FEM Approximation Properties and Convergence

Paul J. Atzberger
206D: Finite Element Methods
University of California Santa Barbara

Approximation by Finite Elements

Definition

Approximation by Finite Elements

Definition

For a partition $\mathcal{T}_{h}=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, define the mesh-dependent m-norm for $m \geq 1$ as

Approximation by Finite Elements

Definition

For a partition $\mathcal{T}_{h}=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, define the mesh-dependent m-norm for $m \geq 1$ as

$$
\|v\|_{m, h}:=\sqrt{\sum_{T_{j} \in \mathcal{T}_{h}}\|v\|_{m, T_{j}}} .
$$

Approximation by Finite Elements

Definition

For a partition $\mathcal{T}_{h}=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, define the mesh-dependent m-norm for $m \geq 1$ as

$$
\|v\|_{m, h}:=\sqrt{\sum_{T_{j} \in \mathcal{T}_{h}}\|v\|_{m, T_{j}}} .
$$

Technically, this might not always be a proper norm but is useful for analysis.

Approximation by Finite Elements

Definition

For a partition $\mathcal{T}_{h}=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, define the mesh-dependent m-norm for $m \geq 1$ as

$$
\|v\|_{m, h}:=\sqrt{\sum_{T_{j} \in \mathcal{T}_{h}}\|v\|_{m, T_{j}}} .
$$

Technically, this might not always be a proper norm but is useful for analysis.
For each $v \in H^{m}(\Omega)$ we have $\|v\|_{m, h}=\|v\|_{m}$.

Approximation by Finite Elements

Definition

For a partition $\mathcal{T}_{h}=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, define the mesh-dependent m-norm for $m \geq 1$ as

$$
\|v\|_{m, h}:=\sqrt{\sum_{T_{j} \in \mathcal{T}_{h}}\|v\|_{m, T_{j}}} .
$$

Technically, this might not always be a proper norm but is useful for analysis.
For each $v \in H^{m}(\Omega)$ we have $\|v\|_{m, h}=\|v\|_{m}$.
For 1D, $m \geq 2$ by the Sobolev Embedding Theorem $H^{m}(\Omega) \subset C^{0}(\Omega)$, where v has a continuous representative.

Approximation by Finite Elements

Definition

For a partition $\mathcal{T}_{h}=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, define the mesh-dependent m-norm for $m \geq 1$ as

$$
\|v\|_{m, h}:=\sqrt{\sum_{T_{j} \in \mathcal{T}_{h}}\|v\|_{m, T_{j}}} .
$$

Technically, this might not always be a proper norm but is useful for analysis.
For each $v \in H^{m}(\Omega)$ we have $\|v\|_{m, h}=\|v\|_{m}$.
For 1D, $m \geq 2$ by the Sobolev Embedding Theorem $H^{m}(\Omega) \subset C^{0}(\Omega)$, where v has a continuous representative. Denote by $\mathcal{S}_{h}=\mathcal{S}\left(\mathcal{T}_{h}\right)$ the space generated by \mathcal{T}_{h}.

Approximation by Finite Elements

Definition

For a partition $\mathcal{T}_{h}=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, define the mesh-dependent m-norm for $m \geq 1$ as

$$
\|v\|_{m, h}:=\sqrt{\sum_{T_{j} \in \mathcal{T}_{h}}\|v\|_{m, T_{j}}}
$$

Technically, this might not always be a proper norm but is useful for analysis.
For each $v \in H^{m}(\Omega)$ we have $\|v\|_{m, h}=\|v\|_{m}$.
For 1D, $m \geq 2$ by the Sobolev Embedding Theorem $H^{m}(\Omega) \subset C^{0}(\Omega)$, where v has a continuous representative. Denote by $\mathcal{S}_{h}=\mathcal{S}\left(\mathcal{T}_{h}\right)$ the space generated by \mathcal{T}_{h}.

Definition

Approximation by Finite Elements

Definition

For a partition $\mathcal{T}_{h}=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, define the mesh-dependent m-norm for $m \geq 1$ as

$$
\|v\|_{m, h}:=\sqrt{\sum_{T_{j} \in \mathcal{T}_{h}}\|v\|_{m, T_{j}}} .
$$

Technically, this might not always be a proper norm but is useful for analysis.
For each $v \in H^{m}(\Omega)$ we have $\|v\|_{m, h}=\|v\|_{m}$.
For 1D, $m \geq 2$ by the Sobolev Embedding Theorem $H^{m}(\Omega) \subset C^{0}(\Omega)$, where v has a continuous representative.
Denote by $\mathcal{S}_{h}=\mathcal{S}\left(\mathcal{T}_{h}\right)$ the space generated by \mathcal{T}_{h}.

