Paul J. Atzberger

206D: Finite Element Methods University of California Santa Barbara

A material is modeled by a reference configuration $\overline{\Omega}$ which is a closed bounded set in \mathbb{R}^3 .

A material is modeled by a reference configuration $\overline{\Omega}$ which is a closed bounded set in \mathbb{R}^3 .

The current configuration of the material body is described by the deformation mapping

A material is modeled by a reference configuration $\overline{\Omega}$ which is a closed bounded set in \mathbb{R}^3 . The current configuration of the material body is described by the deformation mapping $\phi: \overline{\Omega} \to \mathbb{R}^3$, assumed det $\nabla \phi > 0$.

A material is modeled by a reference configuration $\overline{\Omega}$ which is a closed bounded set in \mathbb{R}^3 . The current configuration of the material body is described by the deformation mapping $\phi: \overline{\Omega} \to \mathbb{R}^3$, assumed det $\nabla \phi > 0$.

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration.

A material is modeled by a reference configuration $\overline{\Omega}$ which is a closed bounded set in \mathbb{R}^3 . The current configuration of the material body is described by the deformation mapping $\phi: \overline{\Omega} \to \mathbb{R}^3$, assumed det $\nabla \phi > 0$.

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration. The **displacement** u of the material is

 $u(\mathbf{x}) = \phi(\mathbf{x}) - \mathbf{x}.$

A material is modeled by a **reference configuration** $\overline{\Omega}$ which is a closed bounded set in \mathbb{R}^3 . The **current configuration** of the material body is described by the **deformation mapping**

 $\phi: ar{\Omega} o \mathbb{R}^3, \hspace{0.1in} ext{assumed} \hspace{0.1in} ext{det}
abla \phi > 0.$

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration. The **displacement** u of the material is

$$u(\mathbf{x}) = \phi(\mathbf{x}) - \mathbf{x}.$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders.

A material is modeled by a reference configuration $\overline{\Omega}$ which is a closed bounded set in \mathbb{R}^3 .

The current configuration of the material body is described by the deformation mapping $\phi: \overline{\Omega} \to \mathbb{R}^3$, assumed det $\nabla \phi > 0$.

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration. The **displacement** u of the material is

$$u(\mathbf{x}) = \phi(\mathbf{x}) - \mathbf{x}.$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The **deformation gradient** is given by

A material is modeled by a reference configuration $\overline{\Omega}$ which is a closed bounded set in \mathbb{R}^3 .

The current configuration of the material body is described by the deformation mapping $\phi: \overline{\Omega} \to \mathbb{R}^3$, assumed det $\nabla \phi > 0$.

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration. The **displacement** u of the material is

$$u(\mathbf{x}) = \phi(\mathbf{x}) - \mathbf{x}.$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The **deformation gradient** is given by

$$\nabla \phi = \begin{bmatrix} \frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\ \frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\ \frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3} \end{bmatrix} =: F.$$

A material is modeled by a reference configuration $\overline{\Omega}$ which is a closed bounded set in \mathbb{R}^3 .

The current configuration of the material body is described by the deformation mapping $\phi: \overline{\Omega} \to \mathbb{R}^3$, assumed det $\nabla \phi > 0$.

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration. The **displacement** u of the material is

$$u(\mathbf{x}) = \phi(\mathbf{x}) - \mathbf{x}.$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The **deformation gradient** is given by

$$\nabla \phi = \begin{bmatrix} \frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\ \frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\ \frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3} \end{bmatrix} =: F.$$

This allows us to express variations in the deformation with position as

$$\phi(\mathbf{x} + \mathbf{z}) - \phi(\mathbf{x}) = \nabla \phi(\mathbf{x}) \cdot \mathbf{z} + o(\mathbf{z}).$$

A material is modeled by a reference configuration $\overline{\Omega}$ which is a closed bounded set in \mathbb{R}^3 .

The current configuration of the material body is described by the deformation mapping $\phi: \overline{\Omega} \to \mathbb{R}^3$, assumed det $\nabla \phi > 0$.

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration. The **displacement** u of the material is

$$u(\mathbf{x}) = \phi(\mathbf{x}) - \mathbf{x}.$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The **deformation gradient** is given by

$$\nabla \phi = \begin{bmatrix} \frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\ \frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\ \frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3} \end{bmatrix} =: F.$$

This allows us to express variations in the deformation with position as

$$\phi(\mathbf{x} + \mathbf{z}) - \phi(\mathbf{x}) = \nabla \phi(\mathbf{x}) \cdot \mathbf{z} + o(\mathbf{z}).$$

The Euclidean distance between deformations to leading order is

A material is modeled by a reference configuration $\overline{\Omega}$ which is a closed bounded set in \mathbb{R}^3 .

The current configuration of the material body is described by the deformation mapping $\phi: \overline{\Omega} \to \mathbb{R}^3$, assumed det $\nabla \phi > 0$.

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration. The **displacement** u of the material is

$$u(\mathbf{x}) = \phi(\mathbf{x}) - \mathbf{x}.$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The **deformation gradient** is given by

$$\nabla \phi = \begin{bmatrix} \frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\ \frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\ \frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3} \end{bmatrix} =: F.$$

This allows us to express variations in the deformation with position as

$$\phi(\mathbf{x} + \mathbf{z}) - \phi(\mathbf{x}) = \nabla \phi(\mathbf{x}) \cdot \mathbf{z} + o(\mathbf{z}).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^2 = \|\nabla\phi\cdot\mathbf{z}\|^2 + o(\|\mathbf{z}\|^2) = \mathbf{z}'\nabla\phi^T\nabla\phi\mathbf{z} + o(\|\mathbf{z}\|^2) \Rightarrow C := \nabla\phi^T\nabla\phi = F^TF.$$

Paul J. Atzberger, UCSB

A material is modeled by a reference configuration $\overline{\Omega}$ which is a closed bounded set in \mathbb{R}^3 .

The current configuration of the material body is described by the deformation mapping $\phi: \overline{\Omega} \to \mathbb{R}^3$, assumed det $\nabla \phi > 0$.

The $\phi(\mathbf{x})$ represents the current position of the material point \mathbf{x} from the reference configuration. The **displacement** u of the material is

$$u(\mathbf{x}) = \phi(\mathbf{x}) - \mathbf{x}.$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The **deformation gradient** is given by

$$\nabla \phi = \begin{bmatrix} \frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\ \frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\ \frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3} \end{bmatrix} =: F.$$

This allows us to express variations in the deformation with position as

$$\phi(\mathbf{x} + \mathbf{z}) - \phi(\mathbf{x}) = \nabla \phi(\mathbf{x}) \cdot \mathbf{z} + o(\mathbf{z}).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^2 = \|\nabla\phi\cdot\mathbf{z}\|^2 + o(\|\mathbf{z}\|^2) = \mathbf{z}'\nabla\phi^T\nabla\phi\mathbf{z} + o(\|\mathbf{z}\|^2) \Rightarrow C := \nabla\phi^T\nabla\phi = F^TF.$$

Paul J. Atzberger, UCSB

This allows us to express variations in the deformation with position as

$$\phi(\mathbf{x} + \mathbf{z}) - \phi(\mathbf{x}) = \nabla \phi(\mathbf{x}) \cdot \mathbf{z} + o(\mathbf{z}).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^2 = \|\nabla\phi\cdot\mathbf{z}\|^2 + o(\|\mathbf{z}\|^2) = \mathbf{z}'\nabla\phi^T\nabla\phi\mathbf{z} + o(\|\mathbf{z}\|^2).$$

This allows us to express variations in the deformation with position as

$$\phi(\mathbf{x} + \mathbf{z}) - \phi(\mathbf{x}) = \nabla \phi(\mathbf{x}) \cdot \mathbf{z} + o(\mathbf{z}).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^2 = \|\nabla\phi\cdot\mathbf{z}\|^2 + o(\|\mathbf{z}\|^2) = \mathbf{z}'\nabla\phi^T\nabla\phi\mathbf{z} + o(\|\mathbf{z}\|^2).$$

The right **Cauchy-Green Tensor** is $C := \nabla \phi^T \nabla \phi = F^T F$, where $F = \nabla \phi$.

This allows us to express variations in the deformation with position as

$$\phi(\mathbf{x} + \mathbf{z}) - \phi(\mathbf{x}) = \nabla \phi(\mathbf{x}) \cdot \mathbf{z} + o(\mathbf{z}).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^2 = \|\nabla\phi\cdot\mathbf{z}\|^2 + o(\|\mathbf{z}\|^2) = \mathbf{z}'\nabla\phi^T\nabla\phi\mathbf{z} + o(\|\mathbf{z}\|^2)$$

The right **Cauchy-Green Tensor** is $C := \nabla \phi^T \nabla \phi = F^T F$, where $F = \nabla \phi$. The material strain is modeled by

$$E:=rac{1}{2}\left(C-\mathcal{I}
ight) .$$

This allows us to express variations in the deformation with position as

$$\phi(\mathbf{x} + \mathbf{z}) - \phi(\mathbf{x}) = \nabla \phi(\mathbf{x}) \cdot \mathbf{z} + o(\mathbf{z}).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^2 = \|\nabla\phi\cdot\mathbf{z}\|^2 + o(\|\mathbf{z}\|^2) = \mathbf{z}'\nabla\phi^T\nabla\phi\mathbf{z} + o(\|\mathbf{z}\|^2).$$

The right **Cauchy-Green Tensor** is $C := \nabla \phi^T \nabla \phi = F^T F$, where $F = \nabla \phi$. The material **strain** is modeled by

$$E:=rac{1}{2}\left(\mathcal{C}-\mathcal{I}
ight) .$$

This is one of the most fundamental concepts in elasticity theory.

This allows us to express variations in the deformation with position as

$$\phi(\mathbf{x} + \mathbf{z}) - \phi(\mathbf{x}) = \nabla \phi(\mathbf{x}) \cdot \mathbf{z} + o(\mathbf{z}).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^2 = \|\nabla\phi\cdot\mathbf{z}\|^2 + o(\|\mathbf{z}\|^2) = \mathbf{z}'\nabla\phi^T\nabla\phi\mathbf{z} + o(\|\mathbf{z}\|^2)$$

The right **Cauchy-Green Tensor** is $C := \nabla \phi^T \nabla \phi = F^T F$, where $F = \nabla \phi$. The material **strain** is modeled by

$$E:=rac{1}{2}\left(\mathcal{C}-\mathcal{I}
ight) .$$

This is one of the most fundamental concepts in elasticity theory.

In matrix form these tensors can be expressed as

This allows us to express variations in the deformation with position as

$$\phi(\mathbf{x} + \mathbf{z}) - \phi(\mathbf{x}) = \nabla \phi(\mathbf{x}) \cdot \mathbf{z} + o(\mathbf{z}).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^2 = \|\nabla\phi\cdot\mathbf{z}\|^2 + o(\|\mathbf{z}\|^2) = \mathbf{z}'\nabla\phi^T\nabla\phi\mathbf{z} + o(\|\mathbf{z}\|^2)$$

The right **Cauchy-Green Tensor** is $C := \nabla \phi^T \nabla \phi = F^T F$, where $F = \nabla \phi$. The material strain is modeled by

$$E:=rac{1}{2}\left(\mathcal{C}-\mathcal{I}
ight) .$$

This is one of the most fundamental concepts in elasticity theory.

In matrix form these tensors can be expressed as

$$E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \frac{1}{2} \sum_k \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j}.$$

This allows us to express variations in the deformation with position as

$$\phi(\mathbf{x} + \mathbf{z}) - \phi(\mathbf{x}) = \nabla \phi(\mathbf{x}) \cdot \mathbf{z} + o(\mathbf{z}).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^2 = \|\nabla\phi\cdot\mathbf{z}\|^2 + o(\|\mathbf{z}\|^2) = \mathbf{z}'\nabla\phi^T\nabla\phi\mathbf{z} + o(\|\mathbf{z}\|^2)$$

The right **Cauchy-Green Tensor** is $C := \nabla \phi^T \nabla \phi = F^T F$, where $F = \nabla \phi$. The material **strain** is modeled by

$$E:=rac{1}{2}\left(\mathcal{C}-\mathcal{I}
ight) .$$

This is one of the most fundamental concepts in elasticity theory.

In matrix form these tensors can be expressed as

$$E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \frac{1}{2} \sum_k \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j}.$$

In practice, the second quadratic term is often neglected to obtain an approximation. The **symmetric gradient approximation** for strain is denoted by

This allows us to express variations in the deformation with position as

$$\phi(\mathbf{x} + \mathbf{z}) - \phi(\mathbf{x}) = \nabla \phi(\mathbf{x}) \cdot \mathbf{z} + o(\mathbf{z}).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(\mathbf{x}+\mathbf{z})-\phi(\mathbf{x})\|^2 = \|\nabla\phi\cdot\mathbf{z}\|^2 + o(\|\mathbf{z}\|^2) = \mathbf{z}'\nabla\phi^T\nabla\phi\mathbf{z} + o(\|\mathbf{z}\|^2)$$

The right **Cauchy-Green Tensor** is $C := \nabla \phi^T \nabla \phi = F^T F$, where $F = \nabla \phi$. The material **strain** is modeled by

$$E:=rac{1}{2}\left(\mathcal{C}-\mathcal{I}
ight) .$$

This is one of the most fundamental concepts in elasticity theory.

In matrix form these tensors can be expressed as

$$E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \frac{1}{2} \sum_k \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j}.$$

In practice, the second quadratic term is often neglected to obtain an approximation. The **symmetric gradient approximation** for strain is denoted by

$$\epsilon_{ij} := \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Assumptions for Equilibrium

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces: (a) surface forces t which apply over the boundaries of the body, (force = t(x, n)dA).

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces: (a) **surface forces t** which apply over the boundaries of the body, (force = t(x, n)dA).

(b) **body forces f** which apply throughout the volume, (force = f(x)dV).

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces: (a) **surface forces t** which apply over the boundaries of the body, (force = t(x, n)dA).

(b) **body forces f** which apply throughout the volume, (force = f(x)dV).

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces: (a) **surface forces t** which apply over the boundaries of the body, (force = $\mathbf{t}(\mathbf{x}, \mathbf{n})dA$). (b) **body forces f** which apply throughout the volume, (force = $\mathbf{f}(\mathbf{x})dV$).

The t(x, n) is called the **Cauchy stress vector**.

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces: (a) surface forces t which apply over the boundaries of the body, (force = t(x, n)dA). (b) body forces f which apply throughout the volume, (force = f(x)dV).

The t(x, n) is called the **Cauchy stress vector**. The f(x) is called the **body force**.

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces: (a) **surface forces t** which apply over the boundaries of the body, (force = t(x, n)dA). (b) **body forces f** which apply throughout the volume, (force = f(x)dV).

The t(x, n) is called the **Cauchy stress vector**. The f(x) is called the **body force**.

Axiom of Static Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces: (a) surface forces t which apply over the boundaries of the body, (force = t(x, n)dA). (b) body forces f which apply throughout the volume, (force = f(x)dV).

The t(x, n) is called the **Cauchy stress vector**. The f(x) is called the **body force**.

Axiom of Static Equilibrium

For a body \mathcal{B} in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field **t** so that for every smooth volume \mathcal{V} of \mathcal{B} we have

Interactions of the body with the outside world is assumed to occur only through two types of applied forces: (a) **surface forces t** which apply over the boundaries of the body, (force = t(x, n)dA). (b) **body forces f** which apply throughout the volume, (force = f(x)dV).

The t(x, n) is called the **Cauchy stress vector**. The f(x) is called the **body force**.

Axiom of Static Equilibrium

For a body \mathcal{B} in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field **t** so that for every smooth volume \mathcal{V} of \mathcal{B} we have

$$\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) dV_{\mathbf{x}} + \int_{\partial \mathcal{V}} \mathbf{t}(\mathbf{x}, \mathbf{n}) dA_{\mathbf{x}} = 0$$

Interactions of the body with the outside world is assumed to occur only through two types of applied forces: (a) **surface forces t** which apply over the boundaries of the body, (force = t(x, n)dA). (b) **body forces f** which apply throughout the volume, (force = f(x)dV).

The t(x, n) is called the **Cauchy stress vector**. The f(x) is called the **body force**.

Axiom of Static Equilibrium

For a body \mathcal{B} in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field t so that for every smooth volume \mathcal{V} of \mathcal{B} we have

$$\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) dV_{\mathbf{x}} + \int_{\partial \mathcal{V}} \mathbf{t}(\mathbf{x}, \mathbf{n}) dA_{\mathbf{x}} = 0$$
$$\int_{\mathcal{V}} \mathbf{x} \wedge \mathbf{f}(\mathbf{x}) dV_{\mathbf{x}} + \int_{\partial \mathcal{V}} \mathbf{x} \wedge \mathbf{t}(\mathbf{x}, \mathbf{n}) dA_{\mathbf{x}} = 0.$$

Interactions of the body with the outside world is assumed to occur only through two types of applied forces: (a) surface forces t which apply over the boundaries of the body, (force = t(x, n)dA). (b) body forces f which apply throughout the volume, (force = f(x)dV).

The t(x, n) is called the **Cauchy stress vector**. The f(x) is called the **body force**.

