{x}, \mathbf{n}) d A)$.
(b) body forces \mathbf{f} which apply throughout the volume, (force $=\mathbf{f}(\mathbf{x}) d V)$.

The $\mathbf{t}(\mathbf{x}, \mathbf{n})$ is called the Cauchy stress vector. The $\mathbf{f}(\mathbf{x})$ is called the body force.

Axiom of Static Equilibrium

For a body \mathcal{B} in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field \mathbf{t} so that for every smooth volume \mathcal{V} of \mathcal{B} we have

$$
\begin{aligned}
\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) d V_{\mathrm{x}}+\int_{\partial \mathcal{V}} \mathbf{t}(\mathbf{x}, \mathbf{n}) d A_{\mathbf{x}} & =0 \\
\int_{\mathcal{V}} \mathbf{x} \wedge \mathbf{f}(\mathbf{x}) d V_{\mathbf{x}}+\int_{\partial \mathcal{V}} \mathbf{x} \wedge \mathbf{t}(\mathbf{x}, \mathbf{n}) d A_{\mathbf{x}} & =0
\end{aligned}
$$

Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces \mathbf{t} which apply over the boundaries of the body, (force $=\mathbf{t}(\mathbf{x}, \mathbf{n}) d A)$.
(b) body forces \mathbf{f} which apply throughout the volume, (force $=\mathbf{f}(\mathbf{x}) d V)$.

The $\mathbf{t}(\mathbf{x}, \mathbf{n})$ is called the Cauchy stress vector. The $\mathbf{f}(\mathbf{x})$ is called the body force.

Axiom of Static Equilibrium

For a body \mathcal{B} in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field \mathbf{t} so that for every smooth volume \mathcal{V} of \mathcal{B} we have

$$
\begin{aligned}
\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) d V_{\mathbf{x}}+\int_{\partial \mathcal{V}} \mathbf{t}(\mathbf{x}, \mathbf{n}) d A_{\mathbf{x}} & =0 \\
\int_{\mathcal{V}} \mathbf{x} \wedge \mathbf{f}(\mathbf{x}) d V_{\mathbf{x}}+\int_{\partial \mathcal{V}} \mathbf{x} \wedge \mathbf{t}(\mathbf{x}, \mathbf{n}) d A_{\mathbf{x}} & =0
\end{aligned}
$$

The symbol \wedge denotes the vector cross-product in \mathbb{R}^{3}.

Elasticity Theory

Notational Conventions

Elasticity Theory

Notational Conventions

$\mathbb{M}^{3} \quad$: the set of 3×3 matrices.
$\mathbb{M}_{+}^{3} \quad$: the set of \mathbb{M}^{3} with positive determinant.

Elasticity Theory

Notational Conventions

$\mathbb{M}^{3} \quad$: the set of 3×3 matrices.
$\mathbb{M}_{+}^{3} \quad$: the set of \mathbb{M}^{3} with positive determinant.
\mathbb{O}^{3} : the set of orthogonal 3×3 matrices.
$\mathbb{O}_{+}^{3} \quad: \quad$ the set $\mathbb{O}^{3} \bigcap \mathbb{M}_{+}^{3}$.

Elasticity Theory

Notational Conventions

$\mathbb{M}^{3} \quad$: the set of 3×3 matrices.
$\mathbb{M}_{+}^{3} \quad$: the set of \mathbb{M}^{3} with positive determinant.
\mathbb{O}^{3} : the set of orthogonal 3×3 matrices.
$\mathbb{O}_{+}^{3} \quad: \quad$ the set $\mathbb{O}^{3} \bigcap \mathbb{M}_{+}^{3}$.
\mathbb{S}^{3} : the set of symmetric 3×3 matrices.
$\mathbb{S}_{>}^{3} \quad: \quad$ the set of positive definite matrices of \mathbb{S}^{3}.

Elasticity Theory

Notational Conventions

$\mathbb{M}^{3} \quad$: the set of 3×3 matrices.
$\mathbb{M}_{+}^{3} \quad$: the set of \mathbb{M}^{3} with positive determinant.
\mathbb{O}^{3} : the set of orthogonal 3×3 matrices.
$\mathbb{O}_{+}^{3} \quad: \quad$ the set $\mathbb{O}^{3} \bigcap \mathbb{M}_{+}^{3}$.
\mathbb{S}^{3} : the set of symmetric 3×3 matrices.
$\mathbb{S}_{>}^{3} \quad: \quad$ the set of positive definite matrices of \mathbb{S}^{3}.

Elasticity Theory

Cauchy's Theorem

Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^{1}\left(\mathcal{B}, \mathbb{R}^{3}\right), \mathbf{t}(\mathbf{x}, \cdot) \in C^{0}\left(\mathcal{S}^{2}, \mathbb{R}^{3}\right)$, and $\mathbf{f}(\mathbf{x}) \in C^{0}\left(\mathcal{B}, \mathbb{R}^{3}\right)$.

Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^{1}\left(\mathcal{B}, \mathbb{R}^{3}\right), \mathbf{t}(\mathbf{x}, \cdot) \in C^{0}\left(\mathcal{S}^{2}, \mathbb{R}^{3}\right)$, and $\mathbf{f}(\mathbf{x}) \in C^{0}\left(\mathcal{B}, \mathbb{R}^{3}\right)$. There exists a symmetric tensor field $T \in C^{1}\left(\mathcal{B}, \mathcal{S}^{2}\right)$ satisfying

Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^{1}\left(\mathcal{B}, \mathbb{R}^{3}\right), \mathbf{t}(\mathbf{x}, \cdot) \in C^{0}\left(\mathcal{S}^{2}, \mathbb{R}^{3}\right)$, and $\mathbf{f}(\mathbf{x}) \in C^{0}\left(\mathcal{B}, \mathbb{R}^{3}\right)$. There exists a symmetric tensor field $T \in C^{1}\left(\mathcal{B}, \mathcal{S}^{2}\right)$ satisfying
(i) $\mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}, \quad \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^{2}$,
(ii) $T(\mathrm{x})=T^{T}(\mathrm{x}), \quad \mathrm{x} \in \mathcal{B}$,
(iii) $\operatorname{div} T(\mathbf{x})+\mathbf{f}(\mathbf{x})=0, \quad \mathbf{x} \in \mathcal{B}$.

Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^{1}\left(\mathcal{B}, \mathbb{R}^{3}\right), \mathbf{t}(\mathbf{x}, \cdot) \in C^{0}\left(\mathcal{S}^{2}, \mathbb{R}^{3}\right)$, and $\mathbf{f}(\mathbf{x}) \in C^{0}\left(\mathcal{B}, \mathbb{R}^{3}\right)$. There exists a symmetric tensor field $T \in C^{1}\left(\mathcal{B}, \mathcal{S}^{2}\right)$ satisfying

$$
\begin{array}{lll}
\text { (i) } & \mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^{2}, \\
\text { (ii) } & T(\mathbf{x})=T^{T}(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\
\text { (iii) } \operatorname{div} T(\mathbf{x})+\mathbf{f}(\mathbf{x})=0, & \mathbf{x} \in \mathcal{B} .
\end{array}
$$

This T is called the Cachy stress tensor.

Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^{1}\left(\mathcal{B}, \mathbb{R}^{3}\right), \mathbf{t}(\mathbf{x}, \cdot) \in C^{0}\left(\mathcal{S}^{2}, \mathbb{R}^{3}\right)$, and $\mathbf{f}(\mathbf{x}) \in C^{0}\left(\mathcal{B}, \mathbb{R}^{3}\right)$. There exists a symmetric tensor field $T \in C^{1}\left(\mathcal{B}, \mathcal{S}^{2}\right)$ satisfying

$$
\begin{array}{lll}
\text { (i) } & \mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^{2}, \\
\text { (ii) } & T(\mathbf{x})=T^{T}(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\
\text { (iii) } & \operatorname{div} T(\mathbf{x})+\mathbf{f}(\mathbf{x})=0, & \mathbf{x} \in \mathcal{B} .
\end{array}
$$

This T is called the Cachy stress tensor.
This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^{1}\left(\mathcal{B}, \mathbb{R}^{3}\right), \mathbf{t}(\mathbf{x}, \cdot) \in C^{0}\left(\mathcal{S}^{2}, \mathbb{R}^{3}\right)$, and $\mathbf{f}(\mathbf{x}) \in C^{0}\left(\mathcal{B}, \mathbb{R}^{3}\right)$. There exists a symmetric tensor field $T \in C^{1}\left(\mathcal{B}, \mathcal{S}^{2}\right)$ satisfying

$$
\text { (i) } \mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}, \quad \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^{2},
$$

(ii) $T(x)=T^{T}(x), \quad x \in \mathcal{B}$,
(iii) $\operatorname{div} T(\mathbf{x})+\mathbf{f}(\mathbf{x})=0, \quad \mathbf{x} \in \mathcal{B}$.

This T is called the Cachy stress tensor.
This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$
\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) d V+\int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} d A=\int_{\mathcal{V}}(\mathbf{f}(\mathbf{x})+\operatorname{div} T(\mathbf{x})) d V=0
$$

Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^{1}\left(\mathcal{B}, \mathbb{R}^{3}\right), \mathbf{t}(\mathbf{x}, \cdot) \in C^{0}\left(\mathcal{S}^{2}, \mathbb{R}^{3}\right)$, and $\mathbf{f}(\mathbf{x}) \in C^{0}\left(\mathcal{B}, \mathbb{R}^{3}\right)$. There exists a symmetric tensor field $T \in C^{1}\left(\mathcal{B}, \mathcal{S}^{2}\right)$ satisfying

$$
\text { (i) } \mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}, \quad \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^{2},
$$

$$
\text { (ii) } \quad T(\mathbf{x})=T^{T}(\mathbf{x}), \quad \mathbf{x} \in \mathcal{B},
$$

$$
\text { (iii) } \operatorname{div} T(\mathbf{x})+\mathbf{f}(\mathbf{x})=0, \quad \mathbf{x} \in \mathcal{B}
$$

This T is called the Cachy stress tensor.
This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$
\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) d V+\int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} d A=\int_{\mathcal{V}}(\mathbf{f}(\mathbf{x})+\operatorname{div} T(\mathbf{x})) d V=0 .
$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^{3}$ or in reference body frame $\mathbf{x}_{R} \in \bar{\Omega}$.

Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^{1}\left(\mathcal{B}, \mathbb{R}^{3}\right), \mathbf{t}(\mathbf{x}, \cdot) \in C^{0}\left(\mathcal{S}^{2}, \mathbb{R}^{3}\right)$, and $\mathbf{f}(\mathbf{x}) \in C^{0}\left(\mathcal{B}, \mathbb{R}^{3}\right)$. There exists a symmetric tensor field $T \in C^{1}\left(\mathcal{B}, \mathcal{S}^{2}\right)$ satisfying

$$
\begin{array}{lll}
\text { (i) } & \mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^{2}, \\
\text { (ii) } & T(\mathbf{x})=T^{T}(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\
\text { (iii) } \operatorname{div} T(\mathbf{x})+\mathbf{f}(\mathbf{x})=0, & \mathbf{x} \in \mathcal{B} .
\end{array}
$$

This T is called the Cachy stress tensor.
This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$
\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) d V+\int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} d A=\int_{\mathcal{V}}(\mathbf{f}(\mathbf{x})+\operatorname{div} T(\mathbf{x})) d V=0 .
$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^{3}$ or in reference body frame $\mathbf{x}_{R} \in \bar{\Omega}$. Transformations to reference configuration $\bar{\Omega}$:

Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^{1}\left(\mathcal{B}, \mathbb{R}^{3}\right), \mathbf{t}(\mathbf{x}, \cdot) \in C^{0}\left(\mathcal{S}^{2}, \mathbb{R}^{3}\right)$, and $\mathbf{f}(\mathbf{x}) \in C^{0}\left(\mathcal{B}, \mathbb{R}^{3}\right)$. There exists a symmetric tensor field $T \in C^{1}\left(\mathcal{B}, \mathcal{S}^{2}\right)$ satisfying

$$
\begin{array}{lll}
\text { (i) } & \mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^{2}, \\
\text { (ii) } & T(\mathbf{x})=T^{T}(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\
\text { (iii) } \operatorname{div} T(\mathbf{x})+\mathbf{f}(\mathbf{x})=0, & \mathbf{x} \in \mathcal{B} .
\end{array}
$$

This T is called the Cachy stress tensor.
This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$
\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) d V+\int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} d A=\int_{\mathcal{V}}(\mathbf{f}(\mathbf{x})+\operatorname{div} T(\mathbf{x})) d V=0 .
$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^{3}$ or in reference body frame $\mathbf{x}_{R} \in \bar{\Omega}$.

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), \quad d \mathbf{x}=d V_{\mathrm{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$.

Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^{1}\left(\mathcal{B}, \mathbb{R}^{3}\right), \mathbf{t}(\mathbf{x}, \cdot) \in C^{0}\left(\mathcal{S}^{2}, \mathbb{R}^{3}\right)$, and $\mathbf{f}(\mathbf{x}) \in C^{0}\left(\mathcal{B}, \mathbb{R}^{3}\right)$. There exists a symmetric tensor field $T \in C^{1}\left(\mathcal{B}, \mathcal{S}^{2}\right)$ satisfying
(i) $\mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}, \quad \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^{2}$,
(ii) $T(x)=T^{T}(x), \quad x \in \mathcal{B}$,
(iii) $\operatorname{div} T(\mathbf{x})+\mathbf{f}(\mathbf{x})=0, \quad \mathbf{x} \in \mathcal{B}$.

This T is called the Cachy stress tensor.
This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$
\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) d V+\int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} d A=\int_{\mathcal{V}}(\mathbf{f}(\mathbf{x})+\operatorname{div} T(\mathbf{x})) d V=0
$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^{3}$ or in reference body frame $\mathbf{x}_{R} \in \bar{\Omega}$.

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), \quad d \mathbf{x}=d V_{\mathbf{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$. Density transforms as $\rho(\mathbf{x}) d \mathbf{x}=\rho_{R}\left(\mathbf{x}_{R}\right) d \mathbf{x}_{R}$. This gives $\rho(\mathbf{x})=\rho\left(\phi\left(\mathbf{x}_{R}\right)\right)=\operatorname{det}\left(\nabla \phi^{-1}\right) \rho_{R}\left(\mathbf{x}_{R}\right)$.

Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^{1}\left(\mathcal{B}, \mathbb{R}^{3}\right), \mathbf{t}(\mathbf{x}, \cdot) \in C^{0}\left(\mathcal{S}^{2}, \mathbb{R}^{3}\right)$, and $\mathbf{f}(\mathbf{x}) \in C^{0}\left(\mathcal{B}, \mathbb{R}^{3}\right)$. There exists a symmetric tensor field $T \in C^{1}\left(\mathcal{B}, \mathcal{S}^{2}\right)$ satisfying
(i) $\mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}, \quad \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^{2}$,
(ii) $T(x)=T^{T}(x), \quad x \in \mathcal{B}$,
(iii) $\operatorname{div} T(\mathbf{x})+\mathbf{f}(\mathbf{x})=0, \quad \mathbf{x} \in \mathcal{B}$.

This T is called the Cachy stress tensor.
This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$
\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) d V+\int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} d A=\int_{\mathcal{V}}(\mathbf{f}(\mathbf{x})+\operatorname{div} T(\mathbf{x})) d V=0
$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^{3}$ or in reference body frame $\mathbf{x}_{R} \in \bar{\Omega}$.

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), \quad d \mathbf{x}=d V_{\mathrm{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$. Density transforms as $\rho(\mathbf{x}) d \mathbf{x}=\rho_{R}\left(\mathbf{x}_{R}\right) d \mathbf{x}_{R}$. This gives $\rho(\mathbf{x})=\rho\left(\phi\left(\mathbf{x}_{R}\right)\right)=\operatorname{det}\left(\nabla \phi^{-1}\right) \rho_{R}\left(\mathbf{x}_{R}\right)$. Force density scales similarly as $\mathbf{f}(\mathbf{x})=\operatorname{det}\left(\nabla \phi^{-1}\right) \mathbf{f}_{R}\left(\mathbf{x}_{R}\right)$.

Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^{1}\left(\mathcal{B}, \mathbb{R}^{3}\right), \mathbf{t}(\mathbf{x}, \cdot) \in C^{0}\left(\mathcal{S}^{2}, \mathbb{R}^{3}\right)$, and $\mathbf{f}(\mathbf{x}) \in C^{0}\left(\mathcal{B}, \mathbb{R}^{3}\right)$. There exists a symmetric tensor field $T \in C^{1}\left(\mathcal{B}, \mathcal{S}^{2}\right)$ satisfying

$$
\begin{array}{lll}
\text { (i) } & \mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^{2}, \\
\text { (ii) } & T(\mathbf{x})=T^{T}(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\
\text { (iii) } & \operatorname{div} T(\mathbf{x})+\mathbf{f}(\mathbf{x})=0, & \mathbf{x} \in \mathcal{B} .
\end{array}
$$

This T is called the Cachy stress tensor.
This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$
\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) d V+\int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} d A=\int_{\mathcal{V}}(\mathbf{f}(\mathbf{x})+\operatorname{div} T(\mathbf{x})) d V=0 .
$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^{3}$ or in reference body frame $\mathbf{x}_{R} \in \bar{\Omega}$.