Definition

The interpolation associated with elements of \mathcal{S}_{h} having nodal variables $N_{i}[v]$ is the mapping

Approximation by Finite Elements

Definition

For a partition $\mathcal{T}_{h}=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, define the mesh-dependent m-norm for $m \geq 1$ as

$$
\|v\|_{m, h}:=\sqrt{\sum_{T_{j} \in \mathcal{T}_{h}}\|v\|_{m, T_{j}}}
$$

Technically, this might not always be a proper norm but is useful for analysis.
For each $v \in H^{m}(\Omega)$ we have $\|v\|_{m, h}=\|v\|_{m}$.
For 1D, $m \geq 2$ by the Sobolev Embedding Theorem $H^{m}(\Omega) \subset C^{0}(\Omega)$, where v has a continuous representative.
Denote by $\mathcal{S}_{h}=\mathcal{S}\left(\mathcal{T}_{h}\right)$ the space generated by \mathcal{T}_{h}.

Definition

The interpolation associated with elements of \mathcal{S}_{h} having nodal variables $N_{i}[v]$ is the mapping

$$
\mathcal{I}_{h}: H^{m}(\Omega) \rightarrow \mathcal{S}_{h}, \text { so that }\left.w\right|_{T_{j}}=\left[\mathcal{I}_{h} v\right]_{T_{j}} \text { satisfies } N_{i}[w]=N_{i}[v]
$$

Approximation by Finite Elements

Definition

For a partition $\mathcal{T}_{h}=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, define the mesh-dependent m-norm for $m \geq 1$ as

$$
\|v\|_{m, h}:=\sqrt{\sum_{T_{j} \in \mathcal{T}_{h}}\|v\|_{m, T_{j}}}
$$

Technically, this might not always be a proper norm but is useful for analysis.
For each $v \in H^{m}(\Omega)$ we have $\|v\|_{m, h}=\|v\|_{m}$.
For 1D, $m \geq 2$ by the Sobolev Embedding Theorem $H^{m}(\Omega) \subset C^{0}(\Omega)$, where v has a continuous representative. Denote by $\mathcal{S}_{h}=\mathcal{S}\left(\mathcal{T}_{h}\right)$ the space generated by \mathcal{T}_{h}.

Definition

The interpolation associated with elements of \mathcal{S}_{h} having nodal variables $N_{i}[v]$ is the mapping

$$
\mathcal{I}_{h}: H^{m}(\Omega) \rightarrow \mathcal{S}_{h}, \text { so that }\left.w\right|_{T_{j}}=\left[\mathcal{I}_{h} v\right]_{T_{j}} \text { satisfies } N_{i}[w]=N_{i}[v] .
$$

When $N_{i}[v]=v\left(\mathbf{x}_{i}\right)$ and $\mathcal{P}=\mathcal{P}_{t}$ this is piecewise polynomial interpolation of the nodal values.

Approximation by Finite Elements

Definition

For a partition $\mathcal{T}_{h}=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, define the mesh-dependent m-norm for $m \geq 1$ as

$$
\|v\|_{m, h}:=\sqrt{\sum_{T_{j} \in \mathcal{T}_{h}}\|v\|_{m, T_{j}}}
$$

Technically, this might not always be a proper norm but is useful for analysis.
For each $v \in H^{m}(\Omega)$ we have $\|v\|_{m, h}=\|v\|_{m}$.
For 1D, $m \geq 2$ by the Sobolev Embedding Theorem $H^{m}(\Omega) \subset C^{0}(\Omega)$, where v has a continuous representative. Denote by $\mathcal{S}_{h}=\mathcal{S}\left(\mathcal{T}_{h}\right)$ the space generated by \mathcal{T}_{h}.

Definition

The interpolation associated with elements of \mathcal{S}_{h} having nodal variables $N_{i}[v]$ is the mapping

$$
\mathcal{I}_{h}: H^{m}(\Omega) \rightarrow \mathcal{S}_{h}, \text { so that }\left.w\right|_{T_{j}}=\left[\mathcal{I}_{h} v\right]_{T_{j}} \text { satisfies } N_{i}[w]=N_{i}[v] .
$$

When $N_{i}[v]=v\left(\mathbf{x}_{i}\right)$ and $\mathcal{P}=\mathcal{P}_{t}$ this is piecewise polynomial interpolation of the nodal values.
Goal: Obtain estimates of $\left\|v-I_{h} v\right\|_{m, h}$ in terms of $\|v\|_{t, \Omega}$ and h with $m \leq t$.

Approximation by Finite Elements

Definition

Approximation by Finite Elements

Definition

A domain Ω is said to be star-shaped with respect to a ball $\mathcal{B}\left(\mathbf{x}_{0}, r\right):=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq r\right\}$, if for every $\mathbf{x} \in \Omega$ the closed convex hull of $\{\mathbf{x}\} \bigcup \mathcal{B}$ is contained in Ω.

Approximation by Finite Elements

```
Definition
A domain \Omega is said to be star-shaped with respect to a ball
\mathcal { B } ( \mathbf { x } _ { 0 } , r ) : = \{ \mathbf { x } \in \mathbb { R } ^ { d } \| \| \mathbf { x } - \mathbf { x } _ { 0 } \| \leq r \} \text { , if for every } \mathbf { x } \in \Omega \text { the closed convex}
hull of {\mathbf{x}}\bigcup\mathcal{B}\mathrm{ is contained in }\Omega\mathrm{ .}
```


Definition

Approximation by Finite Elements

Definition

A domain Ω is said to be star-shaped with respect to a ball $\mathcal{B}\left(\mathrm{x}_{0}, r\right):=\left\{\mathrm{x} \in \mathbb{R}^{d} \mid\left\|\mathrm{x}-\mathrm{x}_{0}\right\| \leq r\right\}$, if for every $\mathrm{x} \in \Omega$ the closed convex hull of $\{\mathbf{x}\} \cup \mathcal{B}$ is contained in Ω.