Axiom of Static Equilibrium

For a body \mathcal{B} in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field **t** so that for every smooth volume \mathcal{V} of \mathcal{B} we have

$$\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) dV_{\mathbf{x}} + \int_{\partial \mathcal{V}} \mathbf{t}(\mathbf{x}, \mathbf{n}) dA_{\mathbf{x}} = 0$$
$$\int_{\mathcal{V}} \mathbf{x} \wedge \mathbf{f}(\mathbf{x}) dV_{\mathbf{x}} + \int_{\partial \mathcal{V}} \mathbf{x} \wedge \mathbf{t}(\mathbf{x}, \mathbf{n}) dA_{\mathbf{x}} = 0.$$

The symbol \wedge denotes the vector cross-product in \mathbb{R}^3 .

Notational Conventions

Notational Conventions

- \mathbb{M}^3 : the set of 3×3 matrices.
- \mathbb{M}^3_+ : the set of \mathbb{M}^3 with positive determinant.

Notational Conventions

\mathbb{M}^3	:	the set of 3×3 matrices.
\mathbb{M}^3_+	:	the set of \mathbb{M}^3 with positive determinant.
\mathbb{O}^3	:	the set of orthogonal 3×3 matrices.
\mathbb{O}^3_+	:	the set $\mathbb{O}^3 \cap \mathbb{M}^3_+$.
Notational Conventions

- \mathbb{M}^3 : the set of 3×3 matrices.
- $\mathbb{M}^3_+ \quad : \quad \text{the set of } \mathbb{M}^3 \text{ with positive determinant.}$
- \mathbb{O}^3 : the set of orthogonal 3 \times 3 matrices.
- $\mathbb{O}^3_+ \quad : \quad \text{the set } \mathbb{O}^3 \bigcap \mathbb{M}^3_+.$
- \mathbb{S}^3 : the set of symmetric 3 \times 3 matrices.
- $\mathbb{S}^3_>$: the set of positive definite matrices of \mathbb{S}^3 .

Notational Conventions

- \mathbb{M}^3 : the set of 3×3 matrices.
- $\mathbb{M}^3_+ \quad : \quad \text{the set of } \mathbb{M}^3 \text{ with positive determinant.}$
- \mathbb{O}^3 : the set of orthogonal 3 \times 3 matrices.
- $\mathbb{O}^3_+ \quad : \quad \text{the set } \mathbb{O}^3 \bigcap \mathbb{M}^3_+.$
- \mathbb{S}^3 : the set of symmetric 3 \times 3 matrices.
- $\mathbb{S}^3_>$: the set of positive definite matrices of \mathbb{S}^3 .

Cauchy's Theorem

Paul J. Atzberger, UCSB

Cauchy's Theorem

 $\text{Consider } \textbf{t}(\cdot,\textbf{n}) \in \textit{C}^{1}(\mathcal{B},\mathbb{R}^{3}) \text{, } \textbf{t}(\textbf{x},\cdot) \in \textit{C}^{0}(\mathcal{S}^{2},\mathbb{R}^{3}) \text{, and } \textbf{f}(\textbf{x}) \in \textit{C}^{0}(\mathcal{B},\mathbb{R}^{3}).$

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(\mathcal{B}, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(\mathcal{S}^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(\mathcal{B}, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathcal{T} \in C^1(\mathcal{B}, \mathcal{S}^2)$ satisfying

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(\mathcal{B}, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(\mathcal{S}^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(\mathcal{B}, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathcal{T} \in C^1(\mathcal{B}, \mathcal{S}^2)$ satisfying

$$\begin{array}{ll} (i) & \mathbf{t}(\mathbf{x},\mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^2 \\ (ii) & \mathcal{T}(\mathbf{x}) = \mathcal{T}^{\mathcal{T}}(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\ (iii) & \operatorname{div} \mathcal{T}(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = \mathbf{0}, & \mathbf{x} \in \mathcal{B}. \end{array}$$

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(\mathcal{B}, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(\mathcal{S}^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(\mathcal{B}, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathcal{T} \in C^1(\mathcal{B}, \mathcal{S}^2)$ satisfying

$$\begin{array}{ll} \textbf{(i)} & \textbf{t}(\textbf{x},\textbf{n}) = \mathcal{T}(\textbf{x})\textbf{n}, & \textbf{x} \in \mathcal{B}, \textbf{n} \in \mathcal{S}^2, \\ \textbf{(ii)} & \mathcal{T}(\textbf{x}) = \mathcal{T}^T(\textbf{x}), & \textbf{x} \in \mathcal{B}, \\ \textbf{(iii)} & \text{div} \mathcal{T}(\textbf{x}) + \textbf{f}(\textbf{x}) = 0, & \textbf{x} \in \mathcal{B}. \end{array}$$

This T is called the **Cachy stress tensor**.

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(\mathcal{B}, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(\mathcal{S}^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(\mathcal{B}, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathcal{T} \in C^1(\mathcal{B}, \mathcal{S}^2)$ satisfying

$$\begin{array}{ll} i) & \mathbf{t}(\mathbf{x},\mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^2, \\ ii) & \mathcal{T}(\mathbf{x}) = \mathcal{T}^{\mathsf{T}}(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\ iii) & \operatorname{div} \mathcal{T}(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = 0, & \mathbf{x} \in \mathcal{B}. \end{array}$$

This T is called the **Cachy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(\mathcal{B}, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(\mathcal{S}^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(\mathcal{B}, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathcal{T} \in C^1(\mathcal{B}, \mathcal{S}^2)$ satisfying

$$\begin{array}{ll} f(i) & \mathbf{t}(\mathbf{x},\mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^2, \\ f(ii) & \mathcal{T}(\mathbf{x}) = \mathcal{T}^T(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\ f(iii) & \operatorname{div} \mathcal{T}(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = \mathbf{0}, & \mathbf{x} \in \mathcal{B}. \end{array}$$

This T is called the **Cachy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) dV + \int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} dA = \int_{\mathcal{V}} \left(\mathbf{f}(\mathbf{x}) + \operatorname{div} T(\mathbf{x}) \right) dV = 0.$$

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(\mathcal{B}, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(\mathcal{S}^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(\mathcal{B}, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathcal{T} \in C^1(\mathcal{B}, \mathcal{S}^2)$ satisfying

$$\begin{array}{ll} f(i) & \mathbf{t}(\mathbf{x},\mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^2, \\ f(ii) & \mathcal{T}(\mathbf{x}) = \mathcal{T}^T(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\ f(iii) & \operatorname{div} \mathcal{T}(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = \mathbf{0}, & \mathbf{x} \in \mathcal{B}. \end{array}$$

This T is called the **Cachy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) dV + \int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} dA = \int_{\mathcal{V}} \left(\mathbf{f}(\mathbf{x}) + \operatorname{div} T(\mathbf{x}) \right) dV = 0.$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^3$ or in reference body frame $\mathbf{x}_R \in \overline{\Omega}$.

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(\mathcal{B}, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(\mathcal{S}^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(\mathcal{B}, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathcal{T} \in C^1(\mathcal{B}, \mathcal{S}^2)$ satisfying

$$\begin{array}{ll} f(i) & \mathbf{t}(\mathbf{x},\mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^2, \\ f(ii) & \mathcal{T}(\mathbf{x}) = \mathcal{T}^T(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\ f(iii) & \operatorname{div} \mathcal{T}(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = \mathbf{0}, & \mathbf{x} \in \mathcal{B}. \end{array}$$

This T is called the **Cachy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) dV + \int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} dA = \int_{\mathcal{V}} \left(\mathbf{f}(\mathbf{x}) + \operatorname{div} T(\mathbf{x}) \right) dV = 0.$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^3$ or in reference body frame $\mathbf{x}_R \in \overline{\Omega}$. Transformations to reference configuration $\overline{\Omega}$:

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(\mathcal{B}, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(\mathcal{S}^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(\mathcal{B}, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathcal{T} \in C^1(\mathcal{B}, \mathcal{S}^2)$ satisfying

$$\begin{array}{ll} f(i) & \mathbf{t}(\mathbf{x},\mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^2, \\ f(ii) & \mathcal{T}(\mathbf{x}) = \mathcal{T}^T(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\ f(iii) & \operatorname{div} \mathcal{T}(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = \mathbf{0}, & \mathbf{x} \in \mathcal{B}. \end{array}$$

This T is called the **Cachy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) dV + \int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} dA = \int_{\mathcal{V}} \left(\mathbf{f}(\mathbf{x}) + \operatorname{div} T(\mathbf{x}) \right) dV = 0.$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^3$ or in reference body frame $\mathbf{x}_R \in \overline{\Omega}$.

Transformations to reference configuration $\overline{\Omega}$: Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R), \ d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla \phi) d\mathbf{x}_R.$

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(\mathcal{B}, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(\mathcal{S}^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(\mathcal{B}, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathcal{T} \in C^1(\mathcal{B}, \mathcal{S}^2)$ satisfying

$$\begin{array}{ll} f(i) & \mathbf{t}(\mathbf{x},\mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^2, \\ f(ii) & \mathcal{T}(\mathbf{x}) = \mathcal{T}^T(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\ f(iii) & \operatorname{div} \mathcal{T}(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = \mathbf{0}, & \mathbf{x} \in \mathcal{B}. \end{array}$$

This T is called the **Cachy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) dV + \int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} dA = \int_{\mathcal{V}} \left(\mathbf{f}(\mathbf{x}) + \operatorname{div} T(\mathbf{x}) \right) dV = 0.$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^3$ or in reference body frame $\mathbf{x}_R \in \overline{\Omega}$.

Transformations to reference configuration $\overline{\Omega}$: Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla \phi)d\mathbf{x}_R$. Density transforms as $\rho(\mathbf{x})d\mathbf{x} = \rho_R(\mathbf{x}_R)d\mathbf{x}_R$. This gives $\rho(\mathbf{x}) = \rho(\phi(\mathbf{x}_R)) = \det(\nabla \phi^{-1})\rho_R(\mathbf{x}_R)$.

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(\mathcal{B}, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(\mathcal{S}^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(\mathcal{B}, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathcal{T} \in C^1(\mathcal{B}, \mathcal{S}^2)$ satisfying

$$\begin{array}{ll} f(i) & \mathbf{t}(\mathbf{x},\mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^2, \\ f(ii) & \mathcal{T}(\mathbf{x}) = \mathcal{T}^T(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\ f(iii) & \operatorname{div} \mathcal{T}(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = \mathbf{0}, & \mathbf{x} \in \mathcal{B}. \end{array}$$

This T is called the **Cachy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) dV + \int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} dA = \int_{\mathcal{V}} \left(\mathbf{f}(\mathbf{x}) + \operatorname{div} T(\mathbf{x}) \right) dV = 0.$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^3$ or in reference body frame $\mathbf{x}_R \in \overline{\Omega}$.

Transformations to reference configuration $\overline{\Omega}$:

Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla \phi)d\mathbf{x}_R$. Density transforms as $\rho(\mathbf{x})d\mathbf{x} = \rho_R(\mathbf{x}_R)d\mathbf{x}_R$. This gives $\rho(\mathbf{x}) = \rho(\phi(\mathbf{x}_R)) = \det(\nabla \phi^{-1})\rho_R(\mathbf{x}_R)$. Force density scales similarly as $\mathbf{f}(\mathbf{x}) = \det(\nabla \phi^{-1})\mathbf{f}_R(\mathbf{x}_R)$.

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(\mathcal{B}, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(\mathcal{S}^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(\mathcal{B}, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathcal{T} \in C^1(\mathcal{B}, \mathcal{S}^2)$ satisfying

$$\begin{array}{ll} f(i) & \mathbf{t}(\mathbf{x},\mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}, & \mathbf{x} \in \mathcal{B}, \mathbf{n} \in \mathcal{S}^2, \\ f(i) & \mathcal{T}(\mathbf{x}) = \mathcal{T}^{\mathcal{T}}(\mathbf{x}), & \mathbf{x} \in \mathcal{B}, \\ f(ii) & \operatorname{div} \mathcal{T}(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = \mathbf{0}, & \mathbf{x} \in \mathcal{B}. \end{array}$$

This T is called the **Cachy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) dV + \int_{\partial \mathcal{V}} T(\mathbf{x}) \mathbf{n} dA = \int_{\mathcal{V}} \left(\mathbf{f}(\mathbf{x}) + \operatorname{div} T(\mathbf{x}) \right) dV = 0.$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^3$ or in reference body frame $\mathbf{x}_R \in \overline{\Omega}$.

Transformations to reference configuration $\overline{\Omega}$:

Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla \phi)d\mathbf{x}_R$. Density transforms as $\rho(\mathbf{x})d\mathbf{x} = \rho_R(\mathbf{x}_R)d\mathbf{x}_R$. This gives $\rho(\mathbf{x}) = \rho(\phi(\mathbf{x}_R)) = \det(\nabla \phi^{-1})\rho_R(\mathbf{x}_R)$. Force density scales similarly as $\mathbf{f}(\mathbf{x}) = \det(\nabla \phi^{-1})\mathbf{f}_R(\mathbf{x}_R)$. This assumes that forces track with point masses, termed **dead load**.

Paul J. Atzberger, UCSB

Finite Element Methods

Transformations to reference configuration $\overline{\Omega}$:

Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla\phi)d\mathbf{x}_R$. Density transforms as $\rho(\mathbf{x})d\mathbf{x} = \rho_R(\mathbf{x}_R)d\mathbf{x}_R$. This gives $\rho(\mathbf{x}) = \rho(\phi(\mathbf{x}_R)) = \det(\nabla\phi^{-1})\rho_R(\mathbf{x}_R)$. Force density scales similarly as $\mathbf{f}(\mathbf{x}) = \det(\nabla\phi^{-1})\mathbf{f}_R(\mathbf{x}_R)$. This assumes that forces track with point masses, termed **dead load**.

Transformations to reference configuration $\overline{\Omega}$:

Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla\phi)d\mathbf{x}_R$. Density transforms as $\rho(\mathbf{x})d\mathbf{x} = \rho_R(\mathbf{x}_R)d\mathbf{x}_R$. This gives $\rho(\mathbf{x}) = \rho(\phi(\mathbf{x}_R)) = \det(\nabla\phi^{-1})\rho_R(\mathbf{x}_R)$. Force density scales similarly as $\mathbf{f}(\mathbf{x}) = \det(\nabla\phi^{-1})\mathbf{f}_R(\mathbf{x}_R)$. This assumes that forces track with point masses, termed **dead load**.

Piola Transform:

Transformations to reference configuration $\overline{\Omega}$:

Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla\phi)d\mathbf{x}_R$. Density transforms as $\rho(\mathbf{x})d\mathbf{x} = \rho_R(\mathbf{x}_R)d\mathbf{x}_R$. This gives $\rho(\mathbf{x}) = \rho(\phi(\mathbf{x}_R)) = \det(\nabla\phi^{-1})\rho_R(\mathbf{x}_R)$. Force density scales similarly as $\mathbf{f}(\mathbf{x}) = \det(\nabla\phi^{-1})\mathbf{f}_R(\mathbf{x}_R)$. This assumes that forces track with point masses, termed **dead load**.

Piola Transform:

Stress balance in reference configuration is

Transformations to reference configuration $\overline{\Omega}$:

Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla \phi)d\mathbf{x}_R$. Density transforms as $\rho(\mathbf{x})d\mathbf{x} = \rho_R(\mathbf{x}_R)d\mathbf{x}_R$. This gives $\rho(\mathbf{x}) = \rho(\phi(\mathbf{x}_R)) = \det(\nabla \phi^{-1})\rho_R(\mathbf{x}_R)$. Force density scales similarly as $\mathbf{f}(\mathbf{x}) = \det(\nabla \phi^{-1})\mathbf{f}_R(\mathbf{x}_R)$. This assumes that forces track with point masses, termed **dead load**.

Piola Transform:

Stress balance in reference configuration is

$$\operatorname{div}_R T_R + f_R = 0$$
, where $T_R := \operatorname{det}(\nabla \phi) T (\nabla \phi)^{-T}$.

Transformations to reference configuration $\overline{\Omega}$:

Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla\phi)d\mathbf{x}_R$. Density transforms as $\rho(\mathbf{x})d\mathbf{x} = \rho_R(\mathbf{x}_R)d\mathbf{x}_R$. This gives $\rho(\mathbf{x}) = \rho(\phi(\mathbf{x}_R)) = \det(\nabla\phi^{-1})\rho_R(\mathbf{x}_R)$. Force density scales similarly as $\mathbf{f}(\mathbf{x}) = \det(\nabla\phi^{-1})\mathbf{f}_R(\mathbf{x}_R)$. This assumes that forces track with point masses, termed **dead load**.

Piola Transform:

Stress balance in reference configuration is

$$\operatorname{div}_R T_R + f_R = 0$$
, where $T_R := \operatorname{det}(\nabla \phi) T (\nabla \phi)^{-T}$.

We define two associated stress tensors:

Transformations to reference configuration $\overline{\Omega}$:

Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla \phi)d\mathbf{x}_R$. Density transforms as $\rho(\mathbf{x})d\mathbf{x} = \rho_R(\mathbf{x}_R)d\mathbf{x}_R$. This gives $\rho(\mathbf{x}) = \rho(\phi(\mathbf{x}_R)) = \det(\nabla \phi^{-1})\rho_R(\mathbf{x}_R)$. Force density scales similarly as $\mathbf{f}(\mathbf{x}) = \det(\nabla \phi^{-1})\mathbf{f}_R(\mathbf{x}_R)$. This assumes that forces track with point masses, termed **dead load**.

Piola Transform:

Stress balance in reference configuration is

$$\operatorname{div}_R T_R + f_R = 0$$
, where $T_R := \operatorname{det}(\nabla \phi) T (\nabla \phi)^{-T}$.

We define two associated stress tensors:

(a) First Piola-Kirchhoff Stress Tensor T_R , $T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}$.