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), \quad d \mathbf{x}=d V_{\mathrm{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$. Density transforms as $\rho(\mathbf{x}) d \mathbf{x}=\rho_{R}\left(\mathbf{x}_{R}\right) d \mathbf{x}_{R}$. This gives $\rho(\mathbf{x})=\rho\left(\phi\left(\mathbf{x}_{R}\right)\right)=\operatorname{det}\left(\nabla \phi^{-1}\right) \rho_{R}\left(\mathbf{x}_{R}\right)$. Force density scales similarly as $\mathbf{f}(\mathbf{x})=\operatorname{det}\left(\nabla \phi^{-1}\right) \mathbf{f}_{R}\left(\mathbf{x}_{R}\right)$. This assumes that forces track with point masses, termed dead load.

Elasticity Theory

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), \quad d \mathbf{x}=d V_{\mathbf{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$. Density transforms as $\rho(\mathbf{x}) d \mathbf{x}=\rho_{R}\left(\mathbf{x}_{R}\right) d \mathbf{x}_{R}$. This gives $\rho(\mathbf{x})=\rho\left(\phi\left(\mathbf{x}_{R}\right)\right)=\operatorname{det}\left(\nabla \phi^{-1}\right) \rho_{R}\left(\mathbf{x}_{R}\right)$. Force density scales similarly as $\mathbf{f}(\mathbf{x})=\operatorname{det}\left(\nabla \phi^{-1}\right) \mathbf{f}_{R}\left(\mathbf{x}_{R}\right)$. This assumes that forces track with point masses, termed dead load.

Elasticity Theory

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), \quad d \mathbf{x}=d V_{\mathbf{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$. Density transforms as $\rho(\mathbf{x}) d \mathbf{x}=\rho_{R}\left(\mathbf{x}_{R}\right) d \mathbf{x}_{R}$. This gives $\rho(\mathbf{x})=\rho\left(\phi\left(\mathbf{x}_{R}\right)\right)=\operatorname{det}\left(\nabla \phi^{-1}\right) \rho_{R}\left(\mathbf{x}_{R}\right)$. Force density scales similarly as $\mathbf{f}(\mathbf{x})=\operatorname{det}\left(\nabla \phi^{-1}\right) \mathbf{f}_{R}\left(\mathbf{x}_{R}\right)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:

Elasticity Theory

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), \quad d \mathbf{x}=d V_{\mathbf{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$. Density transforms as $\rho(\mathbf{x}) d \mathbf{x}=\rho_{R}\left(\mathbf{x}_{R}\right) d \mathbf{x}_{R}$. This gives $\rho(\mathbf{x})=\rho\left(\phi\left(\mathbf{x}_{R}\right)\right)=\operatorname{det}\left(\nabla \phi^{-1}\right) \rho_{R}\left(\mathbf{x}_{R}\right)$. Force density scales similarly as $\mathbf{f}(\mathbf{x})=\operatorname{det}\left(\nabla \phi^{-1}\right) \mathbf{f}_{R}\left(\mathbf{x}_{R}\right)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:

Stress balance in reference configuration is

Elasticity Theory

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), \quad d \mathbf{x}=d V_{\mathbf{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$. Density transforms as $\rho(\mathbf{x}) d \mathbf{x}=\rho_{R}\left(\mathbf{x}_{R}\right) d \mathbf{x}_{R}$. This gives $\rho(\mathbf{x})=\rho\left(\phi\left(\mathbf{x}_{R}\right)\right)=\operatorname{det}\left(\nabla \phi^{-1}\right) \rho_{R}\left(\mathbf{x}_{R}\right)$. Force density scales similarly as $\mathbf{f}(\mathbf{x})=\operatorname{det}\left(\nabla \phi^{-1}\right) \mathbf{f}_{R}\left(\mathbf{x}_{R}\right)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:

Stress balance in reference configuration is

$$
\operatorname{div}_{R} T_{R}+f_{R}=0, \text { where } T_{R}:=\operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T}
$$

Elasticity Theory

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), \quad d \mathbf{x}=d V_{\mathbf{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$. Density transforms as $\rho(\mathbf{x}) d \mathbf{x}=\rho_{R}\left(\mathbf{x}_{R}\right) d \mathbf{x}_{R}$. This gives $\rho(\mathbf{x})=\rho\left(\phi\left(\mathbf{x}_{R}\right)\right)=\operatorname{det}\left(\nabla \phi^{-1}\right) \rho_{R}\left(\mathbf{x}_{R}\right)$. Force density scales similarly as $\mathbf{f}(\mathbf{x})=\operatorname{det}\left(\nabla \phi^{-1}\right) \mathbf{f}_{R}\left(\mathbf{x}_{R}\right)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:

Stress balance in reference configuration is

$$
\operatorname{div}_{R} T_{R}+f_{R}=0, \text { where } T_{R}:=\operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T}
$$

We define two associated stress tensors:

Elasticity Theory

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), d \mathbf{x}=d V_{\mathrm{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$. Density transforms as $\rho(\mathbf{x}) d \mathbf{x}=\rho_{R}\left(\mathbf{x}_{R}\right) d \mathbf{x}_{R}$. This gives $\rho(\mathbf{x})=\rho\left(\phi\left(\mathbf{x}_{R}\right)\right)=\operatorname{det}\left(\nabla \phi^{-1}\right) \rho_{R}\left(\mathbf{x}_{R}\right)$. Force density scales similarly as $\mathbf{f}(\mathbf{x})=\operatorname{det}\left(\nabla \phi^{-1}\right) \mathbf{f}_{R}\left(\mathbf{x}_{R}\right)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:

Stress balance in reference configuration is

$$
\operatorname{div}_{R} T_{R}+f_{R}=0 \text {, where } T_{R}:=\operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T} \text {. }
$$

We define two associated stress tensors:
(a) First Piola-Kirchhoff Stress Tensor $T_{R}, \quad T_{R}:=\operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T}$.

Elasticity Theory

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), d \mathbf{x}=d V_{\mathrm{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$. Density transforms as $\rho(\mathbf{x}) d \mathbf{x}=\rho_{R}\left(\mathbf{x}_{R}\right) d \mathbf{x}_{R}$. This gives $\rho(\mathbf{x})=\rho\left(\phi\left(\mathbf{x}_{R}\right)\right)=\operatorname{det}\left(\nabla \phi^{-1}\right) \rho_{R}\left(\mathbf{x}_{R}\right)$. Force density scales similarly as $\mathbf{f}(\mathbf{x})=\operatorname{det}\left(\nabla \phi^{-1}\right) \mathbf{f}_{R}\left(\mathbf{x}_{R}\right)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:

Stress balance in reference configuration is

$$
\operatorname{div}_{R} T_{R}+f_{R}=0 \text {, where } T_{R}:=\operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T} .
$$

We define two associated stress tensors:
(a) First Piola-Kirchhoff Stress Tensor $T_{R}, \quad T_{R}:=\operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T}$.
(b) Second Piola-Kirchhoff Stress Tensor $\Sigma_{R}, \quad \Sigma_{R}:=(\nabla \phi)^{-1} T_{R}=(\nabla \phi)^{-1} \operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T}$.

Elasticity Theory

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), \quad d \mathbf{x}=d V_{\mathbf{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$. Density transforms as $\rho(\mathbf{x}) d \mathbf{x}=\rho_{R}\left(\mathbf{x}_{R}\right) d \mathbf{x}_{R}$. This gives $\rho(\mathbf{x})=\rho\left(\phi\left(\mathbf{x}_{R}\right)\right)=\operatorname{det}\left(\nabla \phi^{-1}\right) \rho_{R}\left(\mathbf{x}_{R}\right)$. Force density scales similarly as $\mathbf{f}(\mathbf{x})=\operatorname{det}\left(\nabla \phi^{-1}\right) \mathbf{f}_{R}\left(\mathbf{x}_{R}\right)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:

Stress balance in reference configuration is

$$
\operatorname{div}_{R} T_{R}+f_{R}=0, \text { where } T_{R}:=\operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T}
$$

We define two associated stress tensors:
(a) First Piola-Kirchhoff Stress Tensor $T_{R}, T_{R}:=\operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T}$.
(b) Second Piola-Kirchhoff Stress Tensor $\Sigma_{R}, \Sigma_{R}:=(\nabla \phi)^{-1} T_{R}=(\nabla \phi)^{-1} \operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T}$.

The Second Piola-Kirchhoff Stress Tensor Σ_{R} is motivated by making a tensor that is symmetric.

Elasticity Theory

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $\mathbf{x}=\phi\left(\mathbf{x}_{R}\right), \quad d \mathbf{x}=d V_{\mathbf{x}}=\operatorname{det}(\nabla \phi) d \mathbf{x}_{R}$. Density transforms as $\rho(\mathbf{x}) d \mathbf{x}=\rho_{R}\left(\mathbf{x}_{R}\right) d \mathbf{x}_{R}$. This gives $\rho(\mathbf{x})=\rho\left(\phi\left(\mathbf{x}_{R}\right)\right)=\operatorname{det}\left(\nabla \phi^{-1}\right) \rho_{R}\left(\mathbf{x}_{R}\right)$. Force density scales similarly as $\mathbf{f}(\mathbf{x})=\operatorname{det}\left(\nabla \phi^{-1}\right) \mathbf{f}_{R}\left(\mathbf{x}_{R}\right)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:

Stress balance in reference configuration is

$$
\operatorname{div}_{R} T_{R}+f_{R}=0, \text { where } T_{R}:=\operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T}
$$

We define two associated stress tensors:
(a) First Piola-Kirchhoff Stress Tensor $T_{R}, T_{R}:=\operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T}$.
(b) Second Piola-Kirchhoff Stress Tensor $\Sigma_{R}, \Sigma_{R}:=(\nabla \phi)^{-1} T_{R}=(\nabla \phi)^{-1} \operatorname{det}(\nabla \phi) T(\nabla \phi)^{-T}$.

The Second Piola-Kirchhoff Stress Tensor Σ_{R} is motivated by making a tensor that is symmetric. For small deformations, the three tensors T, T_{R}, Σ_{R} become the same to leading order.

Elasticity Theory

Elastic Materials:

Elasticity Theory

Elastic Materials:

A material is called elastic if there exists a mapping for the stress of the form

Elasticity Theory

Elastic Materials:

A material is called elastic if there exists a mapping for the stress of the form

$$
\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}_{+}^{3},
$$

Elasticity Theory

Elastic Materials:

A material is called elastic if there exists a mapping for the stress of the form

$$
\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}_{+}^{3},
$$

where for every deformed state

Elasticity Theory

Elastic Materials:

A material is called elastic if there exists a mapping for the stress of the form

$$
\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}_{+}^{3},
$$

where for every deformed state

$$
T(\mathbf{x})=\hat{T}\left(\mathbf{x}, \nabla \phi\left(\mathbf{x}_{R}\right)\right) .
$$

Elasticity Theory

Elastic Materials:

A material is called elastic if there exists a mapping for the stress of the form

$$
\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}_{+}^{3},
$$

where for every deformed state

$$
T(\mathrm{x})=\hat{T}\left(\mathrm{x}, \nabla \phi\left(\mathrm{x}_{R}\right)\right) .
$$

The \hat{T} is the response function for the Cauchy stress for the material.

Elasticity Theory

Elastic Materials:

A material is called elastic if there exists a mapping for the stress of the form

$$
\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}_{+}^{3},
$$

where for every deformed state

$$
T(\mathbf{x})=\hat{T}\left(\mathbf{x}, \nabla \phi\left(\mathbf{x}_{R}\right)\right) .
$$

The \hat{T} is the response function for the Cauchy stress for the material.
The $T=\hat{T}\left(\mathbf{x}, \nabla \phi\left(\mathbf{x}_{R}\right)\right)$ is the constitutive equation for the material.

Elasticity Theory

Elastic Materials:

A material is called elastic if there exists a mapping for the stress of the form

$$
\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}_{+}^{3},
$$

where for every deformed state

$$
T(\mathbf{x})=\hat{T}\left(\mathbf{x}, \nabla \phi\left(\mathbf{x}_{R}\right)\right) .
$$

The \hat{T} is the response function for the Cauchy stress for the material.
The $T=\hat{T}\left(\mathbf{x}, \nabla \phi\left(\mathbf{x}_{R}\right)\right)$ is the constitutive equation for the material.
Transforming the tensors, we have the Piola-Kirchhoff stress

Elasticity Theory

Elastic Materials:

A material is called elastic if there exists a mapping for the stress of the form

$$
\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}_{+}^{3},
$$

where for every deformed state

$$
T(\mathbf{x})=\hat{T}\left(\mathbf{x}, \nabla \phi\left(\mathbf{x}_{R}\right)\right) .
$$

The \hat{T} is the response function for the Cauchy stress for the material.
The $T=\hat{T}\left(\mathbf{x}, \nabla \phi\left(\mathbf{x}_{R}\right)\right)$ is the constitutive equation for the material.
Transforming the tensors, we have the Piola-Kirchhoff stress

$$
\hat{\Sigma}(F):=\operatorname{det}(F) F^{-1} \hat{T}(F) F^{-T} .
$$

Notation: $F=\nabla \phi\left(\mathbf{x}_{R}\right)$.

Elasticity Theory

Elastic Materials:

A material is called elastic if there exists a mapping for the stress of the form

$$
\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}_{+}^{3},
$$

where for every deformed state

$$
T(\mathbf{x})=\hat{T}\left(\mathbf{x}, \nabla \phi\left(\mathbf{x}_{R}\right)\right) .
$$

The \hat{T} is the response function for the Cauchy stress for the material.
The $T=\hat{T}\left(\mathbf{x}, \nabla \phi\left(\mathbf{x}_{R}\right)\right)$ is the constitutive equation for the material.
Transforming the tensors, we have the Piola-Kirchhoff stress

$$
\hat{\Sigma}(F):=\operatorname{det}(F) F^{-1} \hat{T}(F) F^{-T} .
$$

Notation: $F=\nabla \phi\left(\mathbf{x}_{R}\right)$.
A material is called homogeneous is \hat{T} does not depend on \mathbf{x}.

Elasticity Theory

Axiom of Material Frame-Indifference

Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}$ is independent of the choice of coordinates in the sense

Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}$ is independent of the choice of coordinates in the sense

$$
Q \mathbf{t}(\mathbf{x}, \mathbf{n})=\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}), \quad \forall Q \in \mathbb{O}_{+}^{3} .
$$

Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}$ is independent of the choice of coordinates in the sense

$$
Q \mathbf{t}(\mathbf{x}, \mathbf{n})=\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}), \quad \forall Q \in \mathbb{O}_{+}^{3} .
$$

A material that is frame-indifferent is referred to as an objective material.

Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}$ is independent of the choice of coordinates in the sense

$$
Q \mathbf{t}(\mathbf{x}, \mathbf{n})=\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}), \quad \forall Q \in \mathbb{O}_{+}^{3} .
$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}$ is independent of the choice of coordinates in the sense

$$
Q \mathbf{t}(\mathbf{x}, \mathbf{n})=\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}), \quad \forall Q \in \mathbb{O}_{+}^{3} .
$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T} .
$$

Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}$ is independent of the choice of coordinates in the sense

$$
Q \mathbf{t}(\mathbf{x}, \mathbf{n})=\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}), \quad \forall Q \in \mathbb{O}_{+}^{3} .
$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T} .
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}$ is independent of the choice of coordinates in the sense

$$
Q \mathbf{t}(\mathbf{x}, \mathbf{n})=\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}), \quad \forall Q \in \mathbb{O}_{+}^{3} .
$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T} .
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

$$
\hat{\Sigma}(F)=\hat{\Sigma}\left(F^{\top} F\right)
$$

Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}$ is independent of the choice of coordinates in the sense

$$
Q \mathbf{t}(\mathbf{x}, \mathbf{n})=\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}), \quad \forall Q \in \mathbb{O}_{+}^{3} .
$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T} .
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

$$
\hat{\Sigma}(F)=\hat{\Sigma}\left(F^{T} F\right)
$$

Significance: The $\hat{\Sigma}$ only depends on $F^{T} F$.

Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n})=T(\mathbf{x}) \mathbf{n}$ is independent of the choice of coordinates in the sense

$$
Q \mathbf{t}(\mathbf{x}, \mathbf{n})=\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}), \quad \forall Q \in \mathbb{O}_{+}^{3} .
$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T} .
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

$$
\hat{\Sigma}(F)=\hat{\Sigma}\left(F^{T} F\right)
$$

Significance: The $\hat{\Sigma}$ only depends on $F^{T} F$.

Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T} .
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

$$
\hat{\Sigma}(F)=\tilde{\Sigma}\left(F^{T} F\right) .
$$

Proof:

Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T}
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

$$
\hat{\Sigma}(F)=\tilde{\Sigma}\left(F^{\top} F\right)
$$

Proof:
This follows by rotating the deformed body to obtain the relations

Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T}
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

$$
\hat{\Sigma}(F)=\tilde{\Sigma}\left(F^{\top} F\right)
$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$
\mathbf{x} \mapsto Q \mathbf{x}, \phi \mapsto Q \phi, \nabla \phi \mapsto Q \nabla \phi, \mathbf{n} \mapsto Q^{-T} \mathbf{n}=Q \mathbf{n}, \mathbf{t}(\mathbf{x}, \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n})
$$

Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T}
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

$$
\hat{\Sigma}(F)=\tilde{\Sigma}\left(F^{\top} F\right)
$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$
\mathbf{x} \mapsto Q \mathbf{x}, \phi \mapsto Q \phi, \nabla \phi \mapsto Q \nabla \phi, \mathbf{n} \mapsto Q^{-T} \mathbf{n}=Q \mathbf{n}, \mathbf{t}(\mathbf{x}, \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n}) .
$$

From frame-indifference axiom, we have $\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n})$ and $\hat{T}(Q F) Q \cdot \mathbf{n}=Q \hat{T}(F) \cdot \mathbf{n}$, using $Q^{\top} Q=I$.

Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T}
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

$$
\hat{\Sigma}(F)=\tilde{\Sigma}\left(F^{\top} F\right)
$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$
\mathbf{x} \mapsto Q \mathbf{x}, \phi \mapsto Q \phi, \nabla \phi \mapsto Q \nabla \phi, \mathbf{n} \mapsto Q^{-T} \mathbf{n}=Q \mathbf{n}, \mathbf{t}(\mathbf{x}, \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n}) .
$$

From frame-indifference axiom, we have $\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n})$ and $\hat{T}(Q F) Q \cdot \mathbf{n}=Q \hat{T}(F) \cdot \mathbf{n}$, using $Q^{T} Q=I$. This implies $\hat{T}(Q F) \cdot \mathbf{n}=Q \hat{T}(F) Q^{T} \cdot \mathbf{n}, \quad \forall \mathbf{n} \in S^{2} \Rightarrow \hat{T}(Q F)=Q \hat{T}(F) Q^{T}$.

Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T}
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

$$
\hat{\Sigma}(F)=\tilde{\Sigma}\left(F^{\top} F\right)
$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$
\mathbf{x} \mapsto Q \mathbf{x}, \phi \mapsto Q \phi, \nabla \phi \mapsto Q \nabla \phi, \mathbf{n} \mapsto Q^{-T} \mathbf{n}=Q \mathbf{n}, \mathbf{t}(\mathbf{x}, \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n}) .
$$

From frame-indifference axiom, we have $\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n})$ and $\hat{T}(Q F) Q \cdot \mathbf{n}=Q \hat{T}(F) \cdot \mathbf{n}$, using $Q^{T} Q=I$.
This implies $\hat{T}(Q F) \cdot \mathbf{n}=Q \hat{T}(F) Q^{T} \cdot \mathbf{n}, \quad \forall \mathbf{n} \in S^{2} \Rightarrow \hat{T}(Q F)=Q \hat{T}(F) Q^{T}$.
From $\hat{\Sigma}(F):=\operatorname{det}(F) F^{-1} \hat{T}(F) F^{-T}$, we have $\hat{\Sigma}(Q F)=\hat{\Sigma}(F), \forall Q \in \mathbb{O}_{+}^{3}$.

Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T}
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

$$
\hat{\Sigma}(F)=\tilde{\Sigma}\left(F^{\top} F\right)
$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$
\mathbf{x} \mapsto Q \mathbf{x}, \phi \mapsto Q \phi, \nabla \phi \mapsto Q \nabla \phi, \mathbf{n} \mapsto Q^{-T} \mathbf{n}=Q \mathbf{n}, \mathbf{t}(\mathbf{x}, \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n})
$$

From frame-indifference axiom, we have $\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n})$ and $\hat{T}(Q F) Q \cdot \mathbf{n}=Q \hat{T}(F) \cdot \mathbf{n}$, using $Q^{T} Q=I$. This implies $\hat{T}(Q F) \cdot \mathbf{n}=Q \hat{T}(F) Q^{T} \cdot \mathbf{n}, \quad \forall \mathbf{n} \in S^{2} \Rightarrow \hat{T}(Q F)=Q \hat{T}(F) Q^{T}$.
From $\hat{\Sigma}(F):=\operatorname{det}(F) F^{-1} \hat{T}(F) F^{-T}$, we have $\hat{\Sigma}(Q F)=\hat{\Sigma}(F), \forall Q \in \mathbb{O}_{+}^{3}$.
Now consider product $F^{T} F=G^{T} G$ for any F and G invertible. Let $Q=G F^{-1}$, then $Q^{T} Q=I, \operatorname{det}(Q)>0$.

Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T} .
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

$$
\hat{\Sigma}(F)=\tilde{\Sigma}\left(F^{\top} F\right)
$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$
\mathbf{x} \mapsto Q \mathbf{x}, \phi \mapsto Q \phi, \nabla \phi \mapsto Q \nabla \phi, \mathbf{n} \mapsto Q^{-T} \mathbf{n}=Q \mathbf{n}, \mathbf{t}(\mathbf{x}, \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n})
$$

From frame-indifference axiom, we have $\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n})$ and $\hat{T}(Q F) Q \cdot \mathbf{n}=Q \hat{T}(F) \cdot \mathbf{n}$, using $Q^{T} Q=I$.
This implies $\hat{T}(Q F) \cdot \mathbf{n}=Q \hat{T}(F) Q^{T} \cdot \mathbf{n}, \quad \forall \mathbf{n} \in S^{2} \Rightarrow \hat{T}(Q F)=Q \hat{T}(F) Q^{T}$.
From $\hat{\Sigma}(F):=\operatorname{det}(F) F^{-1} \hat{T}(F) F^{-T}$, we have $\hat{\Sigma}(Q F)=\hat{\Sigma}(F), \forall Q \in \mathbb{O}_{+}^{3}$.
Now consider product $F^{T} F=G^{T} G$ for any F and G invertible. Let $Q=G F^{-1}$, then $Q^{T} Q=I, \operatorname{det}(Q)>0$.
This gives $\hat{\Sigma}(F)=\hat{\Sigma}(Q F)=\hat{\Sigma}(G)$ so that $\hat{\Sigma}$ only depends on the product $F^{T} F$.

Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}_{+}^{3}$ that

$$
\hat{T}(Q F)=Q \hat{T}(F) Q^{T} .
$$

We also have there exists a mapping $\hat{\Sigma}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}$ so that

$$
\hat{\Sigma}(F)=\tilde{\Sigma}\left(F^{\top} F\right)
$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$
\mathbf{x} \mapsto Q \mathbf{x}, \phi \mapsto Q \phi, \nabla \phi \mapsto Q \nabla \phi, \mathbf{n} \mapsto Q^{-T} \mathbf{n}=Q \mathbf{n}, \mathbf{t}(\mathbf{x}, \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n})
$$

From frame-indifference axiom, we have $\mathbf{t}(Q \mathbf{x}, Q \mathbf{n}) \mapsto Q \mathbf{t}(\mathbf{x}, \mathbf{n})$ and $\hat{T}(Q F) Q \cdot \mathbf{n}=Q \hat{T}(F) \cdot \mathbf{n}$, using $Q^{T} Q=I$.
This implies $\hat{T}(Q F) \cdot \mathbf{n}=Q \hat{T}(F) Q^{T} \cdot \mathbf{n}, \quad \forall \mathbf{n} \in S^{2} \Rightarrow \hat{T}(Q F)=Q \hat{T}(F) Q^{T}$.
From $\hat{\Sigma}(F):=\operatorname{det}(F) F^{-1} \hat{T}(F) F^{-T}$, we have $\hat{\Sigma}(Q F)=\hat{\Sigma}(F), \forall Q \in \mathbb{O}_{+}^{3}$.
Now consider product $F^{T} F=G^{T} G$ for any F and G invertible. Let $Q=G F^{-1}$, then $Q^{T} Q=I, \operatorname{det}(Q)>0$.
This gives $\hat{\Sigma}(F)=\hat{\Sigma}(Q F)=\hat{\Sigma}(G)$ so that $\hat{\Sigma}$ only depends on the product $F^{T} F$.

Elasticity Theory

Isotropic Materials

Elasticity Theory

Isotropic Materials

A material is isotropic if

Elasticity Theory

Isotropic Materials

A material is isotropic if

$$
\hat{T}(F)=\hat{T}(F Q), \forall Q \in \mathbb{O}_{+}^{3}
$$

Elasticity Theory

Isotropic Materials

A material is isotropic if

$$
\hat{T}(F)=\hat{T}(F Q), \forall Q \in \mathbb{O}_{+}^{3} .
$$

This is equivalent to

$$
\hat{T}(F)=\hat{T}\left(F F^{\top}\right) .
$$

Elasticity Theory

Isotropic Materials

A material is isotropic if

$$
\hat{T}(F)=\hat{T}(F Q), \forall Q \in \mathbb{O}_{+}^{3} .
$$

This is equivalent to

$$
\hat{T}(F)=\hat{T}\left(F F^{T}\right)
$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order $F Q$ is important (not same as $Q F$).

Elasticity Theory

Isotropic Materials

A material is isotropic if

$$
\hat{T}(F)=\hat{T}(F Q), \forall Q \in \mathbb{O}_{+}^{3} .
$$

This is equivalent to

$$
\hat{T}(F)=\hat{T}\left(F F^{T}\right) .
$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order $F Q$ is important (not same as $Q F$).
Invariants: The material responses depend only on invariants of the matrix $A=F F^{T}$ (also of $A^{T}=F^{T} F$).

Elasticity Theory

Isotropic Materials

A material is isotropic if

$$
\hat{T}(F)=\hat{T}(F Q), \forall Q \in \mathbb{O}_{+}^{3} .
$$

This is equivalent to

$$
\hat{T}(F)=\hat{T}\left(F F^{T}\right)
$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order $F Q$ is important (not same as $Q F$).
Invariants: The material responses depend only on invariants of the matrix $A=F F^{T}$ (also of $A^{T}=F^{T} F$). We define the triple invariants $\iota_{A}=\left(\iota_{1}(A), \iota_{2}(A), \iota_{3}(A)\right)$ as coefficients of

Elasticity Theory

Isotropic Materials

A material is isotropic if

$$
\hat{T}(F)=\hat{T}(F Q), \forall Q \in \mathbb{O}_{+}^{3} .
$$

This is equivalent to

$$
\hat{T}(F)=\hat{T}\left(F F^{T}\right)
$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order $F Q$ is important (not same as $Q F$).
Invariants: The material responses depend only on invariants of the matrix $A=F F^{T}$ (also of $A^{T}=F^{T} F$). We define the triple invariants $\iota_{A}=\left(\iota_{1}(A), \iota_{2}(A), \iota_{3}(A)\right)$ as coefficients of

$$
\operatorname{det}(\lambda I-A)=\lambda^{3}-\iota_{1}(A) \lambda^{2}+\iota_{2}(A) \lambda-\iota_{3}(A)
$$

Elasticity Theory

Isotropic Materials

A material is isotropic if

$$
\hat{T}(F)=\hat{T}(F Q), \forall Q \in \mathbb{O}_{+}^{3} .
$$

This is equivalent to

$$
\hat{T}(F)=\hat{T}\left(F F^{T}\right)
$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order $F Q$ is important (not same as $Q F$).
Invariants: The material responses depend only on invariants of the matrix $A=F F^{T}$ (also of $A^{T}=F^{T} F$).
We define the triple invariants $\iota_{A}=\left(\iota_{1}(A), \iota_{2}(A), \iota_{3}(A)\right)$ as coefficients of

$$
\operatorname{det}(\lambda I-A)=\lambda^{3}-\iota_{1}(A) \lambda^{2}+\iota_{2}(A) \lambda-\iota_{3}(A)
$$

Invariants can be expressed as

Elasticity Theory

Isotropic Materials

A material is isotropic if

$$
\hat{T}(F)=\hat{T}(F Q), \forall Q \in \mathbb{O}_{+}^{3} .
$$

This is equivalent to

$$
\hat{T}(F)=\hat{T}\left(F F^{T}\right)
$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order $F Q$ is important (not same as $Q F$).
Invariants: The material responses depend only on invariants of the matrix $A=F F^{T}$ (also of $A^{T}=F^{T} F$).
We define the triple invariants $\iota_{A}=\left(\iota_{1}(A), \iota_{2}(A), \iota_{3}(A)\right)$ as coefficients of

$$
\operatorname{det}(\lambda I-A)=\lambda^{3}-\iota_{1}(A) \lambda^{2}+\iota_{2}(A) \lambda-\iota_{3}(A)
$$

Invariants can be expressed as

$$
\iota_{1}(A):=\operatorname{trace}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3},
$$

Elasticity Theory

Isotropic Materials

A material is isotropic if

$$
\hat{T}(F)=\hat{T}(F Q), \forall Q \in \mathbb{O}_{+}^{3} .
$$

This is equivalent to

$$
\hat{T}(F)=\hat{T}\left(F F^{T}\right)
$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order $F Q$ is important (not same as $Q F$).
Invariants: The material responses depend only on invariants of the matrix $A=F F^{T}$ (also of $A^{T}=F^{T} F$). We define the triple invariants $\iota_{A}=\left(\iota_{1}(A), \iota_{2}(A), \iota_{3}(A)\right)$ as coefficients of

$$
\operatorname{det}(\lambda I-A)=\lambda^{3}-\iota_{1}(A) \lambda^{2}+\iota_{2}(A) \lambda-\iota_{3}(A)
$$

Invariants can be expressed as

$$
\begin{aligned}
\iota_{1}(A) & :=\operatorname{trace}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3} \\
\iota_{2}(A) & :=\frac{1}{2}\left(\operatorname{trace}(A)^{2}-\operatorname{trace}\left(A^{2}\right)\right)=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}
\end{aligned}
$$

Elasticity Theory

Isotropic Materials

A material is isotropic if

$$
\hat{T}(F)=\hat{T}(F Q), \forall Q \in \mathbb{O}_{+}^{3} .
$$

This is equivalent to

$$
\hat{T}(F)=\hat{T}\left(F F^{T}\right)
$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order $F Q$ is important (not same as $Q F$).
Invariants: The material responses depend only on invariants of the matrix $A=F F^{T}$ (also of $A^{T}=F^{T} F$). We define the triple invariants $\iota_{A}=\left(\iota_{1}(A), \iota_{2}(A), \iota_{3}(A)\right)$ as coefficients of

$$
\operatorname{det}(\lambda I-A)=\lambda^{3}-\iota_{1}(A) \lambda^{2}+\iota_{2}(A) \lambda-\iota_{3}(A)
$$

Invariants can be expressed as

$$
\begin{aligned}
\iota_{1}(A) & :=\operatorname{trace}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3} \\
\iota_{2}(A) & :=\frac{1}{2}\left(\operatorname{trace}(A)^{2}-\operatorname{trace}\left(A^{2}\right)\right)=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3} \\
\iota_{3}(A) & :=\operatorname{det}(A)=\lambda_{1} \lambda_{2} \lambda_{3} .
\end{aligned}
$$

Elasticity Theory

Isotropic Materials

A material is isotropic if

$$
\hat{T}(F)=\hat{T}(F Q), \forall Q \in \mathbb{O}_{+}^{3} .
$$

This is equivalent to

$$
\hat{T}(F)=\hat{T}\left(F F^{T}\right)
$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order $F Q$ is important (not same as $Q F$).
Invariants: The material responses depend only on invariants of the matrix $A=F F^{T}$ (also of $A^{T}=F^{T} F$). We define the triple invariants $\iota_{A}=\left(\iota_{1}(A), \iota_{2}(A), \iota_{3}(A)\right)$ as coefficients of

$$
\operatorname{det}(\lambda I-A)=\lambda^{3}-\iota_{1}(A) \lambda^{2}+\iota_{2}(A) \lambda-\iota_{3}(A)
$$

Invariants can be expressed as

$$
\begin{aligned}
\iota_{1}(A) & :=\operatorname{trace}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3} \\
\iota_{2}(A) & :=\frac{1}{2}\left(\operatorname{trace}(A)^{2}-\operatorname{trace}\left(A^{2}\right)\right)=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3} \\
\iota_{3}(A) & :=\operatorname{det}(A)=\lambda_{1} \lambda_{2} \lambda_{3}
\end{aligned}
$$

Provides convenient way to model many isotropic materials.

Elasticity Theory

Isotropic Materials

A material is isotropic if

$$
\hat{T}(F)=\hat{T}(F Q), \forall Q \in \mathbb{O}_{+}^{3} .
$$

This is equivalent to

$$
\hat{T}(F)=\hat{T}\left(F F^{T}\right)
$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order $F Q$ is important (not same as $Q F$).
Invariants: The material responses depend only on invariants of the matrix $A=F F^{T}$ (also of $A^{T}=F^{T} F$). We define the triple invariants $\iota_{A}=\left(\iota_{1}(A), \iota_{2}(A), \iota_{3}(A)\right)$ as coefficients of

$$
\operatorname{det}(\lambda I-A)=\lambda^{3}-\iota_{1}(A) \lambda^{2}+\iota_{2}(A) \lambda-\iota_{3}(A)
$$

Invariants can be expressed as

$$
\begin{aligned}
\iota_{1}(A) & :=\operatorname{trace}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3} \\
\iota_{2}(A) & :=\frac{1}{2}\left(\operatorname{trace}(A)^{2}-\operatorname{trace}\left(A^{2}\right)\right)=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3} \\
\iota_{3}(A) & :=\operatorname{det}(A)=\lambda_{1} \lambda_{2} \lambda_{3}
\end{aligned}
$$

Provides convenient way to model many isotropic materials.