Definition

For a bounded domain Ω, the chunkiness parameter γ is defined to be the ratio of the diameter d_{Ω} of Ω to the largest radius $r_{\max }$ for which Ω is star-shaped, $\gamma=d_{\Omega} / r_{\text {max }}$.

Approximation by Finite Elements

Definition

A domain Ω is said to be star-shaped with respect to a ball $\mathcal{B}\left(\mathrm{x}_{0}, r\right):=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq r\right\}$, if for every $\mathrm{x} \in \Omega$ the closed convex hull of $\{\mathbf{x}\} \cup \mathcal{B}$ is contained in Ω.

Definition

For a bounded domain Ω, the chunkiness parameter γ is defined to be the ratio of the diameter d_{Ω} of Ω to the largest radius $r_{\text {max }}$ for which Ω is star-shaped, $\gamma=d_{\Omega} / r_{\text {max }}$.

An open domain Ω is said to satisfy the cone condition with angle ϕ and radius r if at every point $\mathbf{x} \in \Omega$ we have $\mathbf{x}+\mathcal{C}_{\phi, r, \mathbf{e}_{\mathbf{x}}} \subset \Omega$ for some orientation $\mathbf{e}_{\mathbf{x}}$.

Lemma

Approximation by Finite Elements

Definition

A domain Ω is said to be star-shaped with respect to a ball $\mathcal{B}\left(\mathrm{x}_{0}, r\right):=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq r\right\}$, if for every $\mathrm{x} \in \Omega$ the closed convex hull of $\{\mathbf{x}\} \cup \mathcal{B}$ is contained in Ω.

Definition

For a bounded domain Ω, the chunkiness parameter γ is defined to be the ratio of the diameter d_{Ω} of Ω to the largest radius $r_{\text {max }}$ for which Ω is star-shaped, $\gamma=d_{\Omega} / r_{\text {max }}$.

An open domain Ω is said to satisfy the cone condition with angle ϕ and radius r if at every point $\mathbf{x} \in \Omega$ we have $\mathbf{x}+\mathcal{C}_{\phi, r, \mathbf{e}_{\mathbf{x}}} \subset \Omega$ for some orientation $\mathbf{e}_{\mathbf{x}}$.

Lemma

Consider an Ω that is bounded and star-shaped with respect to $\mathcal{B}\left(\mathbf{x}_{c}, r_{c}\right)$ and contained within $\mathcal{B}\left(\mathbf{x}_{c}, R\right)$. Then Ω satisfies an interior cone condition with radius r_{c} and angle $\phi=2 \arcsin \left(r_{c} / 2 R\right)$.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega) .
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega) .
$$

Proof:

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega) .
$$

Proof: Let

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof: Let

$$
\left\|\left|v \|\left|:=|v|_{t}+\sum_{i=1}^{s}\right| v\left(z_{i}\right)\right| .\right.
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof: Let

$$
\left\|\left|v \|\left|:=|v|_{t}+\sum_{i=1}^{s}\right| v\left(z_{i}\right)\right| .\right.
$$

We show the norms $\|\|\cdot\| \mid$ and $\| \cdot \|_{t}$ are equivalent.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof: Let

$$
\left\|\left|v \|\left|:=|v|_{t}+\sum_{i=1}^{s}\right| v\left(z_{i}\right)\right| .\right.
$$

We show the norms $\|\|\cdot\| \mid$ and $\| \cdot \|_{t}$ are equivalent. If this were the case, the bound would follow from

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof: Let

$$
\left\|\left|v \|\left|:=|v|_{t}+\sum_{i=1}^{s}\right| v\left(z_{i}\right)\right| .\right.
$$

We show the norms $\|\|\cdot\| \mid$ and $\| \cdot \|_{t}$ are equivalent. If this were the case, the bound would follow from

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c\left\|\mid u-I_{s} u\right\| \|
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof: Let

$$
\left\|\left|v \|\left|:=|v|_{t}+\sum_{i=1}^{s}\right| v\left(z_{i}\right)\right| .\right.
$$

We show the norms $\|\|\cdot\| \mid$ and $\| \cdot \|_{t}$ are equivalent. If this were the case, the bound would follow from

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c\| \| u-I_{s} u \| \mid=c\left(\left|u-\mathcal{I}_{s} u\right|_{t}+\sum_{i=1}^{s}\left|\left(u-\mathcal{I}_{s} u\right)\left(z_{i}\right)\right|\right)
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof: Let

$$
\left\|\left|v \|\left|:=|v|_{t}+\sum_{i=1}^{s}\right| v\left(z_{i}\right)\right| .\right.
$$

We show the norms $\|\|\cdot\| \mid$ and $\| \cdot \|_{t}$ are equivalent. If this were the case, the bound would follow from