Transformations to reference configuration $\overline{\Omega}$:

Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla \phi)d\mathbf{x}_R$. Density transforms as $\rho(\mathbf{x})d\mathbf{x} = \rho_R(\mathbf{x}_R)d\mathbf{x}_R$. This gives $\rho(\mathbf{x}) = \rho(\phi(\mathbf{x}_R)) = \det(\nabla \phi^{-1})\rho_R(\mathbf{x}_R)$. Force density scales similarly as $\mathbf{f}(\mathbf{x}) = \det(\nabla \phi^{-1})\mathbf{f}_R(\mathbf{x}_R)$. This assumes that forces track with point masses, termed **dead load**.

Piola Transform:

Stress balance in reference configuration is

$$\operatorname{div}_R T_R + f_R = 0$$
, where $T_R := \operatorname{det}(\nabla \phi) T (\nabla \phi)^{-T}$.

We define two associated stress tensors:

(a) First Piola-Kirchhoff Stress Tensor T_R , $T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}$.

(b) Second Piola-Kirchhoff Stress Tensor Σ_R , $\Sigma_R := (\nabla \phi)^{-1} T_R = (\nabla \phi)^{-1} \det(\nabla \phi) T (\nabla \phi)^{-T}$.

Transformations to reference configuration $\overline{\Omega}$:

Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla \phi)d\mathbf{x}_R$. Density transforms as $\rho(\mathbf{x})d\mathbf{x} = \rho_R(\mathbf{x}_R)d\mathbf{x}_R$. This gives $\rho(\mathbf{x}) = \rho(\phi(\mathbf{x}_R)) = \det(\nabla \phi^{-1})\rho_R(\mathbf{x}_R)$. Force density scales similarly as $\mathbf{f}(\mathbf{x}) = \det(\nabla \phi^{-1})\mathbf{f}_R(\mathbf{x}_R)$. This assumes that forces track with point masses, termed **dead load**.

Piola Transform:

Stress balance in reference configuration is

$$\operatorname{div}_R T_R + f_R = 0$$
, where $T_R := \operatorname{det}(\nabla \phi) T (\nabla \phi)^{-T}$.

We define two associated stress tensors:

- (a) First Piola-Kirchhoff Stress Tensor T_R , $T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}$.
- (b) Second Piola-Kirchhoff Stress Tensor Σ_R , $\Sigma_R := (\nabla \phi)^{-1} T_R = (\nabla \phi)^{-1} \det(\nabla \phi) T (\nabla \phi)^{-T}$.

The Second Piola-Kirchhoff Stress Tensor Σ_R is motivated by making a tensor that is symmetric.

Transformations to reference configuration $\overline{\Omega}$:

Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_{\mathbf{x}} = \det(\nabla \phi)d\mathbf{x}_R$. Density transforms as $\rho(\mathbf{x})d\mathbf{x} = \rho_R(\mathbf{x}_R)d\mathbf{x}_R$. This gives $\rho(\mathbf{x}) = \rho(\phi(\mathbf{x}_R)) = \det(\nabla \phi^{-1})\rho_R(\mathbf{x}_R)$. Force density scales similarly as $\mathbf{f}(\mathbf{x}) = \det(\nabla \phi^{-1})\mathbf{f}_R(\mathbf{x}_R)$. This assumes that forces track with point masses, termed **dead load**.

Piola Transform:

Stress balance in reference configuration is

$$\operatorname{div}_R T_R + f_R = 0$$
, where $T_R := \operatorname{det}(\nabla \phi) T (\nabla \phi)^{-T}$.

We define two associated stress tensors:

- (a) First Piola-Kirchhoff Stress Tensor T_R , $T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}$.
- (b) Second Piola-Kirchhoff Stress Tensor Σ_R , $\Sigma_R := (\nabla \phi)^{-1} T_R = (\nabla \phi)^{-1} \det(\nabla \phi) T (\nabla \phi)^{-T}$.

The Second Piola-Kirchhoff Stress Tensor Σ_R is motivated by making a tensor that is symmetric. For small deformations, the three tensors T, T_R , Σ_R become the same to leading order.

Elastic Materials:

A material is called **elastic** if there exists a mapping for the stress of the form

A material is called **elastic** if there exists a mapping for the stress of the form

$$\hat{T}: \mathbb{M}^3_+ \to \mathbb{S}^3_+,$$

A material is called **elastic** if there exists a mapping for the stress of the form

$$\hat{T}: \mathbb{M}^3_+ \to \mathbb{S}^3_+,$$

where for every deformed state

A material is called **elastic** if there exists a mapping for the stress of the form

$$\hat{\mathcal{T}}:\mathbb{M}^3_+\to\mathbb{S}^3_+,$$

where for every deformed state

$$T(\mathbf{x}) = \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}_R)).$$

A material is called elastic if there exists a mapping for the stress of the form

$$\hat{\mathcal{T}}: \mathbb{M}^3_+ \to \mathbb{S}^3_+,$$

where for every deformed state

$$T(\mathbf{x}) = \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}_R)).$$

The $\hat{\mathcal{T}}$ is the **response function** for the Cauchy stress for the material.

A material is called elastic if there exists a mapping for the stress of the form

$$\hat{\mathcal{T}}: \mathbb{M}^3_+ \to \mathbb{S}^3_+,$$

where for every deformed state

$$T(\mathbf{x}) = \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}_R)).$$

The \hat{T} is the **response function** for the Cauchy stress for the material. The $T = \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}_R))$ is the **constitutive** equation for the material.

A material is called elastic if there exists a mapping for the stress of the form

$$\hat{\mathcal{T}}: \mathbb{M}^3_+ \to \mathbb{S}^3_+,$$

where for every deformed state

$$T(\mathbf{x}) = \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}_R)).$$

The \hat{T} is the **response function** for the Cauchy stress for the material. The $T = \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}_R))$ is the **constitutive** equation for the material.

Transforming the tensors, we have the Piola-Kirchhoff stress

A material is called elastic if there exists a mapping for the stress of the form

$$\hat{\mathcal{T}}: \mathbb{M}^3_+ \to \mathbb{S}^3_+,$$

where for every deformed state

$$T(\mathbf{x}) = \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}_R)).$$

The \hat{T} is the **response function** for the Cauchy stress for the material. The $T = \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}_R))$ is the **constitutive** equation for the material.

Transforming the tensors, we have the Piola-Kirchhoff stress

$$\hat{\Sigma}(F) := \det(F)F^{-1}\hat{T}(F)F^{-T}$$

Notation: $F = \nabla \phi(\mathbf{x}_R)$.

A material is called elastic if there exists a mapping for the stress of the form

$$\hat{\mathcal{T}}: \mathbb{M}^3_+ \to \mathbb{S}^3_+,$$

where for every deformed state

$$T(\mathbf{x}) = \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}_R)).$$

The \hat{T} is the **response function** for the Cauchy stress for the material. The $T = \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x}_R))$ is the **constitutive** equation for the material.

Transforming the tensors, we have the Piola-Kirchhoff stress

$$\hat{\Sigma}(F) := \det(F)F^{-1}\hat{T}(F)F^{-T}$$

Notation: $F = \nabla \phi(\mathbf{x}_R)$.

A material is called **homogeneous** is \hat{T} does not depend on **x**.

Axiom of Material Frame-Indifference

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n}) = T(\mathbf{x})\mathbf{n}$ is independent of the choice of coordinates in the sense
Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n}) = T(\mathbf{x})\mathbf{n}$ is independent of the choice of coordinates in the sense

$$Q {f t}({f x},{f n})={f t}(Q{f x},Q{f n}), \;\; orall Q\in \mathbb{O}^3_+.$$

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}$ is independent of the choice of coordinates in the sense

$$Q {f t}({f x},{f n})={f t}(Q{f x},Q{f n}), \;\; orall Q\in \mathbb{O}^3_+.$$

A material that is frame-indifferent is referred to as an objective material.

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}$ is independent of the choice of coordinates in the sense

$$Q {f t}({f x},{f n}) = {f t}(Q {f x},Q {f n}), \;\; orall Q \in \mathbb{O}^3_+.$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q\in\mathbb{O}^3_+$ that

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}$ is independent of the choice of coordinates in the sense

$$Q {f t}({f x},{f n})={f t}(Q{f x},Q{f n}), \;\; orall Q\in \mathbb{O}^3_+.$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q\in\mathbb{O}^3_+$ that

 $\hat{T}(QF) = Q\hat{T}(F)Q^{T}.$

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}$ is independent of the choice of coordinates in the sense

$$Q {f t}({f x},{f n})={f t}(Q{f x},Q{f n}), \;\; orall Q\in \mathbb{O}^3_+.$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q\in\mathbb{O}^3_+$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}.$$

We also have there exists a mapping $\hat{\Sigma}:\mathbb{S}^3_>\to\mathbb{S}^3$ so that

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}$ is independent of the choice of coordinates in the sense

$$Q {f t}({f x},{f n})={f t}(Q{f x},Q{f n}), \;\; orall Q\in \mathbb{O}^3_+.$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q\in\mathbb{O}^3_+$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}.$$

We also have there exists a mapping $\hat{\Sigma} : \mathbb{S}^3_> \to \mathbb{S}^3$ so that $\hat{\Sigma}(F) = \hat{\Sigma}(F^T F).$

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}$ is independent of the choice of coordinates in the sense

$$Q {f t}({f x},{f n})={f t}(Q{f x},Q{f n}), \;\; orall Q\in \mathbb{O}^3_+.$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q\in\mathbb{O}^3_+$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}.$$

We also have there exists a mapping $\hat{\Sigma} : \mathbb{S}^3_> \to \mathbb{S}^3$ so that $\hat{\Sigma}(F) = \hat{\Sigma}(F^T F).$

Significance: The $\hat{\Sigma}$ only depends on $F^T F$.

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n}) = \mathcal{T}(\mathbf{x})\mathbf{n}$ is independent of the choice of coordinates in the sense

$$Q {f t}({f x},{f n})={f t}(Q{f x},Q{f n}), \;\; orall Q\in \mathbb{O}^3_+.$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q\in\mathbb{O}^3_+$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}.$$

We also have there exists a mapping $\hat{\Sigma} : \mathbb{S}^3_> \to \mathbb{S}^3$ so that $\hat{\Sigma}(F) = \hat{\Sigma}(F^T F).$

Significance: The $\hat{\Sigma}$ only depends on $F^T F$.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q\in\mathbb{O}^3_+$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}.$$

We also have there exists a mapping $\hat{\Sigma}:\mathbb{S}^3_>\to\mathbb{S}^3$ so that

$$\hat{\Sigma}(F) = \tilde{\Sigma}(F^{T}F).$$

Proof:

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}^3_+$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}.$$

We also have there exists a mapping $\hat{\Sigma}:\mathbb{S}^3_>\to\mathbb{S}^3$ so that

$$\hat{\Sigma}(F) = \tilde{\Sigma}(F^{T}F).$$

Proof:

This follows by rotating the deformed body to obtain the relations

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}^3_+$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}$$

We also have there exists a mapping $\hat{\Sigma}:\mathbb{S}^3_>\to\mathbb{S}^3$ so that

$$\hat{\Sigma}(F) = \tilde{\Sigma}(F^{T}F).$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$\mathbf{x} \mapsto Q\mathbf{x}, \ \phi \mapsto Q\phi, \ \nabla \phi \mapsto Q\nabla \phi, \ \mathbf{n} \mapsto Q^{-T}\mathbf{n} = Q\mathbf{n}, \ \mathbf{t}(\mathbf{x},\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x},\mathbf{n}).$$

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}^3_+$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}$$

We also have there exists a mapping $\hat{\Sigma}:\mathbb{S}^3_>\to\mathbb{S}^3$ so that

$$\hat{\Sigma}(F) = \tilde{\Sigma}(F^{T}F).$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$\mathbf{x} \mapsto Q\mathbf{x}, \ \phi \mapsto Q\phi, \ \nabla \phi \mapsto Q\nabla \phi, \ \mathbf{n} \mapsto Q^{-T}\mathbf{n} = Q\mathbf{n}, \ \mathbf{t}(\mathbf{x},\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x},\mathbf{n}).$$

From frame-indifference axiom, we have $\mathbf{t}(Q\mathbf{x}, Q\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x}, \mathbf{n})$ and $\hat{\mathcal{T}}(QF)Q \cdot \mathbf{n} = Q\hat{\mathcal{T}}(F) \cdot \mathbf{n}$, using $Q^TQ = I$.

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q\in\mathbb{O}_+^3$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}$$

We also have there exists a mapping $\hat{\Sigma}:\mathbb{S}^3_>\to\mathbb{S}^3$ so that

$$\hat{\Sigma}(F) = \tilde{\Sigma}(F^{T}F).$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$\mathbf{x} \mapsto Q\mathbf{x}, \ \phi \mapsto Q\phi, \ \nabla \phi \mapsto Q\nabla \phi, \ \mathbf{n} \mapsto Q^{-T}\mathbf{n} = Q\mathbf{n}, \ \mathbf{t}(\mathbf{x},\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x},\mathbf{n}).$$

From frame-indifference axiom, we have $\mathbf{t}(Q\mathbf{x}, Q\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x}, \mathbf{n})$ and $\hat{T}(QF)Q \cdot \mathbf{n} = Q\hat{T}(F) \cdot \mathbf{n}$, using $Q^T Q = I$. This implies $\hat{T}(QF) \cdot \mathbf{n} = Q\hat{T}(F)Q^T \cdot \mathbf{n}$, $\forall \mathbf{n} \in S^2 \Rightarrow \hat{T}(QF) = Q\hat{T}(F)Q^T$.

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q\in\mathbb{O}^3_+$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}$$

We also have there exists a mapping $\hat{\Sigma}:\mathbb{S}^3_>\to\mathbb{S}^3$ so that

 $\hat{\Sigma}(F) = \tilde{\Sigma}(F^{T}F).$

Proof:

This follows by rotating the deformed body to obtain the relations

$$\mathbf{x} \mapsto Q\mathbf{x}, \ \phi \mapsto Q\phi, \ \nabla \phi \mapsto Q\nabla \phi, \ \mathbf{n} \mapsto Q^{-T}\mathbf{n} = Q\mathbf{n}, \ \mathbf{t}(\mathbf{x},\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x},\mathbf{n}).$$

From frame-indifference axiom, we have $\mathbf{t}(Q\mathbf{x}, Q\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x}, \mathbf{n})$ and $\hat{T}(QF)Q \cdot \mathbf{n} = Q\hat{T}(F) \cdot \mathbf{n}$, using $Q^T Q = I$. This implies $\hat{T}(QF) \cdot \mathbf{n} = Q\hat{T}(F)Q^T \cdot \mathbf{n}$, $\forall \mathbf{n} \in S^2 \Rightarrow \hat{T}(QF) = Q\hat{T}(F)Q^T$. From $\hat{\Sigma}(F) := \det(F)F^{-1}\hat{T}(F)F^{-T}$, we have $\hat{\Sigma}(QF) = \hat{\Sigma}(F)$, $\forall Q \in \mathbb{O}_+^3$.

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in \mathbb{O}^3_+$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}$$

We also have there exists a mapping $\hat{\Sigma}:\mathbb{S}^3_>\to\mathbb{S}^3$ so that

 $\hat{\Sigma}(F) = \tilde{\Sigma}(F^{T}F).$

Proof:

This follows by rotating the deformed body to obtain the relations

$$\mathbf{x} \mapsto Q\mathbf{x}, \ \phi \mapsto Q\phi, \ \nabla \phi \mapsto Q\nabla \phi, \ \mathbf{n} \mapsto Q^{-T}\mathbf{n} = Q\mathbf{n}, \ \mathbf{t}(\mathbf{x},\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x},\mathbf{n}).$$

From frame-indifference axiom, we have $\mathbf{t}(Q\mathbf{x}, Q\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x}, \mathbf{n})$ and $\hat{T}(QF)Q \cdot \mathbf{n} = Q\hat{T}(F) \cdot \mathbf{n}$, using $Q^T Q = I$. This implies $\hat{T}(QF) \cdot \mathbf{n} = Q\hat{T}(F)Q^T \cdot \mathbf{n}$, $\forall \mathbf{n} \in S^2 \Rightarrow \hat{T}(QF) = Q\hat{T}(F)Q^T$. From $\hat{\Sigma}(F) := \det(F)F^{-1}\hat{T}(F)F^{-T}$, we have $\hat{\Sigma}(QF) = \hat{\Sigma}(F)$, $\forall Q \in \mathbb{O}^3_+$. Now consider product $F^T F = G^T G$ for any F and G invertible. Let $Q = GF^{-1}$, then $Q^T Q = I$, $\det(Q) > 0$.

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q\in\mathbb{O}_+^3$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}$$

We also have there exists a mapping $\hat{\Sigma}:\mathbb{S}^3_>\to\mathbb{S}^3$ so that

 $\hat{\Sigma}(F) = \tilde{\Sigma}(F^{T}F).$

Proof:

This follows by rotating the deformed body to obtain the relations

$$\mathbf{x} \mapsto Q\mathbf{x}, \ \phi \mapsto Q\phi, \ \nabla \phi \mapsto Q\nabla \phi, \ \mathbf{n} \mapsto Q^{-T}\mathbf{n} = Q\mathbf{n}, \ \mathbf{t}(\mathbf{x},\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x},\mathbf{n}).$$

From frame-indifference axiom, we have $\mathbf{t}(Q\mathbf{x}, Q\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x}, \mathbf{n})$ and $\hat{T}(QF)Q \cdot \mathbf{n} = Q\hat{T}(F) \cdot \mathbf{n}$, using $Q^T Q = I$. This implies $\hat{T}(QF) \cdot \mathbf{n} = Q\hat{T}(F)Q^T \cdot \mathbf{n}$, $\forall \mathbf{n} \in S^2 \Rightarrow \hat{T}(QF) = Q\hat{T}(F)Q^T$. From $\hat{\Sigma}(F) := \det(F)F^{-1}\hat{T}(F)F^{-T}$, we have $\hat{\Sigma}(QF) = \hat{\Sigma}(F)$, $\forall Q \in \mathbb{O}_+^3$. Now consider product $F^T F = G^T G$ for any F and G invertible. Let $Q = GF^{-1}$, then $Q^T Q = I$, $\det(Q) > 0$. This gives $\hat{\Sigma}(F) = \hat{\Sigma}(QF) = \hat{\Sigma}(G)$ so that $\hat{\Sigma}$ only depends on the product $F^T F$.