Elasticity Theory

Rivlin-Ericksen (RE) Theorem

Elasticity Theory

Rivlin-Ericksen (RE) Theorem

The response function $\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}^{3}$ is objective and isotropic if and only if it has the form $\hat{T}(F)=\bar{T}\left(F F^{\top}\right)$ with

Elasticity Theory

Rivlin-Ericksen (RE) Theorem

The response function $\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}^{3}$ is objective and isotropic if and only if it has the form $\hat{T}(F)=\bar{T}\left(F F^{T}\right)$ with

$$
\bar{T}: \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3}
$$

Elasticity Theory

Rivlin-Ericksen (RE) Theorem

The response function $\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}^{3}$ is objective and isotropic if and only if it has the form $\hat{T}(F)=\bar{T}\left(F F^{T}\right)$ with

$$
\begin{aligned}
\bar{T} & : \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3} \\
\bar{T}(B) & =\beta_{0}\left(\iota_{B}\right) I+\beta_{1}\left(\iota_{B}\right) B+\beta_{2}\left(\iota_{B}\right) B^{2} .
\end{aligned}
$$

Elasticity Theory

Rivlin-Ericksen (RE) Theorem

The response function $\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}^{3}$ is objective and isotropic if and only if it has the form $\hat{T}(F)=\bar{T}\left(F F^{T}\right)$ with

$$
\begin{aligned}
\bar{T} & : \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3} \\
\bar{T}(B) & =\beta_{0}\left(\iota_{B}\right) I+\beta_{1}\left(\iota_{B}\right) B+\beta_{2}\left(\iota_{B}\right) B^{2} .
\end{aligned}
$$

The ι_{B} denotes the triple of invariants of $B=F F^{T}$. Note when B is diagonalized $\tilde{B}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$.

Elasticity Theory

Rivlin-Ericksen (RE) Theorem

The response function $\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}^{3}$ is objective and isotropic if and only if it has the form $\hat{T}(F)=\bar{T}\left(F F^{T}\right)$ with

$$
\begin{aligned}
\bar{T} & : \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3} \\
\bar{T}(B) & =\beta_{0}\left(\iota_{B}\right) I+\beta_{1}\left(\iota_{B}\right) B+\beta_{2}\left(\iota_{B}\right) B^{2} .
\end{aligned}
$$

The ι_{B} denotes the triple of invariants of $B=F F^{T}$. Note when B is diagonalized $\tilde{B}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$.
Significance Characterizes the conditions under which constitutive laws are frame-indifferent and isotropic.

Elasticity Theory

Rivlin-Ericksen (RE) Theorem

The response function $\hat{T}: \mathbb{M}_{+}^{3} \rightarrow \mathbb{S}^{3}$ is objective and isotropic if and only if it has the form $\hat{T}(F)=\bar{T}\left(F F^{T}\right)$ with

$$
\begin{aligned}
\bar{T} & : \mathbb{S}_{>}^{3} \rightarrow \mathbb{S}^{3} \\
\bar{T}(B) & =\beta_{0}\left(\iota_{B}\right) I+\beta_{1}\left(\iota_{B}\right) B+\beta_{2}\left(\iota_{B}\right) B^{2} .
\end{aligned}
$$

The ι_{B} denotes the triple of invariants of $B=F F^{T}$. Note when B is diagonalized $\tilde{B}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$.
Significance Characterizes the conditions under which constitutive laws are frame-indifferent and isotropic.

Elasticity Theory

Corollary to RE

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\Sigma(F)=\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{\top} F\right)
$$

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{aligned}
\Sigma(F) & =\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{T} F\right) \\
\tilde{\Sigma}(C) & =\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}
\end{aligned}
$$

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{aligned}
\Sigma(F) & =\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{T} F\right) \\
\tilde{\Sigma}(C) & =\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}
\end{aligned}
$$

The $\gamma_{i}=\gamma_{i}\left(\iota_{C}\right)$ are functions of the triple of invariants ι_{C} of $C=F^{T} F$.

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{aligned}
\Sigma(F) & =\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{T} F\right) \\
\tilde{\Sigma}(C) & =\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}
\end{aligned}
$$

The $\gamma_{i}=\gamma_{i}\left(\iota_{C}\right)$ are functions of the triple of invariants ι_{C} of $C=F^{T} F$.

Proof:

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{aligned}
\Sigma(F) & =\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{T} F\right) \\
\tilde{\Sigma}(C) & =\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}
\end{aligned}
$$

The $\gamma_{i}=\gamma_{i}\left(\iota_{C}\right)$ are functions of the triple of invariants ι_{C} of $C=F^{T} F$.

Proof:

We use the Cayley-Hamilton formula for $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{aligned}
\Sigma(F) & =\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{T} F\right) \\
\tilde{\Sigma}(C) & =\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}
\end{aligned}
$$

The $\gamma_{i}=\gamma_{i}\left(\iota_{C}\right)$ are functions of the triple of invariants ι_{C} of $C=F^{T} F$.

Proof:

We use the Cayley-Hamilton formula for $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

$$
B^{3}-\iota_{1}(B) B^{2}+\iota_{2}(B) B-\iota_{3}(B) I=0 .
$$

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{aligned}
\Sigma(F) & =\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{T} F\right) \\
\tilde{\Sigma}(C) & =\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}
\end{aligned}
$$

The $\gamma_{i}=\gamma_{i}\left(\iota_{C}\right)$ are functions of the triple of invariants ι_{C} of $C=F^{T} F$.

Proof:

We use the Cayley-Hamilton formula for $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

$$
B^{3}-\iota_{1}(B) B^{2}+\iota_{2}(B) B-\iota_{3}(B) I=0 .
$$

By the RE Theorem we have

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{aligned}
\Sigma(F) & =\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{T} F\right) \\
\tilde{\Sigma}(C) & =\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}
\end{aligned}
$$

The $\gamma_{i}=\gamma_{i}\left(\iota_{C}\right)$ are functions of the triple of invariants ι_{C} of $C=F^{T} F$.

Proof:

We use the Cayley-Hamilton formula for $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

$$
B^{3}-\iota_{1}(B) B^{2}+\iota_{2}(B) B-\iota_{3}(B) I=0
$$

By the RE Theorem we have

$$
\bar{T}(B)=\beta_{0}\left(\iota_{B}\right) I+\beta_{1}\left(\iota_{B}\right) B+\beta_{2}\left(\iota_{B}\right) B^{2} .
$$

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{aligned}
\Sigma(F) & =\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{T} F\right) \\
\tilde{\Sigma}(C) & =\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}
\end{aligned}
$$

The $\gamma_{i}=\gamma_{i}\left(\iota_{C}\right)$ are functions of the triple of invariants ι_{C} of $C=F^{T} F$.

Proof:

We use the Cayley-Hamilton formula for $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

$$
B^{3}-\iota_{1}(B) B^{2}+\iota_{2}(B) B-\iota_{3}(B) I=0 .
$$

By the RE Theorem we have

$$
\bar{T}(B)=\beta_{0}\left(\iota_{B}\right) I+\beta_{1}\left(\iota_{B}\right) B+\beta_{2}\left(\iota_{B}\right) B^{2} .
$$

By the CH formula, we can eliminate the I to obtain

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{aligned}
\Sigma(F) & =\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{T} F\right) \\
\tilde{\Sigma}(C) & =\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}
\end{aligned}
$$

The $\gamma_{i}=\gamma_{i}\left(\iota_{C}\right)$ are functions of the triple of invariants ι_{C} of $C=F^{T} F$.

Proof:

We use the Cayley-Hamilton formula for $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

$$
B^{3}-\iota_{1}(B) B^{2}+\iota_{2}(B) B-\iota_{3}(B) I=0 .
$$

By the RE Theorem we have

$$
\bar{T}(B)=\beta_{0}\left(\iota_{B}\right) I+\beta_{1}\left(\iota_{B}\right) B+\beta_{2}\left(\iota_{B}\right) B^{2} .
$$

By the CH formula, we can eliminate the I to obtain

$$
\bar{T}(B)=\tilde{\beta}_{1} B+\tilde{\beta}_{2} B^{2}+\tilde{\beta}_{3} B^{3} .
$$

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{aligned}
\Sigma(F) & =\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{T} F\right) \\
\tilde{\Sigma}(C) & =\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}
\end{aligned}
$$

The $\gamma_{i}=\gamma_{i}\left(\iota_{C}\right)$ are functions of the triple of invariants ι_{C} of $C=F^{T} F$.

Proof:

We use the Cayley-Hamilton formula for $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

$$
B^{3}-\iota_{1}(B) B^{2}+\iota_{2}(B) B-\iota_{3}(B) I=0 .
$$

By the RE Theorem we have

$$
\bar{T}(B)=\beta_{0}\left(\iota_{B}\right) I+\beta_{1}\left(\iota_{B}\right) B+\beta_{2}\left(\iota_{B}\right) B^{2} .
$$

By the CH formula, we can eliminate the I to obtain

$$
\bar{T}(B)=\tilde{\beta}_{1} B+\tilde{\beta}_{2} B^{2}+\tilde{\beta}_{3} B^{3} .
$$

Multiply on left by $\operatorname{det}(F) F^{-1}$ and on right by F^{-T} to reformulate as $\hat{\Sigma}$ with Cauchy-Green tensor $C=F^{T} F$.

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{aligned}
\Sigma(F) & =\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{T} F\right) \\
\tilde{\Sigma}(C) & =\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}
\end{aligned}
$$

The $\gamma_{i}=\gamma_{i}\left(\iota_{C}\right)$ are functions of the triple of invariants ι_{C} of $C=F^{T} F$.

Proof:

We use the Cayley-Hamilton formula for $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

$$
B^{3}-\iota_{1}(B) B^{2}+\iota_{2}(B) B-\iota_{3}(B) I=0
$$

By the RE Theorem we have

$$
\bar{T}(B)=\beta_{0}\left(\iota_{B}\right) I+\beta_{1}\left(\iota_{B}\right) B+\beta_{2}\left(\iota_{B}\right) B^{2} .
$$

By the CH formula, we can eliminate the I to obtain

$$
\bar{T}(B)=\tilde{\beta}_{1} B+\tilde{\beta}_{2} B^{2}+\tilde{\beta}_{3} B^{3} .
$$

Multiply on left by $\operatorname{det}(F) F^{-1}$ and on right by F^{-T} to reformulate as $\hat{\Sigma}$ with Cauchy-Green tensor $C=F^{T} F$. We use invariance to choose frame with $F F^{\top}=B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$.

Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{aligned}
\Sigma(F) & =\tilde{\Sigma}\left(\nabla \phi^{T} \nabla \phi\right)=\tilde{\Sigma}\left(F^{T} F\right) \\
\tilde{\Sigma}(C) & =\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}
\end{aligned}
$$

The $\gamma_{i}=\gamma_{i}\left(\iota_{C}\right)$ are functions of the triple of invariants ι_{C} of $C=F^{T} F$.

Proof:

We use the Cayley-Hamilton formula for $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

$$
B^{3}-\iota_{1}(B) B^{2}+\iota_{2}(B) B-\iota_{3}(B) I=0
$$

By the RE Theorem we have

$$
\bar{T}(B)=\beta_{0}\left(\iota_{B}\right) I+\beta_{1}\left(\iota_{B}\right) B+\beta_{2}\left(\iota_{B}\right) B^{2} .
$$

By the CH formula, we can eliminate the I to obtain

$$
\bar{T}(B)=\tilde{\beta}_{1} B+\tilde{\beta}_{2} B^{2}+\tilde{\beta}_{3} B^{3} .
$$

Multiply on left by $\operatorname{det}(F) F^{-1}$ and on right by F^{-T} to reformulate as $\hat{\Sigma}$ with Cauchy-Green tensor $C=F^{T} F$. We use invariance to choose frame with $F F^{\top}=B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$.

Linear Material Laws

Theorem

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 \text {. }
$$

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0
$$

Proof (sketch):

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Proof (sketch):
From definition of $\iota_{j}(A)$ we have $\iota_{j}(E)=O\left(E^{j}\right)$.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Proof (sketch):

From definition of $\iota_{j}(A)$ we have $\iota_{j}(E)=O\left(E^{j}\right)$. From smoothness of γ_{i}, we have only $\iota_{1}(E)$ contributes in the expressions.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Proof (sketch):

From definition of $\iota_{j}(A)$ we have $\iota_{j}(E)=O\left(E^{j}\right)$. From smoothness of γ_{i}, we have only $\iota_{1}(E)$ contributes in the expressions. From $C=I+2 E, C^{2}=I+4 E+o(E)$, to obtain leading order we expand as $\gamma_{0}(E)=a_{0}+b_{1} \iota_{1}(E)+o(E), \gamma_{1}(E)=a_{1}+O(E), \gamma_{2}(E)=a_{2}+O(E)$. This yields

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Proof (sketch):

From definition of $\iota_{j}(A)$ we have $\iota_{j}(E)=O\left(E^{j}\right)$. From smoothness of γ_{i}, we have only $\iota_{1}(E)$ contributes in the expressions. From $C=I+2 E, C^{2}=I+4 E+o(E)$, to obtain leading order we expand as $\gamma_{0}(E)=a_{0}+b_{1} \iota_{1}(E)+o(E), \gamma_{1}(E)=a_{1}+O(E), \gamma_{2}(E)=a_{2}+O(E)$. This yields

$$
\tilde{\Sigma}(C)=\left(a_{0}+a_{1}+a_{2}\right) I+b_{1} \iota_{1}(E) I+\left(2 a_{1}+4 a_{2}\right) E+o(E) .
$$

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Proof (sketch):

From definition of $\iota_{j}(A)$ we have $\iota_{j}(E)=O\left(E^{j}\right)$. From smoothness of γ_{i}, we have only $\iota_{1}(E)$ contributes in the expressions. From $C=I+2 E, C^{2}=I+4 E+o(E)$, to obtain leading order we expand as $\gamma_{0}(E)=a_{0}+b_{1} \iota_{1}(E)+o(E), \gamma_{1}(E)=a_{1}+O(E), \gamma_{2}(E)=a_{2}+O(E)$. This yields

$$
\tilde{\Sigma}(C)=\left(a_{0}+a_{1}+a_{2}\right) I+b_{1} \iota_{1}(E) I+\left(2 a_{1}+4 a_{2}\right) E+o(E) .
$$

Using $\iota_{1}(E)=\operatorname{trace}(E)$ the result follows.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Proof (sketch):

From definition of $\iota_{j}(A)$ we have $\iota_{j}(E)=O\left(E^{j}\right)$. From smoothness of γ_{i}, we have only $\iota_{1}(E)$ contributes in the expressions. From $C=I+2 E, C^{2}=I+4 E+o(E)$, to obtain leading order we expand as $\gamma_{0}(E)=a_{0}+b_{1} \iota_{1}(E)+o(E), \gamma_{1}(E)=a_{1}+O(E), \gamma_{2}(E)=a_{2}+O(E)$. This yields

$$
\tilde{\Sigma}(C)=\left(a_{0}+a_{1}+a_{2}\right) I+b_{1} \iota_{1}(E) I+\left(2 a_{1}+4 a_{2}\right) E+o(E) .
$$

Using $\iota_{1}(E)=\operatorname{trace}(E)$ the result follows.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Proof (sketch):

From definition of $\iota_{j}(A)$ we have $\iota_{j}(E)=O\left(E^{j}\right)$. From smoothness of γ_{i}, we have only $\iota_{1}(E)$ contributes in the expressions. From $C=I+2 E, C^{2}=I+4 E+o(E)$, to obtain leading order we expand as $\gamma_{0}(E)=a_{0}+b_{1} \iota_{1}(E)+o(E), \gamma_{1}(E)=a_{1}+O(E), \gamma_{2}(E)=a_{2}+O(E)$. This yields

$$
\tilde{\Sigma}(C)=\left(a_{0}+a_{1}+a_{2}\right) I+b_{1} \iota_{1}(E) I+\left(2 a_{1}+4 a_{2}\right) E+o(E) .
$$

Using $\iota_{1}(E)=\operatorname{trace}(E)$ the result follows.
Significance: Gives general constitutive relation expressed in terms of strain E when deformations are small.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0
$$

Proof (sketch):

From definition of $\iota_{j}(A)$ we have $\iota_{j}(E)=O\left(E^{j}\right)$. From smoothness of γ_{i}, we have only $\iota_{1}(E)$ contributes in the expressions. From $C=I+2 E, C^{2}=I+4 E+o(E)$, to obtain leading order we expand as $\gamma_{0}(E)=a_{0}+b_{1} \iota_{1}(E)+o(E), \gamma_{1}(E)=a_{1}+O(E), \gamma_{2}(E)=a_{2}+O(E)$. This yields

$$
\tilde{\Sigma}(C)=\left(a_{0}+a_{1}+a_{2}\right) I+b_{1} \iota_{1}(E) I+\left(2 a_{1}+4 a_{2}\right) E+o(E) .
$$