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c\left\|\left|u-I_{s} u \|\left|=c\left(\left|u-\mathcal{I}_{s} u\right|_{t}+\sum_{i=1}^{s}\left|\left(u-\mathcal{I}_{s} u\right)\left(z_{i}\right)\right|\right)=c\right| u-\mathcal{I}_{s} u\right|_{t}=c|u|_{t}\right.
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof: Let

$$
\left\|\left|v \|\left|:=|v|_{t}+\sum_{i=1}^{s}\right| v\left(z_{i}\right)\right| .\right.
$$

We show the norms $\|\|\cdot\|\|$ and $\|\cdot\|_{t}$ are equivalent. If this were the case, the bound would follow from

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c\left\|\left|u-I_{s} u\| \|=c\left(\left|u-\mathcal{I}_{s} u\right|_{t}+\sum_{i=1}^{s}\left|\left(u-\mathcal{I}_{s} u\right)\left(z_{i}\right)\right|\right)=c\right| u-\left.\mathcal{I}_{s} u\right|_{t}=c|u|_{t}\right.
$$

This makes use of $\mathcal{I}_{s} u\left(z_{i}\right)=u\left(z_{i}\right)$ at the interpolation points

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof: Let

$$
\left\|\left|v \|\left|:=|v|_{t}+\sum_{i=1}^{s}\right| v\left(z_{i}\right)\right| .\right.
$$

We show the norms $\|\|\cdot\|\|$ and $\|\cdot\|_{t}$ are equivalent. If this were the case, the bound would follow from

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c\| \| u-I_{s} u\| \|=c\left(\left|u-\mathcal{I}_{s} u\right|_{t}+\sum_{i=1}^{s}\left|\left(u-\mathcal{I}_{s} u\right)\left(z_{i}\right)\right|\right)=c\left|u-\mathcal{I}_{s} u\right|_{t}=c|u|_{t} .
$$

This makes use of $\mathcal{I}_{s} u\left(z_{i}\right)=u\left(z_{i}\right)$ at the interpolation points and that $D^{\alpha} \mathcal{I}_{s} u=0$ for all $|\alpha|=t$.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof: Let

$$
\left\|\left|v \|\left|:=|v|_{t}+\sum_{i=1}^{s}\right| v\left(z_{i}\right)\right| .\right.
$$

We show the norms $\|\|\cdot\| \mid$ and $\| \cdot \|_{t}$ are equivalent. If this were the case, the bound would follow from

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c\left\|\left|u-I_{s} u\| \|=c\left(\left|u-\mathcal{I}_{s} u\right|_{t}+\sum_{i=1}^{s}\left|\left(u-\mathcal{I}_{s} u\right)\left(z_{i}\right)\right|\right)=c\right| u-\left.\mathcal{I}_{s} u\right|_{t}=c|u|_{t} .\right.
$$

This makes use of $\mathcal{I}_{s} u\left(z_{i}\right)=u\left(z_{i}\right)$ at the interpolation points and that $D^{\alpha} \mathcal{I}_{s} u=0$ for all $|\alpha|=t$. We obtain one direction of equivalence, since $H^{t} \subset H^{2} \subset C^{0}$ by the Sobolev Embedding Theorem, so we have

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof: Let

$$
\left\|\left|v \|\left|:=|v|_{t}+\sum_{i=1}^{s}\right| v\left(z_{i}\right)\right| .\right.
$$

We show the norms $\|\|\cdot\|\|$ and $\|\cdot\|_{t}$ are equivalent. If this were the case, the bound would follow from

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c\left\|\left|u-I_{s} u\| \|=c\left(\left|u-\mathcal{I}_{s} u\right|_{t}+\sum_{i=1}^{s}\left|\left(u-\mathcal{I}_{s} u\right)\left(z_{i}\right)\right|\right)=c\right| u-\left.\mathcal{I}_{s} u\right|_{t}=c|u|_{t} .\right.
$$

This makes use of $\mathcal{I}_{s} u\left(z_{i}\right)=u\left(z_{i}\right)$ at the interpolation points and that $D^{\alpha} \mathcal{I}_{s} u=0$ for all $|\alpha|=t$. We obtain one direction of equivalence, since $H^{t} \subset H^{2} \subset C^{0}$ by the Sobolev Embedding Theorem, so we have

$$
\left|v\left(z_{i}\right)\right| \leq c\|v\|_{t} \Rightarrow\|v\| \|
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof: Let

$$
\left\|\left|v \|\left|:=|v|_{t}+\sum_{i=1}^{s}\right| v\left(z_{i}\right)\right| .\right.
$$

We show the norms $\|\|\cdot\|\|$ and $\|\cdot\|_{t}$ are equivalent. If this were the case, the bound would follow from

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c\left\|\left|u-I_{s} u\| \|=c\left(\left|u-\mathcal{I}_{s} u\right|_{t}+\sum_{i=1}^{s}\left|\left(u-\mathcal{I}_{s} u\right)\left(z_{i}\right)\right|\right)=c\right| u-\left.\mathcal{I}_{s} u\right|_{t}=c|u|_{t} .\right.
$$