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q\in\mathbb{O}_+^3$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^{T}$$

We also have there exists a mapping $\hat{\Sigma}:\mathbb{S}^3_>\to\mathbb{S}^3$ so that

 $\hat{\Sigma}(F) = \tilde{\Sigma}(F^{T}F).$

Proof:

This follows by rotating the deformed body to obtain the relations

$$\mathbf{x} \mapsto Q\mathbf{x}, \ \phi \mapsto Q\phi, \ \nabla \phi \mapsto Q\nabla \phi, \ \mathbf{n} \mapsto Q^{-T}\mathbf{n} = Q\mathbf{n}, \ \mathbf{t}(\mathbf{x},\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x},\mathbf{n}).$$

From frame-indifference axiom, we have $\mathbf{t}(Q\mathbf{x}, Q\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x}, \mathbf{n})$ and $\hat{T}(QF)Q \cdot \mathbf{n} = Q\hat{T}(F) \cdot \mathbf{n}$, using $Q^T Q = I$. This implies $\hat{T}(QF) \cdot \mathbf{n} = Q\hat{T}(F)Q^T \cdot \mathbf{n}$, $\forall \mathbf{n} \in S^2 \Rightarrow \hat{T}(QF) = Q\hat{T}(F)Q^T$. From $\hat{\Sigma}(F) := \det(F)F^{-1}\hat{T}(F)F^{-T}$, we have $\hat{\Sigma}(QF) = \hat{\Sigma}(F)$, $\forall Q \in \mathbb{O}_+^3$. Now consider product $F^T F = G^T G$ for any F and G invertible. Let $Q = GF^{-1}$, then $Q^T Q = I$, $\det(Q) > 0$. This gives $\hat{\Sigma}(F) = \hat{\Sigma}(QF) = \hat{\Sigma}(G)$ so that $\hat{\Sigma}$ only depends on the product $F^T F$.

Isotropic Materials

Isotropic Materials

A material is **isotropic** if

Isotropic Materials

A material is **isotropic** if

$$\hat{T}(F)=\hat{T}(FQ), \ orall Q\in \mathbb{O}^3_+.$$

Isotropic Materials

A material is isotropic if

$$\hat{T}(F)=\hat{T}(FQ), \ orall Q\in \mathbb{O}^3_+.$$

This is equivalent to

$$\hat{T}(F) = \hat{T}(FF^{T}).$$

Isotropic Materials

A material is isotropic if

$$\hat{T}(F)=\hat{T}(FQ), \ orall Q\in \mathbb{O}^3_+.$$

This is equivalent to

$$\hat{T}(F) = \hat{T}(FF^{T}).$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF).

Isotropic Materials

A material is isotropic if

$$\hat{T}(F)=\hat{T}(FQ), \ orall Q\in \mathbb{O}^3_+.$$

This is equivalent to

$$\hat{T}(F) = \hat{T}(FF^{T}).$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF).

Invariants: The material responses depend only on *invariants* of the matrix $A = FF^{T}$ (also of $A^{T} = F^{T}F$).

Isotropic Materials

A material is isotropic if

$$\hat{T}(F)=\hat{T}(FQ), \ orall Q\in \mathbb{O}^3_+.$$

This is equivalent to

$$\hat{T}(F) = \hat{T}(FF^{T}).$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF). **Invariants:** The material responses depend only on *invariants* of the matrix $A = FF^{T}$ (also of $A^{T} = F^{T}F$).

We define the triple invariants $\iota_A = (\iota_1(A), \iota_2(A), \iota_3(A))$ as coefficients of

Isotropic Materials

A material is isotropic if

$$\hat{T}(F)=\hat{T}(FQ), \ orall Q\in \mathbb{O}^3_+.$$

This is equivalent to

$$\hat{T}(F) = \hat{T}(FF^{T}).$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF).

Invariants: The material responses depend only on *invariants* of the matrix $A = FF^{T}$ (also of $A^{T} = F^{T}F$). We define the triple invariants $\iota_{A} = (\iota_{1}(A), \iota_{2}(A), \iota_{3}(A))$ as coefficients of

$$\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A).$$

Isotropic Materials

A material is isotropic if

$$\hat{T}(F)=\hat{T}(FQ), \ orall Q\in \mathbb{O}^3_+.$$

This is equivalent to

$$\hat{T}(F) = \hat{T}(FF^{T}).$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF).

Invariants: The material responses depend only on *invariants* of the matrix $A = FF^{T}$ (also of $A^{T} = F^{T}F$). We define the triple invariants $\iota_{A} = (\iota_{1}(A), \iota_{2}(A), \iota_{3}(A))$ as coefficients of

$$\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A).$$

Isotropic Materials

A material is isotropic if

$$\hat{T}(F)=\hat{T}(FQ), \ orall Q\in \mathbb{O}^3_+.$$

This is equivalent to

$$\hat{T}(F) = \hat{T}(FF^{T}).$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF).

Invariants: The material responses depend only on *invariants* of the matrix $A = FF^{T}$ (also of $A^{T} = F^{T}F$). We define the triple invariants $\iota_{A} = (\iota_{1}(A), \iota_{2}(A), \iota_{3}(A))$ as coefficients of

$$\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A).$$

$$\iota_1(A)$$
 := trace $(A) = \lambda_1 + \lambda_2 + \lambda_3$,

Isotropic Materials

A material is isotropic if

$$\hat{T}(F)=\hat{T}(FQ), \ orall Q\in \mathbb{O}^3_+.$$

This is equivalent to

$$\hat{T}(F) = \hat{T}(FF^{T}).$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF).

Invariants: The material responses depend only on *invariants* of the matrix $A = FF^{T}$ (also of $A^{T} = F^{T}F$). We define the triple invariants $\iota_{A} = (\iota_{1}(A), \iota_{2}(A), \iota_{3}(A))$ as coefficients of

$$\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A).$$

$$\iota_1(A) := \operatorname{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3,$$

 $\iota_2(A) := \frac{1}{2} \left(\operatorname{trace}(A)^2 - \operatorname{trace}(A^2) \right) = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3,$

Isotropic Materials

A material is isotropic if

$$\hat{T}(F)=\hat{T}(FQ), \ orall Q\in \mathbb{O}^3_+.$$

This is equivalent to

$$\hat{T}(F) = \hat{T}(FF^{T}).$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF).

Invariants: The material responses depend only on *invariants* of the matrix $A = FF^{T}$ (also of $A^{T} = F^{T}F$). We define the triple invariants $\iota_{A} = (\iota_{1}(A), \iota_{2}(A), \iota_{3}(A))$ as coefficients of

$$\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A).$$

$$\begin{split} \iota_1(A) &:= \operatorname{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3, \\ \iota_2(A) &:= \frac{1}{2} \left(\operatorname{trace}(A)^2 - \operatorname{trace}(A^2) \right) = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3, \\ \iota_3(A) &:= \operatorname{det}(A) = \lambda_1 \lambda_2 \lambda_3. \end{split}$$

Isotropic Materials

A material is isotropic if

$$\hat{T}(F)=\hat{T}(FQ), \ orall Q\in \mathbb{O}^3_+.$$

This is equivalent to

$$\hat{T}(F) = \hat{T}(FF^{T}).$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF).

Invariants: The material responses depend only on *invariants* of the matrix $A = FF^{T}$ (also of $A^{T} = F^{T}F$). We define the triple invariants $\iota_{A} = (\iota_{1}(A), \iota_{2}(A), \iota_{3}(A))$ as coefficients of

$$\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A).$$

Invariants can be expressed as

$$\begin{split} \iota_1(A) &:= \operatorname{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3, \\ \iota_2(A) &:= \frac{1}{2} \left(\operatorname{trace}(A)^2 - \operatorname{trace}(A^2) \right) = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3, \\ \iota_3(A) &:= \operatorname{det}(A) = \lambda_1 \lambda_2 \lambda_3. \end{split}$$

Provides convenient way to model many isotropic materials.

Paul J. Atzberger, UCSB

Isotropic Materials

A material is isotropic if

$$\hat{T}(F)=\hat{T}(FQ), \ orall Q\in \mathbb{O}^3_+.$$

This is equivalent to

$$\hat{T}(F) = \hat{T}(FF^{T}).$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF).

Invariants: The material responses depend only on *invariants* of the matrix $A = FF^{T}$ (also of $A^{T} = F^{T}F$). We define the triple invariants $\iota_{A} = (\iota_{1}(A), \iota_{2}(A), \iota_{3}(A))$ as coefficients of

$$\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A).$$

Invariants can be expressed as

$$\begin{split} \iota_1(A) &:= \operatorname{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3, \\ \iota_2(A) &:= \frac{1}{2} \left(\operatorname{trace}(A)^2 - \operatorname{trace}(A^2) \right) = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3, \\ \iota_3(A) &:= \operatorname{det}(A) = \lambda_1 \lambda_2 \lambda_3. \end{split}$$

Provides convenient way to model many isotropic materials.

Paul J. Atzberger, UCSB

The response function $\hat{T} : \mathbb{M}^3_+ \to \mathbb{S}^3$ is *objective* and *isotropic* if and only if it has the form $\hat{T}(F) = \overline{T}(FF^T)$ with

The response function $\hat{T} : \mathbb{M}^3_+ \to \mathbb{S}^3$ is *objective* and *isotropic* if and only if it has the form $\hat{T}(F) = \overline{T}(FF^T)$ with

$$\bar{T}$$
 : $\mathbb{S}^3_> \to \mathbb{S}^3$

The response function $\hat{T} : \mathbb{M}^3_+ \to \mathbb{S}^3$ is *objective* and *isotropic* if and only if it has the form $\hat{T}(F) = \overline{T}(FF^T)$ with

$$\begin{aligned} \bar{\mathcal{T}} &: \quad \mathbb{S}^3_> \to \mathbb{S}^3 \\ \bar{\mathcal{T}}(B) &= \quad \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2. \end{aligned}$$

The response function $\hat{T} : \mathbb{M}^3_+ \to \mathbb{S}^3$ is *objective* and *isotropic* if and only if it has the form $\hat{T}(F) = \overline{T}(FF^T)$ with

$$ar{\mathcal{T}}$$
 : $\mathbb{S}^3_> o \mathbb{S}^3$
 $ar{\mathcal{T}}(B) = eta_0(\iota_B)I + eta_1(\iota_B)B + eta_2(\iota_B)B^2.$

The ι_B denotes the triple of invariants of $B = FF^T$. Note when B is diagonalized $\tilde{B} = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$.
Rivlin-Ericksen (RE) Theorem

The response function $\hat{T} : \mathbb{M}^3_+ \to \mathbb{S}^3$ is *objective* and *isotropic* if and only if it has the form $\hat{T}(F) = \overline{T}(FF^T)$ with

$$ar{\mathcal{T}}$$
 : $\mathbb{S}^3_> o \mathbb{S}^3$
 $ar{\mathcal{T}}(B) = eta_0(\iota_B)I + eta_1(\iota_B)B + eta_2(\iota_B)B^2.$

The ι_B denotes the triple of invariants of $B = FF^T$. Note when B is diagonalized $\tilde{B} = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$.

Significance Characterizes the conditions under which constitutive laws are frame-indifferent and isotropic.

Rivlin-Ericksen (RE) Theorem

The response function $\hat{T} : \mathbb{M}^3_+ \to \mathbb{S}^3$ is *objective* and *isotropic* if and only if it has the form $\hat{T}(F) = \overline{T}(FF^T)$ with

$$ar{\mathcal{T}}$$
 : $\mathbb{S}^3_> o \mathbb{S}^3$
 $ar{\mathcal{T}}(B) = eta_0(\iota_B)I + eta_1(\iota_B)B + eta_2(\iota_B)B^2.$

The ι_B denotes the triple of invariants of $B = FF^T$. Note when B is diagonalized $\tilde{B} = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$.

Significance Characterizes the conditions under which constitutive laws are frame-indifferent and isotropic.

Corollary to RE

Paul J. Atzberger, UCSB

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi) = \tilde{\Sigma}(F^T F)$$

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\begin{split} \boldsymbol{\Sigma}(F) &= \quad \boldsymbol{\tilde{\Sigma}}(\nabla\phi^{T}\nabla\phi) = \boldsymbol{\tilde{\Sigma}}(F^{T}F) \\ \boldsymbol{\tilde{\Sigma}}(C) &= \quad \gamma_{0}\boldsymbol{I} + \gamma_{1}C + \gamma_{2}C^{2}. \end{split}$$

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\begin{split} \Sigma(F) &= \tilde{\Sigma}(\nabla \phi^T \nabla \phi) = \tilde{\Sigma}(F^T F) \\ \tilde{\Sigma}(C) &= \gamma_0 I + \gamma_1 C + \gamma_2 C^2. \end{split}$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C of $C = F^T F$.

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\begin{split} \boldsymbol{\Sigma}(\boldsymbol{F}) &= \quad \boldsymbol{\tilde{\Sigma}}(\nabla \boldsymbol{\phi}^{\mathsf{T}} \nabla \boldsymbol{\phi}) = \boldsymbol{\tilde{\Sigma}}(\boldsymbol{F}^{\mathsf{T}} \boldsymbol{F}) \\ \boldsymbol{\tilde{\Sigma}}(\boldsymbol{C}) &= \quad \gamma_0 \boldsymbol{I} + \gamma_1 \boldsymbol{C} + \gamma_2 \boldsymbol{C}^2. \end{split}$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C of $C = F^T F$.

Proof:

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\begin{split} \boldsymbol{\Sigma}(F) &= \quad \boldsymbol{\tilde{\Sigma}}(\nabla \phi^T \nabla \phi) = \boldsymbol{\tilde{\Sigma}}(F^T F) \\ \boldsymbol{\tilde{\Sigma}}(C) &= \quad \gamma_0 I + \gamma_1 C + \gamma_2 C^2. \end{split}$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C of $C = F^T F$.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\begin{split} \boldsymbol{\Sigma}(F) &= \quad \boldsymbol{\tilde{\Sigma}}(\nabla \phi^T \nabla \phi) = \boldsymbol{\tilde{\Sigma}}(F^T F) \\ \boldsymbol{\tilde{\Sigma}}(C) &= \quad \gamma_0 I + \gamma_1 C + \gamma_2 C^2. \end{split}$$

The $\gamma_i = \gamma_i(\iota_c)$ are functions of the triple of invariants ι_c of $C = F^T F$.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$B^3 - \iota_1(B)B^2 + \iota_2(B)B - \iota_3(B)I = 0.$$

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\begin{split} \boldsymbol{\Sigma}(F) &= \quad \boldsymbol{\tilde{\Sigma}}(\nabla \phi^T \nabla \phi) = \boldsymbol{\tilde{\Sigma}}(F^T F) \\ \boldsymbol{\tilde{\Sigma}}(C) &= \quad \gamma_0 I + \gamma_1 C + \gamma_2 C^2. \end{split}$$

The $\gamma_i = \gamma_i(\iota_c)$ are functions of the triple of invariants ι_c of $C = F^T F$.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$B^{3} - \iota_{1}(B)B^{2} + \iota_{2}(B)B - \iota_{3}(B)I = 0.$$

By the RE Theorem we have

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\begin{split} \boldsymbol{\Sigma}(F) &= \quad \boldsymbol{\tilde{\Sigma}}(\nabla \phi^T \nabla \phi) = \boldsymbol{\tilde{\Sigma}}(F^T F) \\ \boldsymbol{\tilde{\Sigma}}(C) &= \quad \gamma_0 I + \gamma_1 C + \gamma_2 C^2. \end{split}$$

The $\gamma_i = \gamma_i(\iota_c)$ are functions of the triple of invariants ι_c of $C = F^T F$.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$B^{3} - \iota_{1}(B)B^{2} + \iota_{2}(B)B - \iota_{3}(B)I = 0.$$

By the RE Theorem we have

$$\overline{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.$$

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\begin{split} \boldsymbol{\Sigma}(F) &= \quad \boldsymbol{\tilde{\Sigma}}(\nabla \phi^T \nabla \phi) = \boldsymbol{\tilde{\Sigma}}(F^T F) \\ \boldsymbol{\tilde{\Sigma}}(C) &= \quad \gamma_0 I + \gamma_1 C + \gamma_2 C^2. \end{split}$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C of $C = F^T F$.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$B^{3} - \iota_{1}(B)B^{2} + \iota_{2}(B)B - \iota_{3}(B)I = 0.$$

By the RE Theorem we have

$$\overline{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.$$

By the CH formula, we can eliminate the I to obtain

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\begin{split} \boldsymbol{\Sigma}(F) &= \quad \boldsymbol{\tilde{\Sigma}}(\nabla \phi^T \nabla \phi) = \boldsymbol{\tilde{\Sigma}}(F^T F) \\ \boldsymbol{\tilde{\Sigma}}(C) &= \quad \gamma_0 I + \gamma_1 C + \gamma_2 C^2. \end{split}$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C of $C = F^T F$.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$B^{3} - \iota_{1}(B)B^{2} + \iota_{2}(B)B - \iota_{3}(B)I = 0.$$

By the RE Theorem we have

$$\overline{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.$$

By the CH formula, we can eliminate the I to obtain

$$\overline{T}(B) = \widetilde{\beta}_1 B + \widetilde{\beta}_2 B^2 + \widetilde{\beta}_3 B^3$$

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\begin{split} \boldsymbol{\Sigma}(F) &= \quad \boldsymbol{\tilde{\Sigma}}(\nabla \phi^T \nabla \phi) = \boldsymbol{\tilde{\Sigma}}(F^T F) \\ \boldsymbol{\tilde{\Sigma}}(C) &= \quad \gamma_0 I + \gamma_1 C + \gamma_2 C^2. \end{split}$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C of $C = F^T F$.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$B^{3} - \iota_{1}(B)B^{2} + \iota_{2}(B)B - \iota_{3}(B)I = 0.$$

By the RE Theorem we have

$$\overline{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.$$

By the CH formula, we can eliminate the I to obtain

$$\overline{T}(B) = \widetilde{\beta}_1 B + \widetilde{\beta}_2 B^2 + \widetilde{\beta}_3 B^3.$$

Multiply on left by det(F) F^{-1} and on right by F^{-T} to reformulate as $\hat{\Sigma}$ with Cauchy-Green tensor $C = F^T F$.