Using $\iota_{1}(E)=\operatorname{trace}(E)$ the result follows.
Significance: Gives general constitutive relation expressed in terms of strain E when deformations are small. Remark: Typically, $C=I$ with unstressed conditions so that $\pi=0$. The λ and μ are called Lame' constants.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0
$$

Proof (sketch):

From definition of $\iota_{j}(A)$ we have $\iota_{j}(E)=O\left(E^{j}\right)$. From smoothness of γ_{i}, we have only $\iota_{1}(E)$ contributes in the expressions. From $C=I+2 E, C^{2}=I+4 E+o(E)$, to obtain leading order we expand as $\gamma_{0}(E)=a_{0}+b_{1} \iota_{1}(E)+o(E), \gamma_{1}(E)=a_{1}+O(E), \gamma_{2}(E)=a_{2}+O(E)$. This yields

$$
\tilde{\Sigma}(C)=\left(a_{0}+a_{1}+a_{2}\right) I+b_{1} \iota_{1}(E) I+\left(2 a_{1}+4 a_{2}\right) E+o(E) .
$$

Using $\iota_{1}(E)=\operatorname{trace}(E)$ the result follows.
Significance: Gives general constitutive relation expressed in terms of strain E when deformations are small.
Remark: Typically, $C=I$ with unstressed conditions so that $\pi=0$. The λ and μ are called Lame' constants.
Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda \operatorname{trace}(E) I+2 \mu E$.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0
$$

Proof (sketch):

From definition of $\iota_{j}(A)$ we have $\iota_{j}(E)=O\left(E^{j}\right)$. From smoothness of γ_{i}, we have only $\iota_{1}(E)$ contributes in the expressions. From $C=I+2 E, C^{2}=I+4 E+o(E)$, to obtain leading order we expand as $\gamma_{0}(E)=a_{0}+b_{1} \iota_{1}(E)+o(E), \gamma_{1}(E)=a_{1}+O(E), \gamma_{2}(E)=a_{2}+O(E)$. This yields

$$
\tilde{\Sigma}(C)=\left(a_{0}+a_{1}+a_{2}\right) I+b_{1} \iota_{1}(E) I+\left(2 a_{1}+4 a_{2}\right) E+o(E) .
$$

Using $\iota_{1}(E)=\operatorname{trace}(E)$ the result follows.
Significance: Gives general constitutive relation expressed in terms of strain E when deformations are small.
Remark: Typically, $C=I$ with unstressed conditions so that $\pi=0$. The λ and μ are called Lame' constants.
Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda$ trace $(E) I+2 \mu E$.
Valid for small deformations, but if valid all deformations, called St. Venant-Kirkhhoff material.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0
$$

Proof (sketch):

From definition of $\iota_{j}(A)$ we have $\iota_{j}(E)=O\left(E^{j}\right)$. From smoothness of γ_{i}, we have only $\iota_{1}(E)$ contributes in the expressions. From $C=I+2 E, C^{2}=I+4 E+o(E)$, to obtain leading order we expand as $\gamma_{0}(E)=a_{0}+b_{1} \iota_{1}(E)+o(E), \gamma_{1}(E)=a_{1}+O(E), \gamma_{2}(E)=a_{2}+O(E)$. This yields

$$
\tilde{\Sigma}(C)=\left(a_{0}+a_{1}+a_{2}\right) I+b_{1} \iota_{1}(E) I+\left(2 a_{1}+4 a_{2}\right) E+o(E) .
$$

Using $\iota_{1}(E)=\operatorname{trace}(E)$ the result follows.
Significance: Gives general constitutive relation expressed in terms of strain E when deformations are small.
Remark: Typically, $C=I$ with unstressed conditions so that $\pi=0$. The λ and μ are called Lame' constants.
Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda$ trace $(E) I+2 \mu E$.
Valid for small deformations, but if valid all deformations, called St. Venant-Kirkhhoff material.
Remark trace $(\epsilon) \approx \operatorname{div}(u)$ for incompressibility. Lame' constants: λ change in density and μ shear modulus.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0
$$

Proof (sketch):

From definition of $\iota_{j}(A)$ we have $\iota_{j}(E)=O\left(E^{j}\right)$. From smoothness of γ_{i}, we have only $\iota_{1}(E)$ contributes in the expressions. From $C=I+2 E, C^{2}=I+4 E+o(E)$, to obtain leading order we expand as $\gamma_{0}(E)=a_{0}+b_{1} \iota_{1}(E)+o(E), \gamma_{1}(E)=a_{1}+O(E), \gamma_{2}(E)=a_{2}+O(E)$. This yields

$$
\tilde{\Sigma}(C)=\left(a_{0}+a_{1}+a_{2}\right) I+b_{1} \iota_{1}(E) I+\left(2 a_{1}+4 a_{2}\right) E+o(E) .
$$

Using $\iota_{1}(E)=\operatorname{trace}(E)$ the result follows.
Significance: Gives general constitutive relation expressed in terms of strain E when deformations are small.
Remark: Typically, $C=I$ with unstressed conditions so that $\pi=0$. The λ and μ are called Lame' constants.
Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda$ trace $(E) I+2 \mu E$.
Valid for small deformations, but if valid all deformations, called St. Venant-Kirkhhoff material.
Remark trace $(\epsilon) \approx \operatorname{div}(u)$ for incompressibility. Lame' constants: λ change in density and μ shear modulus.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 \text {. }
$$

Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda \operatorname{trace}(E) I+2 \mu E$.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 \text {. }
$$

Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda \operatorname{trace}(E) I+2 \mu E$.
Remark $\operatorname{trace}(\epsilon) \approx \operatorname{div}(u)$ for incompressibility. Lame' constants: λ change in density and μ shear modulus.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda \operatorname{trace}(E) I+2 \mu E$.
Remark $\operatorname{trace}(\epsilon) \approx \operatorname{div}(u)$ for incompressibility. Lame' constants: λ change in density and μ shear modulus. Mechanics: Other parameters are used to characterize elasticity

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda \operatorname{trace}(E) I+2 \mu E$.
Remark $\operatorname{trace}(\epsilon) \approx \operatorname{div}(u)$ for incompressibility. Lame' constants: λ change in density and μ shear modulus. Mechanics: Other parameters are used to characterize elasticity

$$
\nu=\frac{\lambda}{2(\lambda+\mu)}, \quad \text { Poisson ratio }
$$

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda \operatorname{trace}(E) I+2 \mu E$.
Remark $\operatorname{trace}(\epsilon) \approx \operatorname{div}(u)$ for incompressibility. Lame' constants: λ change in density and μ shear modulus. Mechanics: Other parameters are used to characterize elasticity

$$
\nu=\frac{\lambda}{2(\lambda+\mu)}, \quad \text { Poisson ratio } \quad E=\frac{\mu(3 \lambda+2 \mu)}{\lambda+\mu}, \quad \text { Young's modulus }
$$

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda \operatorname{trace}(E) I+2 \mu E$.
Remark $\operatorname{trace}(\epsilon) \approx \operatorname{div}(u)$ for incompressibility. Lame' constants: λ change in density and μ shear modulus. Mechanics: Other parameters are used to characterize elasticity

$$
\begin{aligned}
& \nu=\frac{\lambda}{2(\lambda+\mu)}, \\
& \lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)},
\end{aligned}
$$

Poisson ratio
Lame' compressibility

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda \operatorname{trace}(E) I+2 \mu E$.
Remark $\operatorname{trace}(\epsilon) \approx \operatorname{div}(u)$ for incompressibility. Lame' constants: λ change in density and μ shear modulus. Mechanics: Other parameters are used to characterize elasticity

$$
\begin{array}{llll}
\nu=\frac{\lambda}{2(\lambda+\mu)}, & \text { Poisson ratio } & E=\frac{\mu(3 \lambda+2 \mu)}{\lambda+\mu}, & \text { Young's modulus } \\
\lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)}, & \text { Lame' compressibility } & \mu=\frac{E}{2(1+\nu)}, & \text { Lame' shear modulus. }
\end{array}
$$

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 .
$$

Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda \operatorname{trace}(E) I+2 \mu E$.
Remark $\operatorname{trace}(\epsilon) \approx \operatorname{div}(u)$ for incompressibility. Lame' constants: λ change in density and μ shear modulus. Mechanics: Other parameters are used to characterize elasticity

$$
\begin{array}{llll}
\nu=\frac{\lambda}{2(\lambda+\mu)}, & \text { Poisson ratio } & E=\frac{\mu(3 \lambda+2 \mu)}{\lambda+\mu}, & \text { Young's modulus } \\
\lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)}, & \text { Lame' compressibility } & \mu=\frac{E}{2(1+\nu)}, & \text { Lame' shear modulus. }
\end{array}
$$

From considerations in the physics, we have $\lambda>0, \mu>0$ and $E>0,0<\nu<\frac{1}{2}$.

Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C)=\gamma_{0} I+\gamma_{1} C+\gamma_{2} C^{2}$. Suppose that γ_{i} are continuously differentiable functions of $\iota_{j}(E)$, then there exists constants π, λ, μ so that

$$
\tilde{\Sigma}(C)=\tilde{\Sigma}(I+2 E)=-\pi I+\lambda \operatorname{trace}(E) I+2 \mu E+o(E), \text { as } E \rightarrow 0 \text {. }
$$

Hookean Material Law: $\tilde{\Sigma}(I+2 E)=\lambda \operatorname{trace}(E) I+2 \mu E$.
Remark $\operatorname{trace}(\epsilon) \approx \operatorname{div}(u)$ for incompressibility. Lame' constants: λ change in density and μ shear modulus. Mechanics: Other parameters are used to characterize elasticity

$$
\begin{array}{llll}
\nu=\frac{\lambda}{2(\lambda+\mu)}, & \text { Poisson ratio } & E=\frac{\mu(3 \lambda+2 \mu)}{\lambda+\mu}, & \text { Young's modulus } \\
\lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)}, & \text { Lame' compressibility } & \mu=\frac{E}{2(1+\nu)}, & \text { Lame' shear modulus. }
\end{array}
$$

From considerations in the physics, we have $\lambda>0, \mu>0$ and $E>0,0<\nu<\frac{1}{2}$.
Remark: For small deformations, if we replace linearization in E with linearization in ϵ approach is called geometrically linear theory.

Hyperelastic Materials

Definition

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3} .
$$

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Equilibrium state of an elastic body:

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Equilibrium state of an elastic body:

$$
-\operatorname{div} \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=f(\mathbf{x}), \quad \mathbf{x} \in \Omega
$$

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Equilibrium state of an elastic body:

$$
\begin{array}{ll}
-\operatorname{div} \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=f(\mathbf{x}), & \mathbf{x} \in \Omega \\
\hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=g(\mathbf{x}), & \mathbf{x} \in \Gamma_{1}
\end{array}
$$

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Equilibrium state of an elastic body:

$$
\begin{array}{ll}
-\operatorname{div} \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=f(\mathbf{x}), & \mathbf{x} \in \Omega \\
\hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=g(\mathbf{x}), & \mathbf{x} \in \Gamma_{1} \\
\phi(\mathbf{x})=\phi_{0}(\mathbf{x}), & \mathbf{x} \in \Gamma_{0}
\end{array}
$$

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Equilibrium state of an elastic body:

$$
\begin{array}{ll}
-\operatorname{div} \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=f(\mathbf{x}), & \mathbf{x} \in \Omega \\
\hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=g(\mathbf{x}), & \mathbf{x} \in \Gamma_{1} \\
\phi(\mathbf{x})=\phi_{0}(\mathbf{x}), & \mathbf{x} \in \Gamma_{0}
\end{array}
$$

Variational principle: If $f=\operatorname{grad} \mathcal{F}, g=\operatorname{grad} \mathcal{G}$, we have a variational principle with the functional

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Equilibrium state of an elastic body:

$$
\begin{array}{ll}
-\operatorname{div} \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=f(\mathbf{x}), & \mathbf{x} \in \Omega \\
\hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=g(\mathbf{x}), & \mathbf{x} \in \Gamma_{1} \\
\phi(\mathbf{x})=\phi_{0}(\mathbf{x}), & \mathbf{x} \in \Gamma_{0}
\end{array}
$$

Variational principle: If $f=\operatorname{grad} \mathcal{F}, g=\operatorname{grad} \mathcal{G}$, we have a variational principle with the functional

$$
I[\psi]=\int_{\Omega}(\hat{W}(\mathbf{x}, \nabla \psi(\mathbf{x}))-\mathcal{F}(\psi(\mathbf{x}))) d \mathbf{x}+\int_{\Gamma_{1}} \mathcal{G}(\psi(\mathbf{x})) d \mathbf{x}
$$

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Equilibrium state of an elastic body:

$$
\begin{array}{ll}
-\operatorname{div} \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=f(\mathbf{x}), & \mathbf{x} \in \Omega \\
\hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=g(\mathbf{x}), & \mathbf{x} \in \Gamma_{1} \\
\phi(\mathbf{x})=\phi_{0}(\mathbf{x}), & \mathbf{x} \in \Gamma_{0}
\end{array}
$$

Variational principle: If $f=\operatorname{grad} \mathcal{F}, g=\operatorname{grad} \mathcal{G}$, we have a variational principle with the functional

$$
I[\psi]=\int_{\Omega}(\hat{W}(\mathbf{x}, \nabla \psi(\mathbf{x}))-\mathcal{F}(\psi(\mathbf{x}))) d \mathbf{x}+\int_{\Gamma_{1}} \mathcal{G}(\psi(\mathbf{x})) d \mathbf{x}
$$

We require that ψ satisfies the boundary conditions on Γ_{1}, Γ_{0} and local injectivity $\operatorname{det}(\nabla \psi(\mathbf{x}))>0$.

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Equilibrium state of an elastic body:

$$
\begin{array}{ll}
-\operatorname{div} \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=f(\mathbf{x}), & \mathbf{x} \in \Omega \\
\hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}))=g(\mathbf{x}), & \mathbf{x} \in \Gamma_{1} \\
\phi(\mathbf{x})=\phi_{0}(\mathbf{x}), & \mathbf{x} \in \Gamma_{0}
\end{array}
$$

Variational principle: If $f=\operatorname{grad} \mathcal{F}, g=\operatorname{grad} \mathcal{G}$, we have a variational principle with the functional

$$
I[\psi]=\int_{\Omega}(\hat{W}(\mathbf{x}, \nabla \psi(\mathbf{x}))-\mathcal{F}(\psi(\mathbf{x}))) d \mathbf{x}+\int_{\Gamma_{1}} \mathcal{G}(\psi(\mathbf{x})) d \mathbf{x}
$$

We require that ψ satisfies the boundary conditions on Γ_{1}, Γ_{0} and local injectivity $\operatorname{det}(\nabla \psi(\mathbf{x}))>0$.
Remark: Results in saddle-point problems.

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C=F^{T} F$ as

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C=F^{T} F$ as

$$
\hat{W}(\mathbf{x}, F)=\tilde{W}\left(\mathbf{x}, F^{T} F\right), \quad \tilde{\Sigma}(\mathbf{x}, C)=2 \frac{\partial \tilde{W}(\mathbf{x}, C)}{\partial C}, \quad \forall C \in \mathbb{S}_{>}^{3}
$$

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C=F^{T} F$ as

$$
\hat{W}(\mathbf{x}, F)=\tilde{W}\left(\mathbf{x}, F^{T} F\right), \quad \tilde{\Sigma}(\mathbf{x}, C)=2 \frac{\partial \tilde{W}(\mathbf{x}, C)}{\partial C}, \quad \forall C \in \mathbb{S}_{>}^{3}
$$

Isotropic Materials:

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C=F^{T} F$ as

$$
\hat{W}(\mathbf{x}, F)=\tilde{W}\left(\mathbf{x}, F^{T} F\right), \quad \tilde{\Sigma}(\mathbf{x}, C)=2 \frac{\partial \tilde{W}(\mathbf{x}, C)}{\partial C}, \forall C \in \mathbb{S}_{>}^{3}
$$

Isotropic Materials:

$$
\hat{W}(\mathbf{x}, F)=\tilde{W}(\mathbf{x}, F Q), \quad \forall F \in \mathbb{M}_{+}^{3}, \quad Q \in \mathbb{O}_{+}^{3}
$$

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C=F^{T} F$ as

$$
\hat{W}(\mathbf{x}, F)=\tilde{W}\left(\mathbf{x}, F^{T} F\right), \quad \tilde{\Sigma}(\mathbf{x}, C)=2 \frac{\partial \tilde{W}(\mathbf{x}, C)}{\partial C}, \forall C \in \mathbb{S}_{>}^{3}
$$

Isotropic Materials:

$$
\hat{W}(\mathbf{x}, F)=\tilde{W}(\mathbf{x}, F Q), \quad \forall F \in \mathbb{M}_{+}^{3}, Q \in \mathbb{O}_{+}^{3}
$$

Isotropic Materials (small deformations):

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C=F^{T} F$ as

$$
\hat{W}(\mathbf{x}, F)=\tilde{W}\left(\mathbf{x}, F^{T} F\right), \quad \tilde{\Sigma}(\mathbf{x}, C)=2 \frac{\partial \tilde{W}(\mathbf{x}, C)}{\partial C}, \forall C \in \mathbb{S}_{>}^{3}
$$

Isotropic Materials:

$$
\hat{W}(\mathbf{x}, F)=\tilde{W}(\mathbf{x}, F Q), \quad \forall F \in \mathbb{M}_{+}^{3}, \quad Q \in \mathbb{O}_{+}^{3}
$$

Isotropic Materials (small deformations):

$$
\tilde{W}(\mathbf{x}, C)=\frac{\lambda}{2}(\operatorname{trace} E)^{2}+\mu E: E+o\left(E^{2}\right),
$$

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C=F^{T} F$ as

$$
\hat{W}(\mathbf{x}, F)=\tilde{W}\left(\mathbf{x}, F^{T} F\right), \quad \tilde{\Sigma}(\mathbf{x}, C)=2 \frac{\partial \tilde{W}(\mathbf{x}, C)}{\partial C}, \forall C \in \mathbb{S}_{>}^{3}
$$

Isotropic Materials:

$$
\hat{W}(\mathbf{x}, F)=\tilde{W}(\mathbf{x}, F Q), \quad \forall F \in \mathbb{M}_{+}^{3}, Q \in \mathbb{O}_{+}^{3}
$$

Isotropic Materials (small deformations):

$$
\tilde{W}(\mathbf{x}, C)=\frac{\lambda}{2}(\operatorname{trace} E)^{2}+\mu E: E+o\left(E^{2}\right),
$$

where $C=I+2 E, A: B=\sum_{i j} A_{i j} B_{i j}=\operatorname{trace}\left(A^{T} B\right)$.