This makes use of $\mathcal{I}_{s} u\left(z_{i}\right)=u\left(z_{i}\right)$ at the interpolation points and that $D^{\alpha} \mathcal{I}_{s} u=0$ for all $|\alpha|=t$. We obtain one direction of equivalence, since $H^{t} \subset H^{2} \subset C^{0}$ by the Sobolev Embedding Theorem, so we have

$$
\left|v\left(z_{i}\right)\right| \leq c\|v\|_{t} \Rightarrow\|v\|\|\leq(1+c s)\| v \|_{t} .
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued):

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that $\|v\|_{t} \leq c\| \| v\| \|, \quad \forall v \in H^{t}(\Omega)$ fails for every positive c.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that $\|v\|_{t} \leq c\| \| v\| \|, \quad \forall v \in H^{t}(\Omega)$ fails for every positive c.
This would imply there exists a sequence $\left\{v_{k}\right\}$ in $H^{t}(\Omega)$ with $k \geq 1$

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$
\|v\|_{t} \leq c\| \| v\| \|, \quad \forall v \in H^{t}(\Omega) \text { fails for every positive } c .
$$

This would imply there exists a sequence $\left\{v_{k}\right\}$ in $H^{t}(\Omega)$ with $k \geq 1$

$$
\left\|v_{k}\right\|_{t}=1, \quad\left\|\left|v_{k} \|\right| \leq 1 / k\right.
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$
\|v\|_{t} \leq c\| \| v\| \|, \quad \forall v \in H^{t}(\Omega) \text { fails for every positive } c .
$$

This would imply there exists a sequence $\left\{v_{k}\right\}$ in $H^{t}(\Omega)$ with $k \geq 1$

$$
\left\|v_{k}\right\|_{t}=1, \quad\left\|\left|v_{k} \|\right| \leq 1 / k\right.
$$

We can select a subseqeunce that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem).

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$
\|v\|_{t} \leq c\| \| v\| \|, \quad \forall v \in H^{t}(\Omega) \text { fails for every positive } c .
$$

This would imply there exists a sequence $\left\{v_{k}\right\}$ in $H^{t}(\Omega)$ with $k \geq 1$

$$
\left\|v_{k}\right\|_{t}=1, \quad\left\|\left|v_{k} \|\right| \leq 1 / k\right.
$$

We can select a subseqeunce that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_{k} itself converges.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$
\|v\|_{t} \leq c\| \| v\| \|, \quad \forall v \in H^{t}(\Omega) \text { fails for every positive } c .
$$

This would imply there exists a sequence $\left\{v_{k}\right\}$ in $H^{t}(\Omega)$ with $k \geq 1$

$$
\left\|v_{k}\right\|_{t}=1, \quad\left\|\left|v_{k} \|\right| \leq 1 / k\right.
$$

We can select a subseqeunce that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_{k} itself converges. Since $\left|v_{k}\right|_{t} \rightarrow 0$, we have by Cauchy sequence that $\left\|v_{k}-v_{\ell}\right\|_{t} \leq\left\|v_{k}-v_{\ell}\right\|_{t-1}+\left(\left|v_{k}\right|_{t}+\left|v_{\ell}\right|_{t}\right)^{2}$.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$
\|v\|_{t} \leq c\| \| v\| \|, \quad \forall v \in H^{t}(\Omega) \text { fails for every positive } c .
$$

This would imply there exists a sequence $\left\{v_{k}\right\}$ in $H^{t}(\Omega)$ with $k \geq 1$

$$
\left\|v_{k}\right\|_{t}=1, \quad\left\|\left|v_{k} \|\right| \leq 1 / k\right.
$$

We can select a subseqeunce that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_{k} itself converges. Since $\left|v_{k}\right|_{t} \rightarrow 0$, we have by Cauchy sequence that $\left\|v_{k}-v_{\ell}\right\|_{t} \leq\left\|v_{k}-v_{\ell}\right\|_{t-1}+\left(\left|v_{k}\right|_{t}+\left|v_{\ell}\right|_{t}\right)^{2}$. This shows that v_{k} is also a Cauchy sequence in $H^{t}(\Omega)$.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$
\|v\|_{t} \leq c\| \| v\| \|, \quad \forall v \in H^{t}(\Omega) \text { fails for every positive } c .
$$

This would imply there exists a sequence $\left\{v_{k}\right\}$ in $H^{t}(\Omega)$ with $k \geq 1$

$$
\left\|v_{k}\right\|_{t}=1, \quad\left\|\left|v_{k} \|\right| \leq 1 / k\right.
$$

We can select a subseqeunce that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_{k} itself converges. Since $\left|v_{k}\right|_{t} \rightarrow 0$, we have by Cauchy sequence that $\left\|v_{k}-v_{\ell}\right\|_{t} \leq\left\|v_{k}-v_{\ell}\right\|_{t-1}+\left(\left|v_{k}\right|_{t}+\left|v_{\ell}\right|_{t}\right)^{2}$. This shows that v_{k} is also a Cauchy sequence in $H^{t}(\Omega)$. By completeness there exists a $v^{*} \in H^{t}(\Omega)$.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$
\|v\|_{t} \leq c\| \| v\| \|, \quad \forall v \in H^{t}(\Omega) \text { fails for every positive } c .
$$