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\begin{split} \boldsymbol{\Sigma}(F) &= \quad \boldsymbol{\tilde{\Sigma}}(\nabla \phi^T \nabla \phi) = \boldsymbol{\tilde{\Sigma}}(F^T F) \\ \boldsymbol{\tilde{\Sigma}}(C) &= \quad \gamma_0 I + \gamma_1 C + \gamma_2 C^2. \end{split}$$

The $\gamma_i = \gamma_i(\iota_c)$ are functions of the triple of invariants ι_c of $C = F^T F$.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$B^{3} - \iota_{1}(B)B^{2} + \iota_{2}(B)B - \iota_{3}(B)I = 0.$$

By the RE Theorem we have

$$\overline{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.$$

By the CH formula, we can eliminate the I to obtain

$$\overline{T}(B) = \widetilde{\beta}_1 B + \widetilde{\beta}_2 B^2 + \widetilde{\beta}_3 B^3.$$

Multiply on left by det(F) F^{-1} and on right by F^{-T} to reformulate as $\hat{\Sigma}$ with Cauchy-Green tensor $C = F^T F$. We use invariance to choose frame with $FF^T = B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$.

Corollary to RE

The second Piola-Kirchhoff stress tensor $\boldsymbol{\Sigma}$ is objective and isotropic iff

$$\begin{split} \boldsymbol{\Sigma}(F) &= \quad \boldsymbol{\tilde{\Sigma}}(\nabla \phi^T \nabla \phi) = \boldsymbol{\tilde{\Sigma}}(F^T F) \\ \boldsymbol{\tilde{\Sigma}}(C) &= \quad \gamma_0 I + \gamma_1 C + \gamma_2 C^2. \end{split}$$

The $\gamma_i = \gamma_i(\iota_c)$ are functions of the triple of invariants ι_c of $C = F^T F$.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$B^{3} - \iota_{1}(B)B^{2} + \iota_{2}(B)B - \iota_{3}(B)I = 0.$$

By the RE Theorem we have

$$\overline{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.$$

By the CH formula, we can eliminate the I to obtain

$$\overline{T}(B) = \widetilde{\beta}_1 B + \widetilde{\beta}_2 B^2 + \widetilde{\beta}_3 B^3.$$

Multiply on left by det(F) F^{-1} and on right by F^{-T} to reformulate as $\hat{\Sigma}$ with Cauchy-Green tensor $C = F^T F$. We use invariance to choose frame with $FF^T = B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$.

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$.

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_j(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_j(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch): From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$.

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_j(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$. From smoothness of γ_i , we have only $\iota_1(E)$ contributes in the expressions.

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$. From smoothness of γ_i , we have only $\iota_1(E)$ contributes in the expressions. From C = I + 2E, $C^2 = I + 4E + o(E)$, to obtain leading order we expand as $\gamma_0(E) = a_0 + b_1\iota_1(E) + o(E)$, $\gamma_1(E) = a_1 + O(E)$, $\gamma_2(E) = a_2 + O(E)$. This yields

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$. From smoothness of γ_i , we have only $\iota_1(E)$ contributes in the expressions. From C = I + 2E, $C^2 = I + 4E + o(E)$, to obtain leading order we expand as $\gamma_0(E) = a_0 + b_1\iota_1(E) + o(E)$, $\gamma_1(E) = a_1 + O(E)$, $\gamma_2(E) = a_2 + O(E)$. This yields

$$\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1\iota_1(E)I + (2a_1 + 4a_2)E + o(E).$$

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$. From smoothness of γ_i , we have only $\iota_1(E)$ contributes in the expressions. From C = I + 2E, $C^2 = I + 4E + o(E)$, to obtain leading order we expand as $\gamma_0(E) = a_0 + b_1\iota_1(E) + o(E)$, $\gamma_1(E) = a_1 + O(E)$, $\gamma_2(E) = a_2 + O(E)$. This yields

$$\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1\iota_1(E)I + (2a_1 + 4a_2)E + o(E).$$

Using $\iota_1(E) = \text{trace}(E)$ the result follows.

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$. From smoothness of γ_i , we have only $\iota_1(E)$ contributes in the expressions. From C = I + 2E, $C^2 = I + 4E + o(E)$, to obtain leading order we expand as $\gamma_0(E) = a_0 + b_1\iota_1(E) + o(E)$, $\gamma_1(E) = a_1 + O(E)$, $\gamma_2(E) = a_2 + O(E)$. This yields

$$\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1\iota_1(E)I + (2a_1 + 4a_2)E + o(E).$$

Using $\iota_1(E) = \text{trace}(E)$ the result follows.

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$. From smoothness of γ_i , we have only $\iota_1(E)$ contributes in the expressions. From C = I + 2E, $C^2 = I + 4E + o(E)$, to obtain leading order we expand as $\gamma_0(E) = a_0 + b_1\iota_1(E) + o(E)$, $\gamma_1(E) = a_1 + O(E)$, $\gamma_2(E) = a_2 + O(E)$. This yields

$$\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1\iota_1(E)I + (2a_1 + 4a_2)E + o(E).$$

Using $\iota_1(E) = \text{trace}(E)$ the result follows.

Significance: Gives general constitutive relation expressed in terms of strain E when deformations are small.

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$. From smoothness of γ_i , we have only $\iota_1(E)$ contributes in the expressions. From C = I + 2E, $C^2 = I + 4E + o(E)$, to obtain leading order we expand as $\gamma_0(E) = a_0 + b_1\iota_1(E) + o(E)$, $\gamma_1(E) = a_1 + O(E)$, $\gamma_2(E) = a_2 + O(E)$. This yields

$$\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1\iota_1(E)I + (2a_1 + 4a_2)E + o(E).$$

Using $\iota_1(E) = \text{trace}(E)$ the result follows.

Significance: Gives general constitutive relation expressed in terms of strain *E* when deformations are small. **Remark:** Typically, C = I with unstressed conditions so that $\pi = 0$. The λ and μ are called *Lame' constants*.

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$. From smoothness of γ_i , we have only $\iota_1(E)$ contributes in the expressions. From C = I + 2E, $C^2 = I + 4E + o(E)$, to obtain leading order we expand as $\gamma_0(E) = a_0 + b_1\iota_1(E) + o(E)$, $\gamma_1(E) = a_1 + O(E)$, $\gamma_2(E) = a_2 + O(E)$. This yields

$$\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1\iota_1(E)I + (2a_1 + 4a_2)E + o(E).$$

Using $\iota_1(E) = \text{trace}(E)$ the result follows.

Significance: Gives general constitutive relation expressed in terms of strain *E* when deformations are small. **Remark:** Typically, C = I with unstressed conditions so that $\pi = 0$. The λ and μ are called *Lame' constants*. **Hookean Material Law:** $\tilde{\Sigma}(I + 2E) = \lambda \operatorname{trace}(E)I + 2\mu E$.

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$. From smoothness of γ_i , we have only $\iota_1(E)$ contributes in the expressions. From C = I + 2E, $C^2 = I + 4E + o(E)$, to obtain leading order we expand as $\gamma_0(E) = a_0 + b_1\iota_1(E) + o(E)$, $\gamma_1(E) = a_1 + O(E)$, $\gamma_2(E) = a_2 + O(E)$. This yields

$$\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1\iota_1(E)I + (2a_1 + 4a_2)E + o(E).$$

Using $\iota_1(E) = \text{trace}(E)$ the result follows.

Significance: Gives general constitutive relation expressed in terms of strain *E* when deformations are small. **Remark:** Typically, C = I with unstressed conditions so that $\pi = 0$. The λ and μ are called *Lame' constants*. **Hookean Material Law:** $\tilde{\Sigma}(I + 2E) = \lambda \operatorname{trace}(E)I + 2\mu E$.

Valid for small deformations, but if valid all deformations, called St. Venant-Kirkhhoff material.

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$. From smoothness of γ_i , we have only $\iota_1(E)$ contributes in the expressions. From C = I + 2E, $C^2 = I + 4E + o(E)$, to obtain leading order we expand as $\gamma_0(E) = a_0 + b_1\iota_1(E) + o(E)$, $\gamma_1(E) = a_1 + O(E)$, $\gamma_2(E) = a_2 + O(E)$. This yields

$$\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1\iota_1(E)I + (2a_1 + 4a_2)E + o(E).$$

Using $\iota_1(E) = \text{trace}(E)$ the result follows.

Significance: Gives general constitutive relation expressed in terms of strain E when deformations are small. **Remark:** Typically, C = I with unstressed conditions so that $\pi = 0$. The λ and μ are called *Lame' constants*. **Hookean Material Law:** $\tilde{\Sigma}(I + 2E) = \lambda \operatorname{trace}(E)I + 2\mu E$.

Valid for small deformations, but if valid all deformations, called *St. Venant-Kirkhhoff material*. **Remark** trace(ϵ) \approx div(u) for incompressibility. Lame' constants: λ change in density and μ shear modulus.

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \operatorname{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$. From smoothness of γ_i , we have only $\iota_1(E)$ contributes in the expressions. From C = I + 2E, $C^2 = I + 4E + o(E)$, to obtain leading order we expand as $\gamma_0(E) = a_0 + b_1\iota_1(E) + o(E)$, $\gamma_1(E) = a_1 + O(E)$, $\gamma_2(E) = a_2 + O(E)$. This yields

$$\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1\iota_1(E)I + (2a_1 + 4a_2)E + o(E).$$

Using $\iota_1(E) = \text{trace}(E)$ the result follows.

Significance: Gives general constitutive relation expressed in terms of strain E when deformations are small. **Remark:** Typically, C = I with unstressed conditions so that $\pi = 0$. The λ and μ are called *Lame' constants*. **Hookean Material Law:** $\tilde{\Sigma}(I + 2E) = \lambda \operatorname{trace}(E)I + 2\mu E$.

Valid for small deformations, but if valid all deformations, called *St. Venant-Kirkhhoff material*. **Remark** trace(ϵ) \approx div(u) for incompressibility. Lame' constants: λ change in density and μ shear modulus.

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that

$$ilde{\Sigma}({\it C}) = ilde{\Sigma}({\it I}+2{\it E}) = -\pi{\it I}+\lambda\,{
m trace}({\it E}){\it I}+2\mu{\it E}+o({\it E}),\;\;{
m as}\;{\it E}
ightarrow 0$$

Hookean Material Law: $\tilde{\Sigma}(I + 2E) = \lambda \operatorname{trace}(E)I + 2\mu E.$

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that

$$ilde{\Sigma}({\it C}) = ilde{\Sigma}({\it I}+2{\it E}) = -\pi{\it I}+\lambda\,{
m trace}({\it E}){\it I}+2\mu{\it E}+o({\it E}),\;\;{
m as}\;{\it E} o 0.$$

Hookean Material Law: $\tilde{\Sigma}(I + 2E) = \lambda \operatorname{trace}(E)I + 2\mu E.$

Remark trace(ϵ) \approx div(u) for incompressibility. Lame' constants: λ change in density and μ shear modulus.
For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that

$$ilde{\Sigma}({\it C}) = ilde{\Sigma}({\it I}+2{\it E}) = -\pi{\it I}+\lambda\,{
m trace}({\it E}){\it I}+2\mu{\it E}+o({\it E}),\;\;{
m as}\;{\it E} o 0.$$

Hookean Material Law: $\tilde{\Sigma}(I + 2E) = \lambda \operatorname{trace}(E)I + 2\mu E$.

Remark trace(ϵ) \approx div(u) for incompressibility. Lame' constants: λ change in density and μ shear modulus. **Mechanics:** Other parameters are used to characterize elasticity

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that

$$ilde{\Sigma}({\it C}) = ilde{\Sigma}({\it I}+2{\it E}) = -\pi{\it I}+\lambda\,{
m trace}({\it E}){\it I}+2\mu{\it E}+o({\it E}),\;\;{
m as}\;{\it E} o 0.$$

Hookean Material Law: $\tilde{\Sigma}(I+2E) = \lambda \operatorname{trace}(E)I + 2\mu E$.

Remark trace(ϵ) \approx div(u) for incompressibility. Lame' constants: λ change in density and μ shear modulus. **Mechanics:** Other parameters are used to characterize elasticity

 $u = \frac{\lambda}{2(\lambda + \mu)},$ Poisson ratio

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that

$$ilde{\Sigma}({\it C}) = ilde{\Sigma}({\it I}+2{\it E}) = -\pi{\it I}+\lambda\,{
m trace}({\it E}){\it I}+2\mu{\it E}+o({\it E}),\;\;{
m as}\;{\it E}
ightarrow 0$$

Hookean Material Law: $\tilde{\Sigma}(I + 2E) = \lambda \operatorname{trace}(E)I + 2\mu E$.

Remark trace(ϵ) \approx div(u) for incompressibility. Lame' constants: λ change in density and μ shear modulus. **Mechanics:** Other parameters are used to characterize elasticity

 $u = \frac{\lambda}{2(\lambda + \mu)},$ Poisson ratio $E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu},$ Young's modulus

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that

$$ilde{\Sigma}({\it C}) = ilde{\Sigma}({\it I}+2{\it E}) = -\pi{\it I}+\lambda\,{
m trace}({\it E}){\it I}+2\mu{\it E}+o({\it E}),\;\;{
m as}\;{\it E}
ightarrow 0$$

Hookean Material Law: $\tilde{\Sigma}(I+2E) = \lambda \operatorname{trace}(E)I + 2\mu E$.

Remark trace(ϵ) \approx div(u) for incompressibility. Lame' constants: λ change in density and μ shear modulus. **Mechanics:** Other parameters are used to characterize elasticity

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that

$$ilde{\Sigma}({\it C}) = ilde{\Sigma}({\it I}+2{\it E}) = -\pi{\it I}+\lambda\,{
m trace}({\it E}){\it I}+2\mu{\it E}+o({\it E}),\;\;{
m as}\;{\it E}
ightarrow 0$$

Hookean Material Law: $\tilde{\Sigma}(I+2E) = \lambda \operatorname{trace}(E)I + 2\mu E$.

Remark trace(ϵ) \approx div(u) for incompressibility. Lame' constants: λ change in density and μ shear modulus. **Mechanics:** Other parameters are used to characterize elasticity

 $\begin{array}{ll} \nu = \frac{\lambda}{2(\lambda + \mu)}, & \mbox{Poisson ratio} & E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}, & \mbox{Young's modulus} \\ \lambda = \frac{E\nu}{(1 + \nu)(1 - 2\nu)}, & \mbox{Lame' compressibility} & \mu = \frac{E}{2(1 + \nu)}, & \mbox{Lame' shear modulus}. \end{array}$

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that

$$ilde{\Sigma}({\it C}) = ilde{\Sigma}({\it I}+2{\it E}) = -\pi{\it I}+\lambda\,{
m trace}({\it E}){\it I}+2\mu{\it E}+o({\it E}),\;\;{
m as}\;{\it E}
ightarrow 0$$

Hookean Material Law: $\tilde{\Sigma}(I+2E) = \lambda \operatorname{trace}(E)I + 2\mu E$.

Remark trace(ϵ) \approx div(u) for incompressibility. Lame' constants: λ change in density and μ shear modulus. **Mechanics:** Other parameters are used to characterize elasticity

 $\begin{array}{ll} \nu = \frac{\lambda}{2(\lambda + \mu)}, & \mbox{Poisson ratio} & E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}, & \mbox{Young's modulus} \\ \lambda = \frac{\mu}{(1 + \nu)(1 - 2\nu)}, & \mbox{Lame' compressibility} & \mu = \frac{E}{2(1 + \nu)}, & \mbox{Lame' shear modulus}. \end{array}$

From considerations in the physics, we have $\lambda > 0, \mu > 0$ and $E > 0, 0 < \nu < \frac{1}{2}$.

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_i(E)$, then there exists constants π, λ, μ so that

$$ilde{\Sigma}({\it C}) = ilde{\Sigma}({\it I}+2{\it E}) = -\pi{\it I}+\lambda\,{
m trace}({\it E}){\it I}+2\mu{\it E}+o({\it E}),\;\;{
m as}\;{\it E}
ightarrow 0$$

Hookean Material Law: $\tilde{\Sigma}(I+2E) = \lambda \operatorname{trace}(E)I + 2\mu E$.