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

St. Venant-Kirchhoff Materials:

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

St. Venant-Kirchhoff Materials:

$$
\tilde{W}(\mathbf{x}, F)=\frac{\lambda}{2}(\operatorname{trace} F)^{2}+\mu F: F=\frac{\lambda}{2}(\operatorname{trace} F)^{2}+\mu \operatorname{trace} C
$$

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

St. Venant-Kirchhoff Materials:

$$
\tilde{W}(\mathbf{x}, F)=\frac{\lambda}{2}(\operatorname{trace} F)^{2}+\mu F: F=\frac{\lambda}{2}(\operatorname{trace} F)^{2}+\mu \operatorname{trace} C
$$

Neo-Hookean Materials:

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

St. Venant-Kirchhoff Materials:

$$
\tilde{W}(\mathbf{x}, F)=\frac{\lambda}{2}(\operatorname{trace} F)^{2}+\mu F: F=\frac{\lambda}{2}(\operatorname{trace} F)^{2}+\mu \operatorname{trace} C
$$

Neo-Hookean Materials:

$$
\tilde{W}(\mathbf{x}, C)=\frac{1}{2} \mu(\operatorname{trace}(C-I))+\frac{2}{\beta}\left((\operatorname{det} C)^{-\beta / 2}-1\right)
$$

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_{+}^{3} \rightarrow \mathbb{R}$ so that

$$
\hat{T}(\mathbf{x}, \mathbf{F})=\frac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x}, \mathbf{F}), \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}_{+}^{3}
$$

St. Venant-Kirchhoff Materials:

$$
\tilde{W}(\mathbf{x}, F)=\frac{\lambda}{2}(\operatorname{trace} F)^{2}+\mu F: F=\frac{\lambda}{2}(\operatorname{trace} F)^{2}+\mu \operatorname{trace} C
$$

Neo-Hookean Materials:

$$
\tilde{W}(\mathbf{x}, C)=\frac{1}{2} \mu(\operatorname{trace}(C-I))+\frac{2}{\beta}\left((\operatorname{det} C)^{-\beta / 2}-1\right)
$$

where $\beta=2 \nu / 1-2 \nu$.

Linear Elasticity Theory

Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials.

Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case.

Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. Notation: We use σ instead of Σ and ϵ instead of E.

Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. Notation: We use σ instead of Σ and ϵ instead of E.

Variational Problem

Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. Notation: We use σ instead of Σ and ϵ instead of E.
Variational Problem

$$
\Pi:=\int_{\Omega}\left(\frac{1}{2} \epsilon: \sigma-f \cdot u\right) d V_{x}+\int_{\Gamma_{1}} g \cdot u d A_{x} .
$$

Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. Notation: We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$
\Pi:=\int_{\Omega}\left(\frac{1}{2} \epsilon: \sigma-f \cdot u\right) d V_{x}+\int_{\Gamma_{1}} g \cdot u d A_{x} .
$$

The tensor product $\epsilon: \sigma=\epsilon_{i j} \sigma_{i j}$. Note, the σ, ϵ, u are not independent here.

Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. Notation: We use σ instead of Σ and ϵ instead of E.
Variational Problem

$$
\Pi:=\int_{\Omega}\left(\frac{1}{2} \epsilon: \sigma-f \cdot u\right) d V_{x}+\int_{\Gamma_{1}} g \cdot u d A_{x} .
$$

The tensor product $\epsilon: \sigma=\epsilon_{i j} \sigma_{i j}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. Notation: We use σ instead of Σ and ϵ instead of E.
Variational Problem

$$
\Pi:=\int_{\Omega}\left(\frac{1}{2} \epsilon: \sigma-f \cdot u\right) d V_{x}+\int_{\Gamma_{1}} g \cdot u d A_{x}
$$

The tensor product $\epsilon: \sigma=\epsilon_{i j} \sigma_{i j}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by

Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. Notation: We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$
\Pi:=\int_{\Omega}\left(\frac{1}{2} \epsilon: \sigma-f \cdot u\right) d V_{x}+\int_{\Gamma_{1}} g \cdot u d A_{x} .
$$

The tensor product $\epsilon: \sigma=\epsilon_{i j} \sigma_{i j}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by

$$
\epsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right), \quad \epsilon=\epsilon(u)=\nabla^{(s)} u .
$$

Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. Notation: We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$
\Pi:=\int_{\Omega}\left(\frac{1}{2} \epsilon: \sigma-f \cdot u\right) d V_{x}+\int_{\Gamma_{1}} g \cdot u d A_{x} .
$$

The tensor product $\epsilon: \sigma=\epsilon_{i j} \sigma_{i j}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by

$$
\epsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right), \epsilon=\epsilon(u)=\nabla^{(s)} u .
$$

The stress is related by the constitutive relation

Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. Notation: We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$
\Pi:=\int_{\Omega}\left(\frac{1}{2} \epsilon: \sigma-f \cdot u\right) d V_{x}+\int_{\Gamma_{1}} g \cdot u d A_{x} .
$$

The tensor product $\epsilon: \sigma=\epsilon_{i j} \sigma_{i j}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by

$$
\epsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right), \epsilon=\epsilon(u)=\nabla^{(s)} u
$$

The stress is related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) I
$$

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) I .
$$

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) /
$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$.

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) /
$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) /
$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.
We use that $\operatorname{trace}(\epsilon)=(1-2 \nu) / E$ trace (σ), and solving for σ we have

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) I
$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.
We use that trace $(\epsilon)=(1-2 \nu) / E$ trace (σ), and solving for σ we have

$$
\sigma=\frac{E}{1+\nu}\left(\epsilon+\frac{\nu}{1-2 \nu} \operatorname{trace}(\epsilon) \prime\right)
$$

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) /
$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that $\operatorname{trace}(\epsilon)=(1-2 \nu) / E$ trace (σ), and solving for σ we have

$$
\sigma=\frac{E}{1+\nu}\left(\epsilon+\frac{\nu}{1-2 \nu} \operatorname{trace}(\epsilon) I\right)
$$

We also can use that $\epsilon: I=\operatorname{trace}(\epsilon)$ so that

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) I
$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that $\operatorname{trace}(\epsilon)=(1-2 \nu) / E$ trace (σ), and solving for σ we have

$$
\sigma=\frac{E}{1+\nu}\left(\epsilon+\frac{\nu}{1-2 \nu} \operatorname{trace}(\epsilon) I\right)
$$

We also can use that $\epsilon: I=\operatorname{trace}(\epsilon)$ so that

$$
\frac{1}{2} \sigma: \epsilon=\frac{1}{2}(\lambda \operatorname{trace}(\epsilon) I+2 \mu \epsilon): \epsilon=\frac{\lambda}{2}(\operatorname{trace}(\epsilon))^{2}+\mu \epsilon: \epsilon .
$$

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) /
$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that $\operatorname{trace}(\epsilon)=(1-2 \nu) / E$ trace (σ), and solving for σ we have

$$
\sigma=\frac{E}{1+\nu}\left(\epsilon+\frac{\nu}{1-2 \nu} \operatorname{trace}(\epsilon) I\right)
$$

We also can use that $\epsilon: I=\operatorname{trace}(\epsilon)$ so that

$$
\frac{1}{2} \sigma: \epsilon=\frac{1}{2}(\lambda \operatorname{trace}(\epsilon) I+2 \mu \epsilon): \epsilon=\frac{\lambda}{2}(\operatorname{trace}(\epsilon))^{2}+\mu \epsilon: \epsilon .
$$

This corresponds to the energy functional $\hat{W}(\mathbf{x}, \mathbf{F})$ for St. Venant-Kirchhoff materials..

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) /
$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that $\operatorname{trace}(\epsilon)=(1-2 \nu) / E$ trace (σ), and solving for σ we have

$$
\sigma=\frac{E}{1+\nu}\left(\epsilon+\frac{\nu}{1-2 \nu} \operatorname{trace}(\epsilon) I\right)
$$

We also can use that $\epsilon: I=\operatorname{trace}(\epsilon)$ so that

$$
\frac{1}{2} \sigma: \epsilon=\frac{1}{2}(\lambda \operatorname{trace}(\epsilon) I+2 \mu \epsilon): \epsilon=\frac{\lambda}{2}(\operatorname{trace}(\epsilon))^{2}+\mu \epsilon: \epsilon .
$$

This corresponds to the energy functional $\hat{W}(\mathbf{x}, \mathbf{F})$ for St. Venant-Kirchhoff materials..
Remark: This leads to a mixed formulation of weak problem.

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) I
$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that $\operatorname{trace}(\epsilon)=(1-2 \nu) / E$ trace (σ), and solving for σ we have

$$
\sigma=\frac{E}{1+\nu}\left(\epsilon+\frac{\nu}{1-2 \nu} \operatorname{trace}(\epsilon) I\right)
$$

We also can use that $\epsilon: I=\operatorname{trace}(\epsilon)$ so that

$$
\frac{1}{2} \sigma: \epsilon=\frac{1}{2}(\lambda \operatorname{trace}(\epsilon) I+2 \mu \epsilon): \epsilon=\frac{\lambda}{2}(\operatorname{trace}(\epsilon))^{2}+\mu \epsilon: \epsilon .
$$

This corresponds to the energy functional $\hat{W}(\mathbf{x}, \mathbf{F})$ for St. Venant-Kirchhoff materials..
Remark: This leads to a mixed formulation of weak problem.
Formulations: There are at least three distinct approaches in the literature:

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) I
$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that trace $(\epsilon)=(1-2 \nu) / E$ trace (σ), and solving for σ we have

$$
\sigma=\frac{E}{1+\nu}\left(\epsilon+\frac{\nu}{1-2 \nu} \operatorname{trace}(\epsilon) \prime\right)
$$

We also can use that $\epsilon: I=\operatorname{trace}(\epsilon)$ so that

$$
\frac{1}{2} \sigma: \epsilon=\frac{1}{2}(\lambda \operatorname{trace}(\epsilon) I+2 \mu \epsilon): \epsilon=\frac{\lambda}{2}(\operatorname{trace}(\epsilon))^{2}+\mu \epsilon: \epsilon .
$$

This corresponds to the energy functional $\hat{W}(\mathbf{x}, \mathbf{F})$ for St. Venant-Kirchhoff materials..
Remark: This leads to a mixed formulation of weak problem.
Formulations: There are at least three distinct approaches in the literature:
(i) Displacement Formulation,

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) /
$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that $\operatorname{trace}(\epsilon)=(1-2 \nu) / E$ trace (σ), and solving for σ we have

$$
\sigma=\frac{E}{1+\nu}\left(\epsilon+\frac{\nu}{1-2 \nu} \operatorname{trace}(\epsilon) \prime\right)
$$

We also can use that $\epsilon: I=\operatorname{trace}(\epsilon)$ so that

$$
\frac{1}{2} \sigma: \epsilon=\frac{1}{2}(\lambda \operatorname{trace}(\epsilon) I+2 \mu \epsilon): \epsilon=\frac{\lambda}{2}(\operatorname{trace}(\epsilon))^{2}+\mu \epsilon: \epsilon .
$$

This corresponds to the energy functional $\hat{W}(\mathbf{x}, \mathbf{F})$ for St. Venant-Kirchhoff materials..
Remark: This leads to a mixed formulation of weak problem.
Formulations: There are at least three distinct approaches in the literature:
(i) Displacement Formulation, (ii) Mixed Hellinger and Reissner, and

Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$
\epsilon=\frac{1+\nu}{E} \sigma-\frac{\nu}{E} \operatorname{trace}(\sigma) /
$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that $\operatorname{trace}(\epsilon)=(1-2 \nu) / E$ trace (σ), and solving for σ we have

$$
\sigma=\frac{E}{1+\nu}\left(\epsilon+\frac{\nu}{1-2 \nu} \operatorname{trace}(\epsilon) \prime\right)
$$

We also can use that $\epsilon: I=\operatorname{trace}(\epsilon)$ so that

$$
\frac{1}{2} \sigma: \epsilon=\frac{1}{2}(\lambda \operatorname{trace}(\epsilon) I+2 \mu \epsilon): \epsilon=\frac{\lambda}{2}(\operatorname{trace}(\epsilon))^{2}+\mu \epsilon: \epsilon .
$$

This corresponds to the energy functional $\hat{W}(\mathbf{x}, \mathbf{F})$ for St. Venant-Kirchhoff materials..
Remark: This leads to a mixed formulation of weak problem.
Formulations: There are at least three distinct approaches in the literature:
(i) Displacement Formulation, (ii) Mixed Hellinger and Reissner, and (iii) Mixed Hu and Washizu.

Displacement Formulation

Variational Principle for Displacement Formulation

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{x} \rightarrow \min
$$

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{\mathrm{x}}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} \rightarrow \min
$$

This is obtained by eliminating σ using $\sigma=\mathcal{C} \epsilon$, where

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{x} \rightarrow \min
$$

This is obtained by eliminating σ using $\sigma=\mathcal{C} \epsilon$, where

$$
\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{23}
\end{array}\right]=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{llllll}
1-\nu & \nu & \nu & & & \\
\nu & 1-\nu & \nu & \nu & 0 & \\
\nu & \nu & 1-\nu & & & \\
& & 0 & 1-2 \nu & & \\
& & & & 1-2 \nu & \\
& & & & & 1-2 \nu
\end{array}\right]\left[\begin{array}{c}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{33} \\
\epsilon_{12} \\
\epsilon_{13} \\
\epsilon_{23}
\end{array}\right] .
$$

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{\mathrm{x}}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} \rightarrow \min
$$

This is obtained by eliminating σ using $\sigma=\mathcal{C} \epsilon$, where

$$
\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{23}
\end{array}\right]=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{llllll}
1-\nu & \nu & \nu & & \\
\nu & 1-\nu & \nu & 0 & \\
\nu & \nu & 1-\nu & 1-2 \nu & & \\
& & 0 & & 1-2 \nu & \\
& & & & 1-2 \nu
\end{array}\right]\left[\begin{array}{c}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{33} \\
\epsilon_{12} \\
\epsilon_{13} \\
\epsilon_{23}
\end{array}\right] .
$$

The variational principle above is obtained from this with notation $\epsilon=\nabla^{(s)} v, \lambda=0$, and

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{\mathrm{x}}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} \rightarrow \min
$$

This is obtained by eliminating σ using $\sigma=\mathcal{C} \epsilon$, where

$$
\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{23}
\end{array}\right]=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{llllll}
1-\nu & \nu & \nu & & \\
\nu & 1-\nu & \nu & 0 & \\
\nu & \nu & 1-\nu & & & \\
& & 0 & 1-2 \nu & & \\
& & & 1-2 \nu & \\
& & & & 1-2 \nu
\end{array}\right]\left[\begin{array}{c}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{33} \\
\epsilon_{12} \\
\epsilon_{13} \\
\epsilon_{23}
\end{array}\right] .
$$

The variational principle above is obtained from this with notation $\epsilon=\nabla^{(s)} v, \lambda=0$, and

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \nabla^{(s)} v: \mathcal{C} \nabla^{(s)} v-f \cdot v\right) d V_{\mathrm{x}}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} .
$$

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{x} \rightarrow \min
$$

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{x} \rightarrow \min
$$

The minimization is performed on the space

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{x} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{\mathrm{x}}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Weak Formulation:

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{x} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Weak Formulation:

$$
\int_{\Omega} \nabla^{(s)} u: \mathcal{C} \nabla^{(s)} v d V_{x}=(f, v)_{0}-\int_{\Gamma_{1}} g \cdot v d A_{x}, \quad \forall v \in H_{\Gamma}^{1} .
$$

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{x} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Weak Formulation:

$$
\int_{\Omega} \nabla^{(s)} u: \mathcal{C} \nabla^{(s)} v d V_{x}=(f, v)_{0}-\int_{\Gamma_{1}} g \cdot v d A_{x}, \quad \forall v \in H_{\Gamma}^{1} .
$$

By introducing L^{2} inner-product notation, we can express as

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Weak Formulation:

$$
\int_{\Omega} \nabla^{(s)} u: \mathcal{C} \nabla^{(s)} v d V_{x}=(f, v)_{0}-\int_{\Gamma_{1}} g \cdot v d A_{x}, \quad \forall v \in H_{\Gamma}^{1} .
$$

By introducing L^{2} inner-product notation, we can express as

$$
\left(\nabla^{(s)} u, \mathcal{C} \nabla^{(s)} v\right)_{0}=(f, v)_{0}-(g, v)_{\Gamma, 0}, \quad \forall v \in H_{\Gamma}^{1}
$$

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Weak Formulation:

$$
\int_{\Omega} \nabla^{(s)} u: \mathcal{C} \nabla^{(s)} v d V_{x}=(f, v)_{0}-\int_{\Gamma_{1}} g \cdot v d A_{x}, \quad \forall v \in H_{\Gamma}^{1} .
$$

By introducing L^{2} inner-product notation, we can express as

$$
\left(\nabla^{(s)} u, \mathcal{C} \nabla^{(s)} v\right)_{0}=(f, v)_{0}-(g, v)_{\Gamma, 0}, \quad \forall v \in H_{\Gamma}^{1}
$$

St. Venant-Kirchhoff Materials: The weak formulation (general λ) is

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\frac{1}{2} \epsilon[v]: \sigma[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Weak Formulation:

$$
\int_{\Omega} \nabla^{(s)} u: \mathcal{C} \nabla^{(s)} v d V_{x}=(f, v)_{0}-\int_{\Gamma_{1}} g \cdot v d A_{x}, \quad \forall v \in H_{\Gamma}^{1} .
$$

By introducing L^{2} inner-product notation, we can express as

$$
\left(\nabla^{(s)} u, \mathcal{C} \nabla^{(s)} v\right)_{0}=(f, v)_{0}-(g, v)_{\Gamma, 0}, \quad \forall v \in H_{\Gamma}^{1}
$$

St. Venant-Kirchhoff Materials: The weak formulation (general λ) is

$$
2 \mu\left(\nabla^{(s)} u, \nabla^{(s)} v\right)_{0}+\lambda(\operatorname{div} u, \operatorname{div} v)_{0}=(f, v)_{0}-(g, v)_{\Gamma, 0}, \quad \forall v \in H_{\Gamma}^{1}
$$

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\mu \epsilon[v]: \epsilon[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{\mathrm{x}}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} \rightarrow \min
$$

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\mu \epsilon[v]: \epsilon[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{\mathrm{x}}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} \rightarrow \min
$$

The minimization is performed on the space

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\mu \epsilon[v]: \epsilon[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{\mathrm{x}}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\mu \epsilon[v]: \epsilon[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{x} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Weak Formulation:

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\mu \epsilon[v]: \epsilon[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{x} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Weak Formulation:

St. Venant-Kirchhoff Materials: The weak formulation specializes to

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\mu \epsilon[v]: \epsilon[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{x}+\int_{\Gamma_{1}} g \cdot v d A_{x} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Weak Formulation:

St. Venant-Kirchhoff Materials: The weak formulation specializes to

$$
2 \mu\left(\nabla^{(s)} u, \nabla^{(s)} v\right)_{0}+\lambda(\operatorname{div} u, \operatorname{div} v)_{0}=(f, v)_{0}-(g, v)_{\Gamma, 0}, \quad \forall v \in H_{\Gamma}^{1}
$$

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\mu \epsilon[v]: \epsilon[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{\mathrm{x}}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Weak Formulation:

St. Venant-Kirchhoff Materials: The weak formulation specializes to

$$
2 \mu\left(\nabla^{(s)} u, \nabla^{(s)} v\right)_{0}+\lambda(\operatorname{div} u, \operatorname{div} v)_{0}=(f, v)_{0}-(g, v)_{\Gamma, 0}, \quad \forall v \in H_{\Gamma}^{1}
$$

Strong Form Elliptic PDEs: For the St. Venant-Kirchhoff we have

Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v]=\int_{\Omega}\left(\mu \epsilon[v]: \epsilon[v]+\frac{\lambda}{2}(\operatorname{div}(v))^{2}-f \cdot v\right) d V_{\mathrm{x}}+\int_{\Gamma_{1}} g \cdot v d A_{\mathrm{x}} \rightarrow \min
$$

The minimization is performed on the space

$$
H_{\Gamma}^{1}:=\left\{v \in H^{1}(\Omega)^{3}: v(x)=0, \forall x \in \Gamma_{0}\right\}
$$

Weak Formulation:

St. Venant-Kirchhoff Materials: The weak formulation specializes to

$$
2 \mu\left(\nabla^{(s)} u, \nabla^{(s)} v\right)_{0}+\lambda(\operatorname{div} u, \operatorname{div} v)_{0}=(f, v)_{0}-(g, v)_{\Gamma, 0}, \quad \forall v \in H_{\Gamma}^{1}
$$

Strong Form Elliptic PDEs: For the St. Venant-Kirchhoff we have

$$
\begin{array}{rlrl}
-2 \mu \operatorname{div} \epsilon(u)-\lambda \operatorname{grad} \operatorname{div} u & =f, & & x \in \Omega, \\
u & =0, & & x \in \Gamma_{0}, \\
\sigma(u) \cdot n & & =g & \\
x \in \Gamma_{1} .
\end{array}
$$

Hellinger and Reissner Mixed Method Formulation

Hellinger and Reissner Mixed Method Formulation

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

Hellinger and Reissner Mixed Method Formulation

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$
\begin{array}{ll}
\left(\mathcal{C}^{-1} \sigma-\nabla^{(s)} u, \tau\right)_{0}=0, & \forall \tau \in L_{2}(\Omega) \\
-\left(\sigma, \nabla^{(s)} v\right)_{0}=-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & \forall v \in H_{\Gamma}^{1}(\Omega)
\end{array}
$$

Hellinger and Reissner Mixed Method Formulation

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$
\begin{array}{ll}
\left(\mathcal{C}^{-1} \sigma-\nabla^{(s)} u, \tau\right)_{0}=0, & \forall \tau \in L_{2}(\Omega), \\
-\left(\sigma, \nabla^{(s)} v\right)_{0}=-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & \forall v \in H_{\Gamma}^{1}(\Omega)
\end{array}
$$

This is related to the Displacement Formulation by using solution u to define $\sigma:=\mathcal{C} \nabla^{(s)} u \in L_{2}$.

Hellinger and Reissner Mixed Method Formulation

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$
\begin{array}{ll}
\left(\mathcal{C}^{-1} \sigma-\nabla^{(s)} u, \tau\right)_{0}=0, & \forall \tau \in L_{2}(\Omega), \\
-\left(\sigma, \nabla^{(s)} v\right)_{0}=-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & \forall v \in H_{\Gamma}^{1}(\Omega)
\end{array}
$$

This is related to the Displacement Formulation by using solution u to define $\sigma:=\mathcal{C} \nabla^{(s)} u \in L_{2}$. Strong Form Elliptic PDEs:

Hellinger and Reissner Mixed Method Formulation

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$
\begin{array}{ll}
\left(\mathcal{C}^{-1} \sigma-\nabla^{(s)} u, \tau\right)_{0}=0, & \forall \tau \in L_{2}(\Omega) \\
-\left(\sigma, \nabla^{(s)} v\right)_{0}=-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & \forall v \in H_{\Gamma}^{1}(\Omega)
\end{array}
$$

This is related to the Displacement Formulation by using solution u to define $\sigma:=\mathcal{C} \nabla^{(s)} u \in L_{2}$. Strong Form Elliptic PDEs:

$$
\begin{aligned}
\operatorname{div} \sigma & =-f, & & x \in \Omega, \\
\sigma & =\mathcal{C} \nabla^{(s)} u, & & x \in \Omega, \\
u & =0, & & x \in \Gamma_{0}, \\
\sigma \cdot n & =g, & & x \in \Gamma_{1} .
\end{aligned}
$$

Hellinger and Reissner Mixed Method Formulation

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$
\begin{array}{ll}
\left(\mathcal{C}^{-1} \sigma-\nabla^{(s)} u, \tau\right)_{0}=0, & \forall \tau \in L_{2}(\Omega) \\
-\left(\sigma, \nabla^{(s)} v\right)_{0}=-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & \forall v \in H_{\Gamma}^{1}(\Omega)
\end{array}
$$

This is related to the Displacement Formulation by using solution u to define $\sigma:=\mathcal{C} \nabla^{(s)} u \in L_{2}$. Strong Form Elliptic PDEs:

$$
\begin{aligned}
\operatorname{div} \sigma & =-f, & & x \in \Omega \\
\sigma & =\mathcal{C} \nabla^{(s)} u, & & x \in \Omega, \\
u & =0, & & x \in \Gamma_{0} \\
\sigma \cdot n & =g, & & x \in \Gamma_{1} .
\end{aligned}
$$

Weak Formulation II:

Hellinger and Reissner Mixed Method Formulation

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$
\begin{array}{ll}
\left(\mathcal{C}^{-1} \sigma-\nabla^{(s)} u, \tau\right)_{0}=0, & \forall \tau \in L_{2}(\Omega), \\
-\left(\sigma, \nabla^{(s)} v\right)_{0}=-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & \forall v \in H_{\Gamma}^{1}(\Omega)
\end{array}
$$

This is related to the Displacement Formulation by using solution u to define $\sigma:=\mathcal{C} \nabla^{(s)} u \in L_{2}$. Strong Form Elliptic PDEs:

$$
\begin{aligned}
\operatorname{div} \sigma & =-f, & & x \in \Omega \\
\sigma & =\mathcal{C} \nabla^{(s)} u, & & x \in \Omega \\
u & =0, & & x \in \Gamma_{0} \\
\sigma \cdot n & =g, & & x \in \Gamma_{1} .
\end{aligned}
$$

Weak Formulation II: We find it helpful later to organize the weak problem as

Hellinger and Reissner Mixed Method Formulation

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$
\begin{array}{ll}
\left(\mathcal{C}^{-1} \sigma-\nabla^{(s)} u, \tau\right)_{0}=0, & \forall \tau \in L_{2}(\Omega) \\
-\left(\sigma, \nabla^{(s)} v\right)_{0}=-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & \forall v \in H_{\Gamma}^{1}(\Omega)
\end{array}
$$

This is related to the Displacement Formulation by using solution u to define $\sigma:=\mathcal{C} \nabla^{(s)} u \in L_{2}$. Strong Form Elliptic PDEs:

$$
\begin{aligned}
\operatorname{div} \sigma & =-f, & & x \in \Omega, \\
\sigma & =\mathcal{C} \nabla^{(s)} u, & & x \in \Omega \\
u & =0, & & x \in \Gamma_{0}, \\
\sigma \cdot n & =g, & & x \in \Gamma_{1} .
\end{aligned}
$$

Weak Formulation II: We find it helpful later to organize the weak problem as

$$
\begin{gathered}
X=L_{2}(\Omega), \quad M=H_{\Gamma}^{1}(\Omega) \\
a(\sigma, \tau)=\left(\mathcal{C}^{-1} \sigma, \tau\right)_{0}, \quad b(\tau, v)=-\left(\tau, \nabla^{(s)} v\right)_{0}
\end{gathered}
$$

Hellinger and Reissner Mixed Method Formulation

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$
\begin{array}{ll}
\left(\mathcal{C}^{-1} \sigma-\nabla^{(s)} u, \tau\right)_{0}=0, & \forall \tau \in L_{2}(\Omega) \\
-\left(\sigma, \nabla^{(s)} v\right)_{0}=-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & \forall v \in H_{\Gamma}^{1}(\Omega)
\end{array}
$$

This is related to the Displacement Formulation by using solution u to define $\sigma:=\mathcal{C} \nabla^{(s)} u \in L_{2}$. Strong Form Elliptic PDEs:

$$
\begin{aligned}
\operatorname{div} \sigma & =-f, & & x \in \Omega, \\
\sigma & =\mathcal{C} \nabla^{(s)} u, & & x \in \Omega \\
u & =0, & & x \in \Gamma_{0}, \\
\sigma \cdot n & =g, & & x \in \Gamma_{1} .
\end{aligned}
$$

Weak Formulation II: We find it helpful later to organize the weak problem as

$$
\begin{gathered}
X=L_{2}(\Omega), \quad M=H_{\Gamma}^{1}(\Omega) \\
a(\sigma, \tau)=\left(\mathcal{C}^{-1} \sigma, \tau\right)_{0}, \quad b(\tau, v)=-\left(\tau, \nabla^{(s)} v\right)_{0}
\end{gathered}
$$

As mixed method on spaces (X, M), we consider as

Hellinger and Reissner Mixed Method Formulation

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$
\begin{array}{ll}
\left(\mathcal{C}^{-1} \sigma-\nabla^{(s)} u, \tau\right)_{0}=0, & \forall \tau \in L_{2}(\Omega) \\
-\left(\sigma, \nabla^{(s)} v\right)_{0}=-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & \forall v \in H_{\Gamma}^{1}(\Omega)
\end{array}
$$

This is related to the Displacement Formulation by using solution u to define $\sigma:=\mathcal{C} \nabla^{(s)} u \in L_{2}$. Strong Form Elliptic PDEs:

$$
\begin{aligned}
\operatorname{div} \sigma & =-f, & & x \in \Omega \\
\sigma & =\mathcal{C} \nabla^{(s)} u, & & x \in \Omega \\
u & =0, & & x \in \Gamma_{0}, \\
\sigma \cdot n & =g, & & x \in \Gamma_{1} .
\end{aligned}
$$

Weak Formulation II: We find it helpful later to organize the weak problem as

$$
\begin{gathered}
X=L_{2}(\Omega), \quad M=H_{\Gamma}^{1}(\Omega) \\
a(\sigma, \tau)=\left(\mathcal{C}^{-1} \sigma, \tau\right)_{0}, \quad b(\tau, v)=-\left(\tau, \nabla^{(s)} v\right)_{0}
\end{gathered}
$$

As mixed method on spaces (X, M), we consider as

$$
\begin{gathered}
X=H(\operatorname{div}, \Omega), \quad M=L_{2}(\Omega) \\
a(\sigma, \tau)=\left(\mathcal{C}^{-1} \sigma, \tau\right)_{0}, \quad b(\tau, v)=(\operatorname{div} \sigma, v)_{0}
\end{gathered}
$$

Hu and Washizu Mixed Method Formulation

Hu and Washizu Mixed Method Formulation

Weak Formulation (Hu and Washizu): All variables remain in the equations.

Weak Formulation (Hu and Washizu): All variables remain in the equations.

$$
\begin{array}{rlrl}
(\mathcal{C} \epsilon-\sigma, \eta)_{0} & =0, & & \forall \eta \in L_{2}(\Omega) \\
\left(\epsilon-\nabla^{(s)} u, \tau\right)_{0} & =0, & & \forall \tau \in L_{2}(\Omega) \\
-\left(\sigma, \nabla^{(s)} v\right)_{0} & & =-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & \\
\forall v \in H_{\Gamma}^{1}(\Omega)
\end{array}
$$

Hu and Washizu Mixed Method Formulation

Weak Formulation (Hu and Washizu): All variables remain in the equations.

$$
\begin{aligned}
(\mathcal{C} \epsilon-\sigma, \eta)_{0} & =0, & & \forall \eta \in L_{2}(\Omega) \\
\left(\epsilon-\nabla^{(s)} u, \tau\right)_{0} & =0, & & \forall \tau \in L_{2}(\Omega) \\
-\left(\sigma, \nabla^{(s)} v\right)_{0} & =-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & & \forall v \in H_{\Gamma}^{1}(\Omega)
\end{aligned}
$$

Numerically, tends to yield more reliable calculations for stresses since they are represented directly.