This would imply there exists a sequence $\left\{v_{k}\right\}$ in $H^{t}(\Omega)$ with $k \geq 1$

$$
\left\|v_{k}\right\|_{t}=1, \quad\left\|\left|v_{k} \|\right| \leq 1 / k\right.
$$

We can select a subseqeunce that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_{k} itself converges. Since $\left|v_{k}\right|_{t} \rightarrow 0$, we have by Cauchy sequence that $\left\|v_{k}-v_{\ell}\right\|_{t} \leq\left\|v_{k}-v_{\ell}\right\|_{t-1}+\left(\left|v_{k}\right|_{t}+\left|v_{\ell}\right|_{t}\right)^{2}$. This shows that v_{k} is also a Cauchy sequence in $H^{t}(\Omega)$. By completeness there exists a $v^{*} \in H^{t}(\Omega)$. By continuity we have

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1, t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

$$
\|v\|_{t} \leq c\| \| v\| \|, \quad \forall v \in H^{t}(\Omega) \text { fails for every positive } c .
$$

This would imply there exists a sequence $\left\{v_{k}\right\}$ in $H^{t}(\Omega)$ with $k \geq 1$

$$
\left\|v_{k}\right\|_{t}=1, \quad\left\|\left|v_{k} \|\right| \leq 1 / k\right.
$$

We can select a subseqeunce that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_{k} itself converges. Since $\left|v_{k}\right|_{t} \rightarrow 0$, we have by Cauchy sequence that $\left\|v_{k}-v_{\ell}\right\|_{t} \leq\left\|v_{k}-v_{\ell}\right\|_{t-1}+\left(\left|v_{k}\right|_{t}+\left|v_{\ell}\right|_{t}\right)^{2}$. This shows that v_{k} is also a Cauchy sequence in $H^{t}(\Omega)$. By completeness there exists a $v^{*} \in H^{t}(\Omega)$. By continuity we have

$$
\left\|v^{*}\right\|_{t}=1 \text { and }\left\|\left|v^{*} \|\right|=0\right.
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t}$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega) .
$$

Proof (continued): By completeness there exists a $v^{*} \in H^{t}(\Omega)$. By continuity we have

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t}$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega) .
$$

Proof (continued): By completeness there exists a $v^{*} \in H^{t}(\Omega)$. By continuity we have

$$
\left\|v^{*}\right\|_{t}=1 \text { and }\left\|\left|v^{*} \|\right|=0 .\right.
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t}$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): By completeness there exists a $v^{*} \in H^{t}(\Omega)$. By continuity we have

$$
\left\|v^{*}\right\|_{t}=1 \text { and }\left\|\left|v^{*} \|\right|=0\right.
$$

This implies that $\left|v^{*}\right|_{t}=0$ which implies v^{*} is a polynomial in \mathcal{P}_{t-1}.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t}$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): By completeness there exists a $v^{*} \in H^{t}(\Omega)$. By continuity we have

$$
\left\|v^{*}\right\|_{t}=1 \text { and }\left\|\left|v^{*} \|\right|=0\right.
$$

This implies that $\left|v^{*}\right|_{t}=0$ which implies v^{*} is a polynomial in \mathcal{P}_{t-1}. Since $v^{*}\left(z_{i}\right)=0$ we have the null polynomial $v^{*} \equiv 0$.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t}$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): By completeness there exists a $v^{*} \in H^{t}(\Omega)$. By continuity we have

$$
\left\|v^{*}\right\|_{t}=1 \text { and }\left\|\left|v^{*} \|\right|=0\right.
$$

This implies that $\left|v^{*}\right|_{t}=0$ which implies v^{*} is a polynomial in \mathcal{P}_{t-1}. Since $v^{*}\left(z_{i}\right)=0$ we have the null polynomial $v^{*} \equiv 0$.

The v^{*} needing to be null polynomial gives a contradiction.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t}$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): By completeness there exists a $v^{*} \in H^{t}(\Omega)$. By continuity we have

$$
\left\|v^{*}\right\|_{t}=1 \text { and }\left\|\left|v^{*} \|\right|=0\right.
$$

This implies that $\left|v^{*}\right|_{t}=0$ which implies v^{*} is a polynomial in \mathcal{P}_{t-1}. Since $v^{*}\left(z_{i}\right)=0$ we have the null polynomial $v^{*} \equiv 0$.

The v^{*} needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false.

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t}$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): By completeness there exists a $v^{*} \in H^{t}(\Omega)$. By continuity we have

$$
\left\|v^{*}\right\|_{t}=1 \text { and }\left\|\left|v^{*} \|\right|=0\right.
$$

This implies that $\left|v^{*}\right|_{t}=0$ which implies v^{*} is a polynomial in \mathcal{P}_{t-1}. Since $v^{*}\left(z_{i}\right)=0$ we have the null polynomial $v^{*} \equiv 0$.