Remark trace(ϵ) \approx div(u) for incompressibility. Lame' constants: λ change in density and μ shear modulus. **Mechanics:** Other parameters are used to characterize elasticity

 $\begin{array}{ll} \nu = \frac{\lambda}{2(\lambda + \mu)}, & \text{Poisson ratio} \\ \lambda = \frac{E}{(1 + \nu)(1 - 2\nu)}, & \text{Lame' compressibility} \end{array} \qquad \begin{array}{ll} E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}, & \text{Young's modulus} \\ \mu = \frac{E}{2(1 + \nu)}, & \text{Lame' shear modulus}. \end{array}$

From considerations in the physics, we have $\lambda > 0, \mu > 0$ and $E > 0, 0 < \nu < \frac{1}{2}$.

Remark: For small deformations, if we replace linearization in E with linearization in ϵ approach is called **geometrically linear theory**.

Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{T}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \; \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

$$-{
m div}\,\hat{\mathcal{T}}(\mathbf{x},
abla\phi(\mathbf{x}))=f(\mathbf{x}),\quad\mathbf{x}\in\Omega$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

$$\begin{split} -\mathsf{div}\, \hat{\mathcal{T}}(\mathbf{x}, \nabla \phi(\mathbf{x})) &= f(\mathbf{x}), \quad \mathbf{x} \in \Omega \\ \hat{\mathcal{T}}(\mathbf{x}, \nabla \phi(\mathbf{x})) &= g(\mathbf{x}), \qquad \mathbf{x} \in \Gamma_1 \end{split}$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

$$\begin{array}{ll} -\operatorname{div} \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x})) = f(\mathbf{x}), & \mathbf{x} \in \Omega\\ \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x})) = g(\mathbf{x}), & \mathbf{x} \in \Gamma_1\\ \phi(\mathbf{x}) = \phi_0(\mathbf{x}), & \mathbf{x} \in \Gamma_0. \end{array}$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

Equilibrium state of an elastic body:

$$\begin{array}{ll} -\operatorname{div} \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x})) = f(\mathbf{x}), & \mathbf{x} \in \Omega\\ \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x})) = g(\mathbf{x}), & \mathbf{x} \in \Gamma_1\\ \phi(\mathbf{x}) = \phi_0(\mathbf{x}), & \mathbf{x} \in \Gamma_0. \end{array}$$

Variational principle: If $f = \text{grad } \mathcal{F}, g = \text{grad } \mathcal{G}$, we have a variational principle with the functional

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

Equilibrium state of an elastic body:

$$\begin{array}{ll} -\operatorname{div} \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x})) = f(\mathbf{x}), & \mathbf{x} \in \Omega\\ \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x})) = g(\mathbf{x}), & \mathbf{x} \in \Gamma_1\\ \phi(\mathbf{x}) = \phi_0(\mathbf{x}), & \mathbf{x} \in \Gamma_0. \end{array}$$

Variational principle: If $f = \text{grad } \mathcal{F}, g = \text{grad } \mathcal{G}$, we have a variational principle with the functional

$$I[\psi] = \int_{\Omega} \left(\hat{W}(\mathbf{x}, \nabla \psi(\mathbf{x})) - \mathcal{F}(\psi(\mathbf{x})) \right) d\mathbf{x} + \int_{\Gamma_1} \mathcal{G}(\psi(\mathbf{x})) d\mathbf{x}.$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

Equilibrium state of an elastic body:

$$\begin{array}{ll} -\operatorname{div} \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x})) = f(\mathbf{x}), & \mathbf{x} \in \Omega\\ \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x})) = g(\mathbf{x}), & \mathbf{x} \in \Gamma_1\\ \phi(\mathbf{x}) = \phi_0(\mathbf{x}), & \mathbf{x} \in \Gamma_0. \end{array}$$

Variational principle: If $f = \text{grad } \mathcal{F}, g = \text{grad } \mathcal{G}$, we have a variational principle with the functional

$$I[\psi] = \int_{\Omega} \left(\hat{W}(\mathbf{x}, \nabla \psi(\mathbf{x})) - \mathcal{F}(\psi(\mathbf{x})) \right) d\mathbf{x} + \int_{\Gamma_1} \mathcal{G}(\psi(\mathbf{x})) d\mathbf{x}.$$

We require that ψ satisfies the boundary conditions on Γ_1, Γ_0 and local injectivity det $(\nabla \psi(\mathbf{x})) > 0$.

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

Equilibrium state of an elastic body:

$$\begin{array}{ll} -\operatorname{div} \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x})) = f(\mathbf{x}), & \mathbf{x} \in \Omega\\ \hat{T}(\mathbf{x}, \nabla \phi(\mathbf{x})) = g(\mathbf{x}), & \mathbf{x} \in \Gamma_1\\ \phi(\mathbf{x}) = \phi_0(\mathbf{x}), & \mathbf{x} \in \Gamma_0. \end{array}$$

Variational principle: If $f = \text{grad } \mathcal{F}, g = \text{grad } \mathcal{G}$, we have a variational principle with the functional

$$I[\psi] = \int_{\Omega} \left(\hat{W}(\mathbf{x}, \nabla \psi(\mathbf{x})) - \mathcal{F}(\psi(\mathbf{x})) \right) d\mathbf{x} + \int_{\Gamma_1} \mathcal{G}(\psi(\mathbf{x})) d\mathbf{x}.$$

We require that ψ satisfies the boundary conditions on Γ_1, Γ_0 and local injectivity det $(\nabla \psi(\mathbf{x})) > 0$. **Remark:** Results in saddle-point problems.

Paul J. Atzberger, UCSB

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \; \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C = F^T F$ as

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{\mathcal{W}}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C = F^T F$ as

$$\hat{W}(\mathbf{x},F) = \tilde{W}(\mathbf{x},F^{ op}F), \ \ \tilde{\Sigma}(\mathbf{x},C) = 2rac{\partial \tilde{W}(\mathbf{x},C)}{\partial C}, \ \ orall C \in \mathbb{S}^3_>.$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C = F^T F$ as

$$\hat{W}(\mathbf{x},F) = \tilde{W}(\mathbf{x},F^{\top}F), \ \ \tilde{\Sigma}(\mathbf{x},C) = 2rac{\partial \tilde{W}(\mathbf{x},C)}{\partial C}, \ \ orall C \in \mathbb{S}^3_{>}.$$

Isotropic Materials:

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{\mathcal{W}}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \; \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C = F^T F$ as

$$\hat{W}(\mathbf{x},F) = \tilde{W}(\mathbf{x},F^{\mathsf{T}}F), \ \ \tilde{\Sigma}(\mathbf{x},C) = 2 \frac{\partial \tilde{W}(\mathbf{x},C)}{\partial C}, \ \ \forall C \in \mathbb{S}^3_>.$$

Isotropic Materials:

$$\hat{W}(\mathsf{x},\mathsf{F})= ilde{W}(\mathsf{x},\mathsf{F}Q), \ \ \forall \mathsf{F}\in\mathbb{M}^3_+, \ Q\in\mathbb{O}^3_+.$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{\mathcal{W}}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C = F^T F$ as

$$\hat{W}(\mathbf{x},F) = \tilde{W}(\mathbf{x},F^{\mathsf{T}}F), \ \ \tilde{\Sigma}(\mathbf{x},C) = 2\frac{\partial \tilde{W}(\mathbf{x},C)}{\partial C}, \ \ \forall C \in \mathbb{S}^3_>.$$

Isotropic Materials:

$$\hat{W}(\mathsf{x},\mathsf{F})= ilde{W}(\mathsf{x},\mathsf{F}Q), \ \ \forall \mathsf{F}\in\mathbb{M}^3_+, \ Q\in\mathbb{O}^3_+.$$

Isotropic Materials (small deformations):

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{\mathcal{W}}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C = F^T F$ as

$$\hat{W}(\mathbf{x},F) = \tilde{W}(\mathbf{x},F^{\mathsf{T}}F), \ \ \tilde{\Sigma}(\mathbf{x},C) = 2\frac{\partial \tilde{W}(\mathbf{x},C)}{\partial C}, \ \ \forall C \in \mathbb{S}^3_>.$$

Isotropic Materials:

$$\hat{W}(\mathsf{x},\mathsf{F})= ilde{W}(\mathsf{x},\mathsf{F}Q), \ \ \forall \mathsf{F}\in\mathbb{M}^3_+, \ Q\in\mathbb{O}^3_+.$$

Isotropic Materials (small deformations):

$$ilde{W}(\mathbf{x},C)=rac{\lambda}{2}\left(ext{trace}E
ight)^2+\mu E:E+o(E^2),$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{\mathcal{W}}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \ \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

Objective Material: The $\hat{W}(\mathbf{x}, \cdot)$ is function only of Cauchy-Green Tensor $C = F^T F$ as

$$\hat{W}(\mathbf{x},F) = \tilde{W}(\mathbf{x},F^{\mathsf{T}}F), \ \ \tilde{\Sigma}(\mathbf{x},C) = 2 \frac{\partial \tilde{W}(\mathbf{x},C)}{\partial C}, \ \ \forall C \in \mathbb{S}^3_{>}.$$

Isotropic Materials:

$$\hat{W}(\mathsf{x},\mathsf{F})= ilde{W}(\mathsf{x},\mathsf{F}Q), \ \ \forall \mathsf{F}\in\mathbb{M}^3_+, \ Q\in\mathbb{O}^3_+.$$

Isotropic Materials (small deformations):

$$ilde{W}(\mathbf{x},C)=rac{\lambda}{2}\left(ext{trace}E
ight)^2+\mu E:E+o(E^2),$$

where C = I + 2E, $A : B = \sum_{ij} A_{ij}B_{ij} = \text{trace}(A^T B)$.

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{T}(\mathbf{x},\mathbf{F}) = rac{\partial \hat{W}}{\partial \mathbf{F}}(\mathbf{x},\mathbf{F}), \; \forall \mathbf{x} \in \Omega, \mathbf{F} \in \mathbb{M}^3_+.$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathsf{x},\mathsf{F}) = rac{\partial \hat{W}}{\partial \mathsf{F}}(\mathsf{x},\mathsf{F}), \; \forall \mathsf{x} \in \Omega, \mathsf{F} \in \mathbb{M}^3_+.$$

St. Venant-Kirchhoff Materials:

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathsf{x},\mathsf{F}) = rac{\partial \hat{W}}{\partial \mathsf{F}}(\mathsf{x},\mathsf{F}), \; \forall \mathsf{x} \in \Omega, \mathsf{F} \in \mathbb{M}^3_+.$$

St. Venant-Kirchhoff Materials:

$$ilde{W}({f x},F)=rac{\lambda}{2}\,({
m trace}F)^2+\mu F:F=rac{\lambda}{2}\,({
m trace}F)^2+\mu\,{
m trace}C.$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathsf{x},\mathsf{F}) = rac{\partial \hat{W}}{\partial \mathsf{F}}(\mathsf{x},\mathsf{F}), \; \forall \mathsf{x} \in \Omega, \mathsf{F} \in \mathbb{M}^3_+.$$

St. Venant-Kirchhoff Materials:

$$ilde{W}({f x},{f F})=rac{\lambda}{2}\,({
m trace}{f F})^2+\mu{f F}:{f F}=rac{\lambda}{2}\,({
m trace}{f F})^2+\mu\,{
m trace}{f C}.$$

Neo-Hookean Materials:

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathsf{x},\mathsf{F}) = rac{\partial \hat{W}}{\partial \mathsf{F}}(\mathsf{x},\mathsf{F}), \; \forall \mathsf{x} \in \Omega, \mathsf{F} \in \mathbb{M}^3_+.$$

St. Venant-Kirchhoff Materials:

$$ilde{W}({f x},{f F})=rac{\lambda}{2}\,({
m trace}{f F})^2+\mu{f F}:{f F}=rac{\lambda}{2}\,({
m trace}{f F})^2+\mu\,{
m trace}{f C}.$$

Neo-Hookean Materials:

$$ilde{W}(extbf{x}, extsf{C}) = rac{1}{2} \mu \left(extsf{trace}(extsf{C} - extsf{I})
ight) + rac{2}{eta} \left(\left(extsf{det} extsf{C}
ight)^{-eta/2} - 1
ight),$$

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{\mathcal{T}}(\mathsf{x},\mathsf{F}) = rac{\partial \hat{W}}{\partial \mathsf{F}}(\mathsf{x},\mathsf{F}), \; \forall \mathsf{x} \in \Omega, \mathsf{F} \in \mathbb{M}^3_+.$$

St. Venant-Kirchhoff Materials:

$$ilde{W}({f x},{f F})=rac{\lambda}{2}\,({
m trace}{f F})^2+\mu{f F}:{f F}=rac{\lambda}{2}\,({
m trace}{f F})^2+\mu\,{
m trace}{f C}.$$

Neo-Hookean Materials:

$$ilde{W}(\mathsf{x}, \mathcal{C}) = rac{1}{2} \mu \left(ext{trace}(\mathcal{C} - \mathcal{I})
ight) + rac{2}{eta} \left(\left(ext{det } \mathcal{C}
ight)^{-eta/2} - 1
ight),$$

where $\beta = 2\nu/1 - 2\nu$.

Assumptions: Will restrict to case of small deformations for linearized isotropic materials.

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case.

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.
Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$

The tensor product $\epsilon : \sigma = \epsilon_{ij}\sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$

The tensor product $\epsilon : \sigma = \epsilon_{ij}\sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$

The tensor product $\epsilon : \sigma = \epsilon_{ij}\sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$

The tensor product $\epsilon : \sigma = \epsilon_{ij}\sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \ \ \epsilon = \epsilon(u) = \nabla^{(s)} u.$$

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$

The tensor product $\epsilon : \sigma = \epsilon_{ij}\sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \ \ \epsilon = \epsilon(u) = \nabla^{(s)} u.$$

The stress is related by the constitutive relation

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$

The tensor product $\epsilon : \sigma = \epsilon_{ij}\sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \ \ \epsilon = \epsilon(u) = \nabla^{(s)} u.$$

The stress is related by the constitutive relation

$$\epsilon = \frac{1+\nu}{E}\sigma - \frac{\nu}{E}$$
trace $(\sigma)I$.

Paul J. Atzberger, UCSB

Finite Element Methods

The stress and strain are related by the constitutive relation

The stress and strain are related by the constitutive relation

$$\epsilon = rac{1+
u}{E}\sigma - rac{
u}{E} ext{trace}(\sigma) I.$$

The stress and strain are related by the constitutive relation

$$\epsilon = \frac{1+\nu}{E}\sigma - \frac{\nu}{E}$$
trace $(\sigma)I$.

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$.

The stress and strain are related by the constitutive relation

$$\epsilon = \frac{1+\nu}{E}\sigma - \frac{\nu}{E}$$
trace $(\sigma)I$.

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

The stress and strain are related by the constitutive relation

$$\epsilon = rac{1+
u}{E}\sigma - rac{
u}{E} ext{trace}(\sigma)I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that trace(ϵ) = $(1 - 2\nu)/E$ trace(σ), and solving for σ we have

.

The stress and strain are related by the constitutive relation

$$\epsilon = rac{1+
u}{E}\sigma - rac{
u}{E} ext{trace}(\sigma)I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that trace(ϵ) = $(1 - 2\nu)/E$ trace(σ), and solving for σ we have

.

$$\sigma = \frac{E}{1+\nu} \left(\epsilon + \frac{\nu}{1-2\nu} \mathsf{trace}(\epsilon) I \right).$$

The stress and strain are related by the constitutive relation

$$\epsilon = rac{1+
u}{E}\sigma - rac{
u}{E} ext{trace}(\sigma)I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that trace(ϵ) = $(1 - 2\nu)/E$ trace(σ), and solving for σ we have

.

$$\sigma = rac{E}{1+
u} \left(\epsilon + rac{
u}{1-2
u} \mathsf{trace}(\epsilon) I
ight).$$

We also can use that $\epsilon : I = trace(\epsilon)$ so that

The stress and strain are related by the constitutive relation

$$\epsilon = rac{1+
u}{E}\sigma - rac{
u}{E} ext{trace}(\sigma)I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that trace(ϵ) = $(1 - 2\nu)/E$ trace(σ), and solving for σ we have

.

$$\sigma = \frac{E}{1+\nu} \left(\epsilon + \frac{\nu}{1-2\nu} \operatorname{trace}(\epsilon) I \right).$$

We also can use that $\epsilon : I = trace(\epsilon)$ so that

$$\frac{1}{2}\sigma:\epsilon=\frac{1}{2}\left(\lambda\operatorname{trace}(\epsilon)I+2\mu\epsilon\right):\epsilon=\frac{\lambda}{2}\left(\operatorname{trace}(\epsilon)\right)^{2}+\mu\epsilon:\epsilon.$$

The stress and strain are related by the constitutive relation

$$\epsilon = rac{1+
u}{E}\sigma - rac{
u}{E} ext{trace}(\sigma)I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that trace(ϵ) = $(1 - 2\nu)/E$ trace(σ), and solving for σ we have

$$\sigma = \frac{E}{1+\nu} \left(\epsilon + \frac{\nu}{1-2\nu} \operatorname{trace}(\epsilon) I \right).$$

We also can use that $\epsilon : I = trace(\epsilon)$ so that

$$\frac{1}{2}\sigma:\epsilon=\frac{1}{2}\left(\lambda\operatorname{trace}(\epsilon)I+2\mu\epsilon\right):\epsilon=\frac{\lambda}{2}\left(\operatorname{trace}(\epsilon)\right)^{2}+\mu\epsilon:\epsilon.$$

This corresponds to the energy functional $\hat{W}(\mathbf{x}, \mathbf{F})$ for St. Venant-Kirchhoff materials.