Hu and Washizu Mixed Method Formulation

Weak Formulation (Hu and Washizu): All variables remain in the equations.

$$
\begin{array}{rlrl}
(\mathcal{C} \epsilon-\sigma, \eta)_{0} & =0, & & \forall \eta \in L_{2}(\Omega) \\
\left(\epsilon-\nabla^{(s)} u, \tau\right)_{0} & =0, & & \forall \tau \in L_{2}(\Omega) \\
-\left(\sigma, \nabla^{(s)} v\right)_{0} & & =-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & \\
\forall v \in H_{\Gamma}^{1}(\Omega)
\end{array}
$$

Numerically, tends to yield more reliable calculations for stresses since they are represented directly. Weak Formulation II:

Hu and Washizu Mixed Method Formulation

Weak Formulation (Hu and Washizu): All variables remain in the equations.

$$
\begin{aligned}
(\mathcal{C} \epsilon-\sigma, \eta)_{0} & =0, & & \forall \eta \in L_{2}(\Omega) \\
\left(\epsilon-\nabla^{(s)} u, \tau\right)_{0} & =0, & & \forall \tau \in L_{2}(\Omega) \\
-\left(\sigma, \nabla^{(s)} v\right)_{0} & =-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & & \forall v \in H_{\Gamma}^{1}(\Omega)
\end{aligned}
$$

Numerically, tends to yield more reliable calculations for stresses since they are represented directly. Weak Formulation II: We find it helpful later to organize the weak problem as

Hu and Washizu Mixed Method Formulation

Weak Formulation (Hu and Washizu): All variables remain in the equations.

$$
\begin{array}{rlrl}
(\mathcal{C} \epsilon-\sigma, \eta)_{0} & =0, & & \forall \eta \in L_{2}(\Omega) \\
\left(\epsilon-\nabla^{(s)} u, \tau\right)_{0} & =0, & & \forall \tau \in L_{2}(\Omega) \\
-\left(\sigma, \nabla^{(s)} v\right)_{0} & & =-(f, v)_{0}+\int_{\Gamma_{1}} g \cdot v d x, & \\
\forall v \in H_{\Gamma}^{1}(\Omega)
\end{array}
$$

Numerically, tends to yield more reliable calculations for stresses since they are represented directly. Weak Formulation II: We find it helpful later to organize the weak problem as

$$
a((\epsilon, \sigma, v),(\tau, \eta, \xi))=-\left(\sigma, \nabla^{(s)} \tau\right)_{0}, \quad b((\epsilon, \sigma, v),(\tau, \eta, \xi))=\left(\epsilon-\nabla^{(s)} v, \tau\right)_{0}+(\mathcal{C} \epsilon-\sigma, \eta)_{0}
$$

Displacement Formulation

Korn's First Inequality

Displacement Formulation

Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary,

Displacement Formulation

Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary, there exists a number $c=c(\Omega)>0$ so that

Displacement Formulation

Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary, there exists a number $c=c(\Omega)>0$ so that

$$
\int_{\Omega} \epsilon(v): \epsilon(v) d x+\|v\|_{0}^{2} \geq c\|v\|_{1}^{2}, \quad \forall v \in H^{1}(\Omega)^{d}
$$

Displacement Formulation

Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary, there exists a number $c=c(\Omega)>0$ so that

$$
\int_{\Omega} \epsilon(v): \epsilon(v) d x+\|v\|_{0}^{2} \geq c\|v\|_{1}^{2}, \quad \forall v \in H^{1}(\Omega)^{d}
$$

Korn's Second Inequality

Displacement Formulation

Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary, there exists a number $c=c(\Omega)>0$ so that

$$
\int_{\Omega} \epsilon(v): \epsilon(v) d x+\|v\|_{0}^{2} \geq c\|v\|_{1}^{2}, \quad \forall v \in H^{1}(\Omega)^{d}
$$

Korn's Second Inequality

For $\Omega \subset \mathbb{R}^{3}$ be an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary

Displacement Formulation

Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary, there exists a number $c=c(\Omega)>0$ so that

$$
\int_{\Omega} \epsilon(v): \epsilon(v) d x+\|v\|_{0}^{2} \geq c\|v\|_{1}^{2}, \quad \forall v \in H^{1}(\Omega)^{d}
$$

Korn's Second Inequality

For $\Omega \subset \mathbb{R}^{3}$ be an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary and $\Gamma_{0} \subset \partial \Omega$ have positive two-dimensional measure.

Displacement Formulation

Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary, there exists a number $c=c(\Omega)>0$ so that

$$
\int_{\Omega} \epsilon(v): \epsilon(v) d x+\|v\|_{0}^{2} \geq c\|v\|_{1}^{2}, \quad \forall v \in H^{1}(\Omega)^{d}
$$

Korn's Second Inequality

For $\Omega \subset \mathbb{R}^{3}$ be an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary and $\Gamma_{0} \subset \partial \Omega$ have positive two-dimensional measure. Then there exists a positive number $c^{\prime}=c^{\prime}\left(\Omega, \Gamma_{0}\right)$ so that

Displacement Formulation

Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary, there exists a number $c=c(\Omega)>0$ so that

$$
\int_{\Omega} \epsilon(v): \epsilon(v) d x+\|v\|_{0}^{2} \geq c\|v\|_{1}^{2}, \quad \forall v \in H^{1}(\Omega)^{d}
$$

Korn's Second Inequality

For $\Omega \subset \mathbb{R}^{3}$ be an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary and $\Gamma_{0} \subset \partial \Omega$ have positive two-dimensional measure. Then there exists a positive number $c^{\prime}=c^{\prime}\left(\Omega, \Gamma_{0}\right)$ so that

$$
\int_{\Omega} \epsilon(v): \epsilon(v) d x \geq c^{\prime}\|v\|_{1}^{1}, \quad \forall v \in H_{\Gamma}^{1}(\Omega)
$$

Displacement Formulation

Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary, there exists a number $c=c(\Omega)>0$ so that

$$
\int_{\Omega} \epsilon(v): \epsilon(v) d x+\|v\|_{0}^{2} \geq c\|v\|_{1}^{2}, \quad \forall v \in H^{1}(\Omega)^{d}
$$

Korn's Second Inequality

For $\Omega \subset \mathbb{R}^{3}$ be an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary and $\Gamma_{0} \subset \partial \Omega$ have positive two-dimensional measure. Then there exists a positive number $c^{\prime}=c^{\prime}\left(\Omega, \Gamma_{0}\right)$ so that

$$
\int_{\Omega} \epsilon(v): \epsilon(v) d x \geq c^{\prime}\|v\|_{1}^{1}, \quad \forall v \in H_{\Gamma}^{1}(\Omega)
$$

Here, $H_{\Gamma}^{1}(\Omega)$ is the closure of $\left\{v \in C^{\infty}: v(x)=0, \forall x \in \Gamma_{0}\right\}$ with respect to norm $\|\cdot\|_{1}$.

Displacement Formulation

Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary, there exists a number $c=c(\Omega)>0$ so that

$$
\int_{\Omega} \epsilon(v): \epsilon(v) d x+\|v\|_{0}^{2} \geq c\|v\|_{1}^{2}, \quad \forall v \in H^{1}(\Omega)^{d}
$$

Korn's Second Inequality

For $\Omega \subset \mathbb{R}^{3}$ be an open bounded set in \mathbb{R}^{d} with piecewise smooth boundary and $\Gamma_{0} \subset \partial \Omega$ have positive two-dimensional measure. Then there exists a positive number $c^{\prime}=c^{\prime}\left(\Omega, \Gamma_{0}\right)$ so that

$$
\int_{\Omega} \epsilon(v): \epsilon(v) d x \geq c^{\prime}\|v\|_{1}^{1}, \quad \forall v \in H_{\Gamma}^{1}(\Omega)
$$

Here, $H_{\Gamma}^{1}(\Omega)$ is the closure of $\left\{v \in C^{\infty}: v(x)=0, \forall x \in \Gamma_{0}\right\}$ with respect to norm $\|\cdot\|_{1}$.
Useful in establishing variational problems are elliptic and for coercivity.

Displacement Formulation

Displacement Formulation

Existence Theorem (Displacement Formulation)

Displacement Formulation

Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^{3}$ be a domain with piecewise smooth boundary, and Γ_{0} has positive two-dimensional measure.

Displacement Formulation

Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^{3}$ be a domain with piecewise smooth boundary, and Γ_{0} has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

Displacement Formulation

Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^{3}$ be a domain with piecewise smooth boundary, and Γ_{0} has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem.

Displacement Formulation

Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^{3}$ be a domain with piecewise smooth boundary, and Γ_{0} has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities.

Displacement Formulation

Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^{3}$ be a domain with piecewise smooth boundary, and Γ_{0} has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities.

The Lax-Milgram Theorem then gives the well-posedness of the variational problem.

Displacement Formulation

Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^{3}$ be a domain with piecewise smooth boundary, and Γ_{0} has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities.

The Lax-Milgram Theorem then gives the well-posedness of the variational problem.
There are results establishing conditions for well-posedness for the other formulations.

Displacement Formulation

Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^{3}$ be a domain with piecewise smooth boundary, and Γ_{0} has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities.

The Lax-Milgram Theorem then gives the well-posedness of the variational problem.
There are results establishing conditions for well-posedness for the other formulations. These typically involve analysis establishing the Babuska-Brezzi inf-sup conditions hold (discussed with mixed method theory).

Locking Phenomena

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

$$
\lambda \gg \mu
$$

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

$$
\lambda \gg \mu .
$$

In the displacement formulation on $v \in H_{\Gamma}^{1}$, we have

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

$$
\lambda \gg \mu
$$

In the displacement formulation on $v \in H_{\Gamma}^{1}$, we have

$$
a(u, v):=\lambda(\operatorname{div} u, \operatorname{div} v)_{0}+2 \mu(\epsilon(u), \epsilon(v))_{0}, \quad \rightarrow \quad \alpha\|v\|_{1}^{2} \leq a(v, v) \leq C\|v\|_{1}^{2}, \quad \text { with } \quad \alpha \leq \mu \text { and } C \geq \lambda+2 \mu
$$

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

$$
\lambda \gg \mu .
$$

In the displacement formulation on $v \in H_{\Gamma}^{1}$, we have

$$
a(u, v):=\lambda(\operatorname{div} u, \operatorname{div} v)_{0}+2 \mu(\epsilon(u), \epsilon(v))_{0}, \quad \rightarrow \quad \alpha\|v\|_{1}^{2} \leq a(v, v) \leq C\|v\|_{1}^{2}, \quad \text { with } \quad \alpha \leq \mu \text { and } C \geq \lambda+2 \mu
$$

Recall, in Céa's Lemma we obtained bound with C / α which suggests large pre-factors in incompressible limit.

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

$$
\lambda \gg \mu .
$$

In the displacement formulation on $v \in H_{\Gamma}^{1}$, we have

$$
a(u, v):=\lambda(\operatorname{div} u, \operatorname{div} v)_{0}+2 \mu(\epsilon(u), \epsilon(v))_{0}, \quad \rightarrow \quad \alpha\|v\|_{1}^{2} \leq a(v, v) \leq C\|v\|_{1}^{2}, \quad \text { with } \quad \alpha \leq \mu \text { and } C \geq \lambda+2 \mu
$$

Recall, in Céa's Lemma we obtained bound with C / α which suggests large pre-factors in incompressible limit. In practice, results in errors in the solution much larger than the approximation error of the finite element space.

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

$$
\lambda \gg \mu .
$$

In the displacement formulation on $v \in H_{\Gamma}^{1}$, we have

$$
a(u, v):=\lambda(\operatorname{div} u, \operatorname{div} v)_{0}+2 \mu(\epsilon(u), \epsilon(v))_{0}, \quad \rightarrow \quad \alpha\|v\|_{1}^{2} \leq a(v, v) \leq C\|v\|_{1}^{2}, \quad \text { with } \quad \alpha \leq \mu \text { and } C \geq \lambda+2 \mu
$$

Recall, in Céa's Lemma we obtained bound with C / α which suggests large pre-factors in incompressible limit.
In practice, results in errors in the solution much larger than the approximation error of the finite element space.
Manifests typically with displacements much smaller than expected, referred to as locking effects.

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

$$
\lambda \gg \mu .
$$

In the displacement formulation on $v \in H_{\Gamma}^{1}$, we have

$$
a(u, v):=\lambda(\operatorname{div} u, \operatorname{div} v)_{0}+2 \mu(\epsilon(u), \epsilon(v))_{0}, \quad \rightarrow \quad \alpha\|v\|_{1}^{2} \leq a(v, v) \leq C\|v\|_{1}^{2}, \quad \text { with } \quad \alpha \leq \mu \text { and } C \geq \lambda+2 \mu
$$

Recall, in Céa's Lemma we obtained bound with C / α which suggests large pre-factors in incompressible limit.
In practice, results in errors in the solution much larger than the approximation error of the finite element space.
Manifests typically with displacements much smaller than expected, referred to as locking effects.
In the nearly incompressible regime, referred to as volume locking or Poisson locking.

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

$$
\lambda \gg \mu
$$

In the displacement formulation on $v \in H_{\Gamma}^{1}$, we have

$$
a(u, v):=\lambda(\operatorname{div} u, \operatorname{div} v)_{0}+2 \mu(\epsilon(u), \epsilon(v))_{0}, \quad \rightarrow \quad \alpha\|v\|_{1}^{2} \leq a(v, v) \leq C\|v\|_{1}^{2}, \quad \text { with } \quad \alpha \leq \mu \text { and } C \geq \lambda+2 \mu
$$

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

$$
\lambda \gg \mu
$$

In the displacement formulation on $v \in H_{\Gamma}^{1}$, we have

$$
a(u, v):=\lambda(\operatorname{div} u, \operatorname{div} v)_{0}+2 \mu(\epsilon(u), \epsilon(v))_{0}, \quad \rightarrow \quad \alpha\|v\|_{1}^{2} \leq a(v, v) \leq C\|v\|_{1}^{2}, \quad \text { with } \quad \alpha \leq \mu \text { and } C \geq \lambda+2 \mu
$$

Remedy: One approach is to reformulate as a mixed method to obtain saddle-point problem. Let $p:=\lambda \operatorname{div} u$,

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

$$
\lambda \gg \mu
$$

In the displacement formulation on $v \in H_{\Gamma}^{1}$, we have

$$
a(u, v):=\lambda(\operatorname{div} u, \operatorname{div} v)_{0}+2 \mu(\epsilon(u), \epsilon(v))_{0}, \quad \rightarrow \quad \alpha\|v\|_{1}^{2} \leq a(v, v) \leq C\|v\|_{1}^{2}, \quad \text { with } \quad \alpha \leq \mu \text { and } C \geq \lambda+2 \mu
$$

Remedy: One approach is to reformulate as a mixed method to obtain saddle-point problem. Let $p:=\lambda \operatorname{div} u$,

$$
\begin{aligned}
2 \mu(\epsilon(u), \epsilon(v))_{0}+(\operatorname{div} u, p)_{0} & =\langle\ell, v\rangle, & & \forall v \in H_{\Gamma}^{1}(\Omega) \\
(\operatorname{div} u, q)_{0}-\lambda^{-1}(p, q)_{0} & =0, & & \forall q \in L_{2}(\Omega) .
\end{aligned}
$$

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

$$
\lambda \gg \mu
$$

In the displacement formulation on $v \in H_{\Gamma}^{1}$, we have

$$
a(u, v):=\lambda(\operatorname{div} u, \operatorname{div} v)_{0}+2 \mu(\epsilon(u), \epsilon(v))_{0}, \quad \rightarrow \quad \alpha\|v\|_{1}^{2} \leq a(v, v) \leq C\|v\|_{1}^{2}, \quad \text { with } \quad \alpha \leq \mu \text { and } C \geq \lambda+2 \mu
$$

Remedy: One approach is to reformulate as a mixed method to obtain saddle-point problem. Let $p:=\lambda \operatorname{div} u$,

$$
\begin{aligned}
2 \mu(\epsilon(u), \epsilon(v))_{0}+(\operatorname{div} u, p)_{0} & =\langle\ell, v\rangle, & & \forall v \in H_{\Gamma}^{1}(\Omega) \\
(\operatorname{div} u, q)_{0}-\lambda^{-1}(p, q)_{0} & =0, & & \forall q \in L_{2}(\Omega) .
\end{aligned}
$$

Can be shown this gives a stable problem and well-defined in the limit $\lambda \rightarrow \infty$.

Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Consider a nearly incompressible material, which corresponds to Lame' constants with

$$
\lambda \gg \mu
$$

In the displacement formulation on $v \in H_{\Gamma}^{1}$, we have

$$
a(u, v):=\lambda(\operatorname{div} u, \operatorname{div} v)_{0}+2 \mu(\epsilon(u), \epsilon(v))_{0}, \quad \rightarrow \quad \alpha\|v\|_{1}^{2} \leq a(v, v) \leq C\|v\|_{1}^{2}, \quad \text { with } \quad \alpha \leq \mu \text { and } C \geq \lambda+2 \mu
$$

Remedy: One approach is to reformulate as a mixed method to obtain saddle-point problem. Let $p:=\lambda \operatorname{div} u$,

$$
\begin{aligned}
2 \mu(\epsilon(u), \epsilon(v))_{0}+(\operatorname{div} u, p)_{0} & =\langle\ell, v\rangle, & & \forall v \in H_{\Gamma}^{1}(\Omega) \\
(\operatorname{div} u, q)_{0}-\lambda^{-1}(p, q)_{0} & =0, & & \forall q \in L_{2}(\Omega) .
\end{aligned}
$$

Can be shown this gives a stable problem and well-defined in the limit $\lambda \rightarrow \infty$.
Discretization: Need to choose appropriate finite element spaces for mixed methods (upcoming lectures).