The stress and strain are related by the constitutive relation

$$\epsilon = rac{1+
u}{E}\sigma - rac{
u}{E} ext{trace}(\sigma)I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that trace(ϵ) = $(1 - 2\nu)/E$ trace(σ), and solving for σ we have

$$\sigma = \frac{E}{1+\nu} \left(\epsilon + \frac{\nu}{1-2\nu} \operatorname{trace}(\epsilon) I \right).$$

We also can use that $\epsilon : I = trace(\epsilon)$ so that

$$\frac{1}{2}\sigma:\epsilon=\frac{1}{2}\left(\lambda\operatorname{trace}(\epsilon)I+2\mu\epsilon\right):\epsilon=\frac{\lambda}{2}\left(\operatorname{trace}(\epsilon)\right)^{2}+\mu\epsilon:\epsilon.$$

This corresponds to the energy functional $\hat{W}(\mathbf{x}, \mathbf{F})$ for *St. Venant-Kirchhoff materials*.. **Remark:** This leads to a mixed formulation of weak problem.

The stress and strain are related by the constitutive relation

$$\epsilon = rac{1+
u}{E}\sigma - rac{
u}{E} ext{trace}(\sigma)I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that trace(ϵ) = $(1 - 2\nu)/E$ trace(σ), and solving for σ we have

$$\sigma = \frac{E}{1+\nu} \left(\epsilon + \frac{\nu}{1-2\nu} \operatorname{trace}(\epsilon) I \right).$$

We also can use that $\epsilon : I = trace(\epsilon)$ so that

$$\frac{1}{2}\sigma:\epsilon=\frac{1}{2}\left(\lambda\operatorname{trace}(\epsilon)\boldsymbol{I}+2\mu\epsilon\right):\epsilon=\frac{\lambda}{2}\left(\operatorname{trace}(\epsilon)\right)^{2}+\mu\epsilon:\epsilon.$$

This corresponds to the energy functional $\hat{W}(\mathbf{x}, \mathbf{F})$ for *St. Venant-Kirchhoff materials*.. **Remark:** This leads to a mixed formulation of weak problem. **Formulations:** There are at least *three distinct* approaches in the literature:

The stress and strain are related by the constitutive relation

$$\epsilon = rac{1+
u}{E}\sigma - rac{
u}{E} ext{trace}(\sigma)I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that trace(ϵ) = $(1 - 2\nu)/E$ trace(σ), and solving for σ we have

$$\sigma = \frac{E}{1+\nu} \left(\epsilon + \frac{\nu}{1-2\nu} \operatorname{trace}(\epsilon) I \right).$$

We also can use that $\epsilon : I = trace(\epsilon)$ so that

$$\frac{1}{2}\sigma:\epsilon=\frac{1}{2}\left(\lambda\operatorname{trace}(\epsilon)\boldsymbol{I}+2\mu\epsilon\right):\epsilon=\frac{\lambda}{2}\left(\operatorname{trace}(\epsilon)\right)^{2}+\mu\epsilon:\epsilon.$$

This corresponds to the energy functional $\hat{W}(\mathbf{x}, \mathbf{F})$ for *St. Venant-Kirchhoff materials.*. **Remark:** This leads to a mixed formulation of weak problem.

Formulations: There are at least *three distinct* approaches in the literature:

(i) Displacement Formulation,

Paul J. Atzberger, UCSB

The stress and strain are related by the constitutive relation

$$\epsilon = rac{1+
u}{E}\sigma - rac{
u}{E} ext{trace}(\sigma)I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that trace(ϵ) = $(1 - 2\nu)/E$ trace(σ), and solving for σ we have

$$\sigma = \frac{E}{1+\nu} \left(\epsilon + \frac{\nu}{1-2\nu} \operatorname{trace}(\epsilon) I \right).$$

We also can use that $\epsilon : I = trace(\epsilon)$ so that

$$\frac{1}{2}\sigma:\epsilon=\frac{1}{2}\left(\lambda\operatorname{trace}(\epsilon)I+2\mu\epsilon\right):\epsilon=\frac{\lambda}{2}\left(\operatorname{trace}(\epsilon)\right)^{2}+\mu\epsilon:\epsilon.$$

This corresponds to the energy functional $\hat{W}(\mathbf{x}, \mathbf{F})$ for *St. Venant-Kirchhoff materials.*. **Remark:** This leads to a mixed formulation of weak problem.

Formulations: There are at least *three distinct* approaches in the literature:

(i) Displacement Formulation, (ii) Mixed Hellinger and Reissner, and

Paul J. Atzberger, UCSB

Finite Element Methods

The stress and strain are related by the constitutive relation

$$\epsilon = rac{1+
u}{E}\sigma - rac{
u}{E} ext{trace}(\sigma)I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that trace(ϵ) = $(1 - 2\nu)/E$ trace(σ), and solving for σ we have

$$\sigma = \frac{E}{1+\nu} \left(\epsilon + \frac{\nu}{1-2\nu} \operatorname{trace}(\epsilon) I \right).$$

We also can use that $\epsilon : I = trace(\epsilon)$ so that

$$\frac{1}{2}\sigma:\epsilon=\frac{1}{2}\left(\lambda\operatorname{trace}(\epsilon)\boldsymbol{I}+2\mu\epsilon\right):\epsilon=\frac{\lambda}{2}\left(\operatorname{trace}(\epsilon)\right)^{2}+\mu\epsilon:\epsilon.$$

This corresponds to the energy functional $\hat{W}(\mathbf{x}, \mathbf{F})$ for *St. Venant-Kirchhoff materials.*. **Remark:** This leads to a mixed formulation of weak problem.

Formulations: There are at least *three distinct* approaches in the literature:

(i) Displacement Formulation, (ii) Mixed Hellinger and Reissner, and (iii) Mixed Hu and Washizu.

Paul J. Atzberger, UCSB

Finite Element Methods

Variational Principle for Displacement Formulation

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

This is obtained by eliminating σ using $\sigma=\mathcal{C}\epsilon$, where

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

This is obtained by eliminating σ using $\sigma=\mathcal{C}\epsilon$, where

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{23} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & \nu & & \\ \nu & 1-\nu & \nu & & 0 & \\ \nu & \nu & 1-\nu & & & \\ & & 1-2\nu & & \\ & & 0 & & 1-2\nu & \\ & & & 1-2\nu & & \\ & & & & 1-2\nu \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \epsilon_{12} \\ \epsilon_{13} \\ \epsilon_{23} \end{bmatrix}$$

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

This is obtained by eliminating σ using $\sigma=\mathcal{C}\epsilon$, where

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{23} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & \nu \\ \nu & 1-\nu & \nu & 0 \\ \nu & \nu & 1-\nu & & \\ & & 1-2\nu \\ & & 0 & 1-2\nu \\ & & & 1-2\nu \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \epsilon_{12} \\ \epsilon_{13} \\ \epsilon_{23} \end{bmatrix}$$

The variational principle above is obtained from this with notation $\epsilon = \nabla^{(s)} v$, $\lambda = 0$, and

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

This is obtained by eliminating σ using $\sigma=\mathcal{C}\epsilon$, where

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{23} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & \nu \\ \nu & 1-\nu & \nu & 0 \\ \nu & \nu & 1-\nu & & \\ & & 1-2\nu & & \\ & & 0 & & 1-2\nu \\ & & & 0 & & 1-2\nu \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \epsilon_{12} \\ \epsilon_{13} \\ \epsilon_{23} \end{bmatrix}$$

The variational principle above is obtained from this with notation $\epsilon =
abla^{(s)} v$, $\lambda = 0$, and

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \nabla^{(s)} v : \mathcal{C} \nabla^{(s)} v - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}}.$$

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$\mathcal{H}^1_{\Gamma}:=\{v\in \mathcal{H}^1(\Omega)^3: v(x)=0, orall x\in \Gamma_0\}$$

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$H^1_\Gamma := \{ v \in H^1(\Omega)^3 : v(x) = 0, orall x \in \Gamma_0 \}$$

Weak Formulation:

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$H^1_{\Gamma}:=\{v\in H^1(\Omega)^3: v(x)=0, \forall x\in \Gamma_0\}$$

Weak Formulation:

$$\int_{\Omega} \nabla^{(s)} u : \mathcal{C} \nabla^{(s)} v dV_{\mathsf{x}} = (f, v)_0 - \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}}, \ \forall v \in H^1_{\Gamma}.$$

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$H^1_{\Gamma}:=\{v\in H^1(\Omega)^3: v(x)=0, \forall x\in \Gamma_0\}$$

Weak Formulation:

$$\int_{\Omega} \nabla^{(s)} u : \mathcal{C} \nabla^{(s)} v dV_{x} = (f, v)_{0} - \int_{\Gamma_{1}} g \cdot v \, dA_{x}, \quad \forall v \in H^{1}_{\Gamma}.$$

By introducing L^2 inner-product notation, we can express as

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$H^1_{\Gamma}:=\{v\in H^1(\Omega)^3: v(x)=0, \forall x\in \Gamma_0\}$$

Weak Formulation:

$$\int_{\Omega} \nabla^{(s)} u : \mathcal{C} \nabla^{(s)} v dV_x = (f, v)_0 - \int_{\Gamma_1} g \cdot v \, dA_x, \quad \forall v \in H^1_{\Gamma}.$$

By introducing L^2 inner-product notation, we can express as

$$(\nabla^{(s)}u,\mathcal{C}\nabla^{(s)}v)_0=(f,v)_0-(g,v)_{\Gamma,0}, \ \forall v\in H^1_{\Gamma}.$$

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$H^1_\Gamma := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \}$$

Weak Formulation:

$$\int_{\Omega} \nabla^{(s)} u : \mathcal{C} \nabla^{(s)} v dV_x = (f, v)_0 - \int_{\Gamma_1} g \cdot v \, dA_x, \quad \forall v \in H^1_{\Gamma}.$$

By introducing L^2 inner-product notation, we can express as

$$(
abla^{(s)}u,\mathcal{C}
abla^{(s)}v)_0=(f,v)_0-(g,v)_{\Gamma,0}, \hspace{0.2cm} orall v\in H^1_{\Gamma}.$$

St. Venant-Kirchhoff Materials: The weak formulation (general λ) is
Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \epsilon[v] : \sigma[v] + \frac{\lambda}{2} \left(\operatorname{div}(v) \right)^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$H^1_{\Gamma}:=\{v\in H^1(\Omega)^3: v(x)=0, \forall x\in \Gamma_0\}$$

Weak Formulation:

$$\int_{\Omega} \nabla^{(s)} u : \mathcal{C} \nabla^{(s)} v dV_x = (f, v)_0 - \int_{\Gamma_1} g \cdot v \, dA_x, \quad \forall v \in H^1_{\Gamma}.$$

By introducing L^2 inner-product notation, we can express as

$$(
abla^{(s)}u,\mathcal{C}
abla^{(s)}v)_0=(f,v)_0-(g,v)_{\Gamma,0}, \ \forall v\in H^1_{\Gamma}.$$

St. Venant-Kirchhoff Materials: The weak formulation (general λ) is

$$2\mu(\nabla^{(s)}u,\nabla^{(s)}v)_0+\lambda(\operatorname{div} u,\operatorname{div} v)_0=(f,v)_0-(g,v)_{\Gamma,0}, \ \forall v\in H^1_{\Gamma}.$$

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\mu \, \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} \, (\operatorname{div}(v))^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\mu \, \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} \, (\operatorname{div}(v))^2 - f \cdot v \right) \, dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\mu \, \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} \, (\operatorname{div}(v))^2 - f \cdot v \right) \, dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$\mathcal{H}^1_\Gamma := \{ v \in \mathcal{H}^1(\Omega)^3 : v(x) = 0, orall x \in \Gamma_0 \}$$

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\mu \, \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} \, (\operatorname{div}(v))^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$H^1_\Gamma := \{ v \in H^1(\Omega)^3 : v(x) = 0, orall x \in \Gamma_0 \}$$

Weak Formulation:

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\mu \, \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} \, (\operatorname{div}(v))^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$H^1_\Gamma := \{ v \in H^1(\Omega)^3 : v(x) = 0, orall x \in \Gamma_0 \}$$

Weak Formulation:

St. Venant-Kirchhoff Materials: The weak formulation specializes to

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\mu \, \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} \, (\operatorname{div}(v))^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$H^1_\Gamma := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \}$$

Weak Formulation:

St. Venant-Kirchhoff Materials: The weak formulation specializes to

 $2\mu(\nabla^{(s)}u,\nabla^{(s)}v)_0+\lambda(\operatorname{div} u,\operatorname{div} v)_0=(f,v)_0-(g,v)_{\Gamma,0}, \ \forall v\in H^1_\Gamma.$

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\mu \, \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} \, (\operatorname{div}(v))^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$H^1_\Gamma := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \}$$

Weak Formulation:

St. Venant-Kirchhoff Materials: The weak formulation specializes to

 $2\mu(\nabla^{(s)}u,\nabla^{(s)}v)_0+\lambda(\operatorname{div} u,\operatorname{div} v)_0=(f,v)_0-(g,v)_{\Gamma,0}, \ \forall v\in H^1_\Gamma.$

Strong Form Elliptic PDEs: For the St. Venant-Kirchhoff we have

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\mu \, \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} \, (\operatorname{div}(v))^2 - f \cdot v \right) dV_{\mathsf{x}} + \int_{\Gamma_1} g \cdot v \, dA_{\mathsf{x}} \to \min$$

The minimization is performed on the space

$$H^1_\Gamma:=\{v\in H^1(\Omega)^3: v(x)=0, orall x\in \Gamma_0\}$$

Weak Formulation:

St. Venant-Kirchhoff Materials: The weak formulation specializes to

$$2\mu(
abla^{(s)}u,
abla^{(s)}
u)_0+\lambda(\operatorname{div} u,\operatorname{div}
u)_0=(f,v)_0-(g,v)_{\Gamma,0}, \ \ orall v\in H^1_\Gamma.$$

Strong Form Elliptic PDEs: For the St. Venant-Kirchhoff we have

$$\begin{aligned} -2\mu \operatorname{div} \epsilon(u) - \lambda \operatorname{grad} \operatorname{div} u &= f, \quad x \in \Omega, \\ u &= 0, \quad x \in \Gamma_0, \\ \sigma(u) \cdot n &= g \quad x \in \Gamma_1. \end{aligned}$$

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$\begin{split} \left(\mathcal{C}^{-1} \sigma - \nabla^{(s)} u, \tau \right)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)} v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega). \end{split}$$

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$\begin{split} \left(\mathcal{C}^{-1} \sigma - \nabla^{(s)} u, \tau \right)_0 &= 0, \qquad \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)} v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, \quad \forall v \in H^1_{\Gamma}(\Omega). \end{split}$$

This is related to the Displacement Formulation by using solution u to define $\sigma := C\nabla^{(s)} u \in L_2$.

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$\begin{split} \left(\mathcal{C}^{-1} \sigma - \nabla^{(s)} u, \tau \right)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)} v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega). \end{split}$$

This is related to the Displacement Formulation by using solution u to define $\sigma := C\nabla^{(s)}u \in L_2$. Strong Form Elliptic PDEs:

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$\begin{aligned} \left(\mathcal{C}^{-1}\sigma - \nabla^{(s)}u, \tau\right)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)}v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega). \end{aligned}$$

This is related to the Displacement Formulation by using solution u to define $\sigma := C\nabla^{(s)} u \in L_2$. Strong Form Elliptic PDEs:

$$\begin{array}{ll} \operatorname{div} \sigma &= -f, & x \in \Omega, \\ \sigma &= \mathcal{C} \nabla^{(s)} u, & x \in \Omega, \\ u &= 0, & x \in \Gamma_0, \\ \sigma \cdot n &= g, & x \in \Gamma_1. \end{array}$$

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$\begin{aligned} \left(\mathcal{C}^{-1}\sigma - \nabla^{(s)}u, \tau\right)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)}v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega). \end{aligned}$$

This is related to the Displacement Formulation by using solution u to define $\sigma := C\nabla^{(s)} u \in L_2$. Strong Form Elliptic PDEs:

$$\begin{array}{ll} \operatorname{div} \sigma &= -f, & x \in \Omega, \\ \sigma &= \mathcal{C} \nabla^{(s)} u, & x \in \Omega, \\ u &= 0, & x \in \Gamma_0, \\ \sigma \cdot n &= g, & x \in \Gamma_1. \end{array}$$

Weak Formulation II:

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$\begin{aligned} \left(\mathcal{C}^{-1}\sigma - \nabla^{(s)}u, \tau\right)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)}v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega). \end{aligned}$$

This is related to the Displacement Formulation by using solution u to define $\sigma := C\nabla^{(s)}u \in L_2$. Strong Form Elliptic PDEs:

$$\begin{aligned} &\operatorname{div} \sigma &= -f, & x \in \Omega, \\ & \sigma &= \mathcal{C} \nabla^{(s)} u, & x \in \Omega, \\ & u &= 0, & x \in \Gamma_0, \\ & \sigma \cdot n &= g, & x \in \Gamma_1. \end{aligned}$$

Weak Formulation II: We find it helpful later to organize the weak problem as

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$\begin{aligned} \left(\mathcal{C}^{-1}\sigma - \nabla^{(s)}u, \tau\right)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)}v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega). \end{aligned}$$

This is related to the Displacement Formulation by using solution u to define $\sigma := C\nabla^{(s)}u \in L_2$. Strong Form Elliptic PDEs:

$$\begin{array}{ll} \operatorname{div} \sigma &= -f, & x \in \Omega, \\ \sigma &= \mathcal{C} \nabla^{(s)} u, & x \in \Omega, \\ u &= 0, & x \in \Gamma_0, \\ \sigma \cdot n &= g, & x \in \Gamma_1. \end{array}$$

Weak Formulation II: We find it helpful later to organize the weak problem as

$$\begin{aligned} X &= L_2(\Omega), \quad M = H^1_{\Gamma}(\Omega) \\ a(\sigma,\tau) &= (\mathcal{C}^{-1}\sigma,\tau)_0, \quad b(\tau,\nu) = -(\tau,\nabla^{(s)}\nu)_0. \end{aligned}$$

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$\begin{aligned} \left(\mathcal{C}^{-1}\sigma - \nabla^{(s)}u, \tau\right)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)}v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega). \end{aligned}$$

This is related to the Displacement Formulation by using solution u to define $\sigma := C\nabla^{(s)} u \in L_2$. Strong Form Elliptic PDEs:

$$\begin{aligned} &\operatorname{div} \sigma &= -f, & x \in \Omega, \\ & \sigma &= \mathcal{C} \nabla^{(s)} u, & x \in \Omega, \\ & u &= 0, & x \in \Gamma_0, \\ & \sigma \cdot n &= g, & x \in \Gamma_1. \end{aligned}$$

Weak Formulation II: We find it helpful later to organize the weak problem as

$$\begin{aligned} X &= L_2(\Omega), \quad M = H^1_{\Gamma}(\Omega) \\ a(\sigma,\tau) &= (\mathcal{C}^{-1}\sigma,\tau)_0, \quad b(\tau,\nu) = -(\tau,\nabla^{(s)}\nu)_0. \end{aligned}$$

As mixed method on spaces (X, M), we consider as

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$\begin{aligned} \left(\mathcal{C}^{-1}\sigma - \nabla^{(s)}u, \tau\right)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)}v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega). \end{aligned}$$

This is related to the Displacement Formulation by using solution u to define $\sigma := C\nabla^{(s)}u \in L_2$. Strong Form Elliptic PDEs:

$$\begin{aligned} &\operatorname{div} \sigma &= -f, & x \in \Omega, \\ & \sigma &= \mathcal{C} \nabla^{(s)} u, & x \in \Omega, \\ & u &= 0, & x \in \Gamma_0, \\ & \sigma \cdot n &= g, & x \in \Gamma_1. \end{aligned}$$

Weak Formulation II: We find it helpful later to organize the weak problem as

$$\begin{aligned} X &= L_2(\Omega), \quad M = H^1_{\Gamma}(\Omega) \\ a(\sigma,\tau) &= (\mathcal{C}^{-1}\sigma,\tau)_0, \quad b(\tau,\nu) = -(\tau,\nabla^{(s)}\nu)_0. \end{aligned}$$

As mixed method on spaces (X, M), we consider as

$$X = H(\operatorname{div}, \Omega), \quad M = L_2(\Omega)$$
$$a(\sigma, \tau) = (\mathcal{C}^{-1}\sigma, \tau)_0, \quad b(\tau, \nu) = (\operatorname{div} \sigma, \nu)_0.$$

Paul J. Atzberger, UCSB

$$\begin{array}{lll} (\mathcal{C}\epsilon - \sigma, \eta)_0 &= 0, & \forall \eta \in L_2(\Omega), \\ (\epsilon - \nabla^{(s)} u, \tau)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)} v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega) \end{array}$$

$$\begin{array}{lll} (\mathcal{C}\epsilon - \sigma, \eta)_0 &= 0, & \forall \eta \in L_2(\Omega), \\ (\epsilon - \nabla^{(s)} u, \tau)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)} v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega). \end{array}$$

Numerically, tends to yield more reliable calculations for stresses since they are represented directly.

$$\begin{array}{lll} (\mathcal{C}\epsilon - \sigma, \eta)_0 &= 0, & \forall \eta \in L_2(\Omega), \\ (\epsilon - \nabla^{(s)} u, \tau)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)} v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega). \end{array}$$

Numerically, tends to yield more reliable calculations for stresses since they are represented directly. Weak Formulation II:

$$\begin{array}{lll} (\mathcal{C}\epsilon - \sigma, \eta)_0 &= 0, & \forall \eta \in L_2(\Omega), \\ (\epsilon - \nabla^{(s)} u, \tau)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)} v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega). \end{array}$$

Numerically, tends to yield more reliable calculations for stresses since they are represented directly. **Weak Formulation II:** We find it helpful later to organize the weak problem as

$$\begin{array}{lll} (\mathcal{C}\epsilon - \sigma, \eta)_0 &= 0, & \forall \eta \in L_2(\Omega), \\ (\epsilon - \nabla^{(s)} u, \tau)_0 &= 0, & \forall \tau \in L_2(\Omega), \\ -(\sigma, \nabla^{(s)} v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_{\Gamma}(\Omega). \end{array}$$

Numerically, tends to yield more reliable calculations for stresses since they are represented directly. **Weak Formulation II:** We find it helpful later to organize the weak problem as

$$\mathsf{a}((\epsilon,\sigma,\mathsf{v}),(au,\eta,\xi))=-(\sigma,
abla^{(s)} au)_0, \ \ \mathsf{b}((\epsilon,\sigma,\mathsf{v}),(au,\eta,\xi))=(\epsilon-
abla^{(s)} au, au)_0+(\mathcal{C}\epsilon-\sigma,\eta)_0.$$

Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary,

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \epsilon(\boldsymbol{v}) : \epsilon(\boldsymbol{v}) d\boldsymbol{x} + \|\boldsymbol{v}\|_0^2 \geq \boldsymbol{c} \|\boldsymbol{v}\|_1^2, \ \, \forall \boldsymbol{v} \in H^1(\Omega)^d.$$

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \epsilon(v) : \epsilon(v) dx + \|v\|_0^2 \geq c \|v\|_1^2, \;\; orall v \in H^1(\Omega)^d.$$

Korn's Second Inequality

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \epsilon(v): \epsilon(v) dx + \|v\|_0^2 \geq c \|v\|_1^2, \;\; orall v \in H^1(\Omega)^d.$$

Korn's Second Inequality

For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \epsilon(\mathbf{v}) : \epsilon(\mathbf{v}) d\mathbf{x} + \|\mathbf{v}\|_0^2 \geq c \|\mathbf{v}\|_1^2, \;\; orall \mathbf{v} \in H^1(\Omega)^d.$$

Korn's Second Inequality

For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary and $\Gamma_0 \subset \partial \Omega$ have positive two-dimensional measure.

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \epsilon(\mathbf{v}): \epsilon(\mathbf{v}) d\mathbf{x} + \|\mathbf{v}\|_0^2 \geq c \|\mathbf{v}\|_1^2, \;\; orall \mathbf{v} \in H^1(\Omega)^d.$$

Korn's Second Inequality

For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary and $\Gamma_0 \subset \partial \Omega$ have positive two-dimensional measure. Then there exists a positive number $c' = c'(\Omega, \Gamma_0)$ so that

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \epsilon(v) : \epsilon(v) dx + \|v\|_0^2 \geq c \|v\|_1^2, \ \, \forall v \in H^1(\Omega)^d.$$

Korn's Second Inequality

For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary and $\Gamma_0 \subset \partial \Omega$ have positive two-dimensional measure. Then there exists a positive number $c' = c'(\Omega, \Gamma_0)$ so that

$$\int_{\Omega} \epsilon(\mathbf{v}) : \epsilon(\mathbf{v}) d\mathbf{x} \geq c' \|\mathbf{v}\|_1^1, \;\; orall \mathbf{v} \in H^1_{\Gamma}(\Omega).$$
Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \epsilon(\mathbf{v}) : \epsilon(\mathbf{v}) d\mathbf{x} + \|\mathbf{v}\|_0^2 \geq c \|\mathbf{v}\|_1^2, \;\; orall \mathbf{v} \in H^1(\Omega)^d.$$

Korn's Second Inequality

For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary and $\Gamma_0 \subset \partial \Omega$ have positive two-dimensional measure. Then there exists a positive number $c' = c'(\Omega, \Gamma_0)$ so that

$$\int_{\Omega} \epsilon({m v}): \epsilon({m v}) d{m x} \geq c' \|{m v}\|_1^1, \;\; orall {m v} \in {m H}^1_{\sf F}(\Omega).$$

Here, $H^1_{\Gamma}(\Omega)$ is the closure of $\{v \in C^{\infty} : v(x) = 0, \forall x \in \Gamma_0\}$ with respect to norm $\|\cdot\|_1$.

Korn's First Inequality

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \epsilon(v) : \epsilon(v) dx + \|v\|_0^2 \geq c \|v\|_1^2, \ \ orall v \in H^1(\Omega)^d.$$

Korn's Second Inequality

For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary and $\Gamma_0 \subset \partial \Omega$ have positive two-dimensional measure. Then there exists a positive number $c' = c'(\Omega, \Gamma_0)$ so that

$$\int_{\Omega} \epsilon(v) : \epsilon(v) dx \geq c' \|v\|_1^1, \;\; orall v \in H^1_{ extsf{F}}(\Omega).$$

Here, $H^1_{\Gamma}(\Omega)$ is the closure of $\{v \in C^{\infty} : v(x) = 0, \forall x \in \Gamma_0\}$ with respect to norm $\|\cdot\|_1$.

Useful in establishing variational problems are elliptic and for coercivity.

Paul J. Atzberger, UCSB

Displacement Formulation

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure.

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem.

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities.

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities.

The Lax-Milgram Theorem then gives the well-posedness of the variational problem.

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities.

The Lax-Milgram Theorem then gives the well-posedness of the variational problem.

There are results establishing conditions for well-posedness for the other formulations.

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities.

The Lax-Milgram Theorem then gives the well-posedness of the variational problem.

There are results establishing conditions for well-posedness for the other formulations. These typically involve analysis establishing the Babuska-Brezzi inf-sup conditions hold (discussed with mixed method theory).

Mixed methods can have trouble approximating responses in some regimes of material properties.

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

 $\lambda \gg \mu$.

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

 $\lambda \gg \mu$.

In the displacement formulation on $v \in H^1_{\Gamma}$, we have

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

 $\lambda \gg \mu$.

In the displacement formulation on $v \in H^1_{\Gamma}$, we have

 $\mathsf{a}(u,v) := \lambda(\operatorname{div} u, \operatorname{div} v)_0 + 2\mu(\epsilon(u), \epsilon(v))_0, \quad \to \quad \alpha \|v\|_1^2 \leq \mathsf{a}(v,v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \text{ and } C \geq \lambda + 2\mu.$

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

 $\lambda \gg \mu$.

In the displacement formulation on $v \in H^1_{\Gamma}$, we have

 $\mathsf{a}(u,v) := \lambda(\operatorname{div} u, \operatorname{div} v)_0 + 2\mu(\epsilon(u), \epsilon(v))_0, \quad \to \quad \alpha \|v\|_1^2 \leq \mathsf{a}(v,v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \text{ and } C \geq \lambda + 2\mu.$

Recall, in Céa's Lemma we obtained bound with C/α which suggests large pre-factors in incompressible limit.

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

 $\lambda \gg \mu$.

In the displacement formulation on $v \in H^1_{\Gamma}$, we have

 $\mathsf{a}(u,v) := \lambda(\operatorname{div} u, \operatorname{div} v)_0 + 2\mu(\epsilon(u), \epsilon(v))_0, \quad \rightarrow \quad \alpha \|v\|_1^2 \leq \mathsf{a}(v,v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \text{ and } C \geq \lambda + 2\mu.$

Recall, in Céa's Lemma we obtained bound with C/α which suggests large pre-factors in incompressible limit. In practice, results in errors in the solution much larger than the approximation error of the finite element space.

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

 $\lambda \gg \mu$.

In the displacement formulation on $v \in H^1_{\Gamma}$, we have

 $\mathsf{a}(u,v) := \lambda(\operatorname{div} u, \operatorname{div} v)_0 + 2\mu(\epsilon(u), \epsilon(v))_0, \quad \rightarrow \quad \alpha \|v\|_1^2 \leq \mathsf{a}(v,v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \text{ and } C \geq \lambda + 2\mu.$

Recall, in Céa's Lemma we obtained bound with C/α which suggests large pre-factors in incompressible limit. In practice, results in errors in the solution much larger than the approximation error of the finite element space. Manifests typically with displacements much smaller than expected, referred to as **locking effects**.

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

 $\lambda \gg \mu$.

In the displacement formulation on $v \in H^1_{\Gamma}$, we have

 $\mathsf{a}(u,v) := \lambda(\operatorname{div} u, \operatorname{div} v)_0 + 2\mu(\epsilon(u), \epsilon(v))_0, \quad \rightarrow \quad \alpha \|v\|_1^2 \leq \mathsf{a}(v,v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \text{ and } C \geq \lambda + 2\mu.$

Recall, in Céa's Lemma we obtained bound with C/α which suggests large pre-factors in incompressible limit. In practice, results in errors in the solution much larger than the approximation error of the finite element space. Manifests typically with displacements much smaller than expected, referred to as **locking effects**. In the nearly incompressible regime, referred to as **volume locking** or **Poisson locking**.

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

 $\lambda \gg \mu$.

In the displacement formulation on $v \in H^1_{\Gamma}$, we have

 $\mathsf{a}(u,v) := \lambda(\operatorname{div} u, \operatorname{div} v)_0 + 2\mu(\epsilon(u), \epsilon(v))_0, \quad \to \quad \alpha \|v\|_1^2 \leq \mathsf{a}(v,v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \text{ and } C \geq \lambda + 2\mu.$

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

 $\lambda \gg \mu$.

In the displacement formulation on $v \in H^1_{\Gamma}$, we have

 $\mathsf{a}(u,v) := \lambda(\operatorname{div} u, \operatorname{div} v)_0 + 2\mu(\epsilon(u), \epsilon(v))_0, \quad \to \quad \alpha \|v\|_1^2 \leq \mathsf{a}(v,v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \text{ and } C \geq \lambda + 2\mu.$

Remedy: One approach is to reformulate as a mixed method to obtain saddle-point problem. Let $p := \lambda \operatorname{div} u$,

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

 $\lambda \gg \mu$.

In the displacement formulation on $v \in H^1_{\Gamma}$, we have

 $\mathsf{a}(u,v):=\lambda(\operatorname{div} u,\operatorname{div} v)_0+2\mu(\epsilon(u),\epsilon(v))_0, \quad \to \quad \alpha\|v\|_1^2\leq \mathsf{a}(v,v)\leq C\|v\|_1^2, \quad \text{with} \quad \alpha\leq\mu \text{ and } C\geq\lambda+2\mu.$

Remedy: One approach is to reformulate as a mixed method to obtain saddle-point problem. Let $p := \lambda \operatorname{div} u$,

$$\begin{array}{ll} 2\mu(\epsilon(u),\epsilon(v))_0 + (\operatorname{div} u,p)_0 &= \langle \ell,v\rangle, & \forall v \in H^1_\Gamma(\Omega), \\ (\operatorname{div} u,q)_0 - \lambda^{-1}(p,q)_0 &= 0, & \forall q \in L_2(\Omega). \end{array}$$

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

 $\lambda \gg \mu$.

In the displacement formulation on $v \in H^1_{\Gamma}$, we have

 $\mathsf{a}(u,v) := \lambda(\operatorname{div} u, \operatorname{div} v)_0 + 2\mu(\epsilon(u), \epsilon(v))_0, \quad \to \quad \alpha \|v\|_1^2 \leq \mathsf{a}(v,v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \text{ and } C \geq \lambda + 2\mu.$

Remedy: One approach is to reformulate as a mixed method to obtain saddle-point problem. Let $p := \lambda \operatorname{div} u$,

$$\begin{array}{ll} 2\mu(\epsilon(u),\epsilon(v))_0 + (\operatorname{div} u,p)_0 &= \langle \ell,v\rangle, & \forall v \in H^1_\Gamma(\Omega), \\ (\operatorname{div} u,q)_0 - \lambda^{-1}(p,q)_0 &= 0, & \forall q \in L_2(\Omega). \end{array}$$

Can be shown this gives a stable problem and well-defined in the limit $\lambda \to \infty$.

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

 $\lambda \gg \mu$.

In the displacement formulation on $v \in H^1_{\Gamma}$, we have

 $\mathsf{a}(u,v):=\lambda(\operatorname{div} u,\operatorname{div} v)_0+2\mu(\epsilon(u),\epsilon(v))_0, \quad \to \quad \alpha\|v\|_1^2\leq \mathsf{a}(v,v)\leq C\|v\|_1^2, \quad \text{with} \quad \alpha\leq\mu \text{ and } C\geq\lambda+2\mu.$

Remedy: One approach is to reformulate as a mixed method to obtain saddle-point problem. Let $p := \lambda \operatorname{div} u$,

$$\begin{array}{ll} 2\mu(\epsilon(u),\epsilon(v))_0 + (\operatorname{div} u,p)_0 &= \langle \ell,v\rangle, & \forall v \in H^1_\Gamma(\Omega), \\ (\operatorname{div} u,q)_0 - \lambda^{-1}(p,q)_0 &= 0, & \forall q \in L_2(\Omega). \end{array}$$

Can be shown this gives a stable problem and well-defined in the limit $\lambda \to \infty$.

Discretization: Need to choose appropriate finite element spaces for mixed methods (upcoming lectures).