The v^{*} needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false. Therefore,

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t}$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega)
$$

Proof (continued): By completeness there exists a $v^{*} \in H^{t}(\Omega)$. By continuity we have

$$
\left\|v^{*}\right\|_{t}=1 \text { and }\left\|\left|v^{*} \|\right|=0\right.
$$

This implies that $\left|v^{*}\right|_{t}=0$ which implies v^{*} is a polynomial in \mathcal{P}_{t-1}. Since $v^{*}\left(z_{i}\right)=0$ we have the null polynomial $v^{*} \equiv 0$.

The v^{*} needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false. Therefore,

$$
\|v\|_{t} \leq c\| \| v\| \|, \quad \forall v \in H^{1}(\Omega)
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_{s} over $s=t(t+1) / 2$ points $z_{1}, z_{2}, \ldots, z_{s}$ on $\bar{\Omega}$ which maps from $H^{t} \rightarrow \mathcal{P}_{t}$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^{2}$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c=c\left(\Omega, z_{1}, \ldots, z_{s}\right)$ so the following bound holds

$$
\left\|u-\mathcal{I}_{s} u\right\|_{t} \leq c|u|_{t}, \quad \forall u \in H^{t}(\Omega) .
$$

Proof (continued): By completeness there exists a $v^{*} \in H^{t}(\Omega)$. By continuity we have

$$
\left\|v^{*}\right\|_{t}=1 \text { and }\left\|\left|v^{*} \|\right|=0\right.
$$

This implies that $\left|v^{*}\right|_{t}=0$ which implies v^{*} is a polynomial in \mathcal{P}_{t-1}. Since $v^{*}\left(z_{i}\right)=0$ we have the null polynomial $v^{*} \equiv 0$.

The v^{*} needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false. Therefore,

$$
\|v\|_{t} \leq c\| \| v\| \|, \quad \forall v \in H^{1}(\Omega)
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^{2}$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^{t}(\Omega)$ into a normed linear space \mathcal{Z}. If $\mathcal{P}_{t-1} \subset \operatorname{ker}(L)$, then there exists a constant $c=c(\Omega)\|L\| \geq 0$, so that

$$
\|L v\|_{\mathcal{Z}} \leq c|v|_{t}, \text { for all } v \in H^{t}(\Omega)
$$

Proof:

Approximation by Finite Elements

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^{2}$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^{t}(\Omega)$ into a normed linear space \mathcal{Z}. If $\mathcal{P}_{t-1} \subset \operatorname{ker}(L)$, then there exists a constant $c=c(\Omega)\|L\| \geq 0$, so that

$$
\|L v\|_{\mathcal{Z}} \leq c|v|_{t}, \text { for all } v \in H^{t}(\Omega)
$$

Proof:

Let $\mathcal{I}_{h}: H^{t}(\Omega) \rightarrow \mathcal{P}_{t-1}$ be the interpolation operator.

Approximation by Finite Elements

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^{2}$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^{t}(\Omega)$ into a normed linear space \mathcal{Z}. If $\mathcal{P}_{t-1} \subset \operatorname{ker}(L)$, then there exists a constant $c=c(\Omega)\|L\| \geq 0$, so that

$$
\|L v\|_{\mathcal{Z}} \leq c|v|_{t}, \text { for all } v \in H^{t}(\Omega)
$$

Proof:

Let $\mathcal{I}_{h}: H^{t}(\Omega) \rightarrow \mathcal{P}_{t-1}$ be the interpolation operator. Using the first BH-Lemma and fact $\mathcal{I}_{h}(v) \in \operatorname{ker}(L)$ we have

Approximation by Finite Elements

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^{2}$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^{t}(\Omega)$ into a normed linear space \mathcal{Z}. If $\mathcal{P}_{t-1} \subset \operatorname{ker}(L)$, then there exists a constant $c=c(\Omega)\|L\| \geq 0$, so that

$$
\|L v\|_{\mathcal{Z}} \leq c|v|_{t}, \text { for all } v \in H^{t}(\Omega)
$$

Proof:

Let $\mathcal{I}_{h}: H^{t}(\Omega) \rightarrow \mathcal{P}_{t-1}$ be the interpolation operator. Using the first BH-Lemma and fact $\mathcal{I}_{h}(v) \in \operatorname{ker}(L)$ we have

$$
\|L v\|_{\mathcal{Z}}=\left\|L\left(v-\mathcal{I}_{h} v\right)\right\|_{\mathcal{Z}}
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^{2}$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^{t}(\Omega)$ into a normed linear space \mathcal{Z}. If $\mathcal{P}_{t-1} \subset \operatorname{ker}(L)$, then there exists a constant $c=c(\Omega)\|L\| \geq 0$, so that

$$
\|L v\|_{\mathcal{Z}} \leq c|v|_{t}, \text { for all } v \in H^{t}(\Omega)
$$

Proof:

Let $\mathcal{I}_{h}: H^{t}(\Omega) \rightarrow \mathcal{P}_{t-1}$ be the interpolation operator. Using the first BH-Lemma and fact $\mathcal{I}_{h}(v) \in \operatorname{ker}(L)$ we have

$$
\|L v\|_{\mathcal{Z}}=\left\|L\left(v-\mathcal{I}_{h} v\right)\right\|_{\mathcal{Z}} \leq\|L\| \cdot\left\|v-\mathcal{I}_{h} v\right\|_{t}
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^{2}$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^{t}(\Omega)$ into a normed linear space \mathcal{Z}. If $\mathcal{P}_{t-1} \subset \operatorname{ker}(L)$, then there exists a constant $c=c(\Omega)\|L\| \geq 0$, so that

$$
\|L v\|_{\mathcal{Z}} \leq c|v|_{t}, \text { for all } v \in H^{t}(\Omega)
$$

Proof:

Let $\mathcal{I}_{h}: H^{t}(\Omega) \rightarrow \mathcal{P}_{t-1}$ be the interpolation operator. Using the first BH-Lemma and fact $\mathcal{I}_{h}(v) \in \operatorname{ker}(L)$ we have

$$
\|L v\|_{\mathcal{Z}}=\left\|L\left(v-\mathcal{I}_{h} v\right)\right\|_{\mathcal{Z}} \leq\|L\| \cdot\left\|v-\mathcal{I}_{h} v\right\|_{t} \leq c\|L\| \cdot|v|_{t} .
$$

Approximation by Finite Elements

Bramble-Hilbert Lemma II:

Let $\Omega \subset \mathbb{R}^{2}$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^{t}(\Omega)$ into a normed linear space \mathcal{Z}. If $\mathcal{P}_{t-1} \subset \operatorname{ker}(L)$, then there exists a constant $c=c(\Omega)\|L\| \geq 0$, so that

$$
\|L v\|_{\mathcal{Z}} \leq c|v|_{t}, \text { for all } v \in H^{t}(\Omega)
$$

Proof:

Let $\mathcal{I}_{h}: H^{t}(\Omega) \rightarrow \mathcal{P}_{t-1}$ be the interpolation operator. Using the first BH-Lemma and fact $\mathcal{I}_{h}(v) \in \operatorname{ker}(L)$ we have

$$
\|L v\|_{\mathcal{Z}}=\left\|L\left(v-\mathcal{I}_{h} v\right)\right\|_{\mathcal{Z}} \leq\|L\| \cdot\left\|v-\mathcal{I}_{h} v\right\|_{t} \leq c\|L\| \cdot|v|_{t} .
$$

Approximation by Finite Elements

Theorem for Triangulations

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x, h y)$,

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x$, hy $)$, so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x, h y)$, so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$. Now

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x, h y)$, so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$. Now

$$
\|w\|_{m, T_{h}}^{2}=\sum_{\ell \leq m}|w|_{\ell, T_{h}}^{2}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x, h y)$, so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$. Now

$$
\|w\|_{m, T_{h}}^{2}=\sum_{\ell \leq m}|w|_{\ell, T_{h}}^{2}=\sum_{\ell \leq m} h^{-2 \ell+2}|v|_{\ell, T_{1} \text { ref }}^{2}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x, h y)$, so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$. Now

$$
\begin{aligned}
& \|w\|_{m, T_{h}}^{2}=\sum_{\ell \leq m}|w|_{\ell, T_{h}}^{2}=\sum_{\ell \leq m} h^{-2 \ell+2}|v|_{\ell, T_{1}^{\text {ref }}}^{2} \leq h^{-2 m+2}\|v\|_{m, T_{1}^{r e f}}^{2}, \\
& |v|_{\ell, T_{1} \text { ref }}^{2}
\end{aligned}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x, h y)$, so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$. Now

$$
\begin{aligned}
\|w\|_{m, T_{h}}^{2} & =\sum_{\ell \leq m}|w|_{\ell, T_{h}}^{2}=\sum_{\ell \leq m} h^{-2 \ell+2}|v|_{\ell, T_{1}^{\text {ref }}}^{2} \leq h^{-2 m+2}\|v\|_{m, T_{1}^{r e f}}^{2} \\
|v|_{\ell, T_{1} \text { ref }}^{2} & =\sum_{|\alpha|=\ell} \int_{T_{1}^{\text {ref }}}\left(\partial^{\alpha} v\right)^{2} d \mathbf{x}^{\text {ref }}
\end{aligned}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x, h y)$, so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$. Now

$$
\begin{aligned}
\|w\|_{m, T_{h}}^{2} & =\sum_{\ell \leq m}|w|_{\ell, T_{h}}^{2}=\sum_{\ell \leq m} h^{-2 \ell+2}|v|_{\ell, T_{1}^{\text {ref }}}^{2} \leq h^{-2 m+2}\|v\|_{m, T_{1}^{r e f}}^{2} \\
|v|_{\ell, T_{1} \text { ref }}^{2} & =\sum_{|\alpha|=\ell} \int_{T_{1}^{\text {ref }}}\left(\partial^{\alpha} v\right)^{2} d \mathbf{x}^{\text {ref }}=\sum_{|\alpha|=\ell} \int_{T_{h}} h^{2 \ell}\left(\partial^{\alpha} w\right)^{2} h^{-2} d \mathbf{x}
\end{aligned}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x, h y)$, so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$. Now

$$
\begin{aligned}
\|w\|_{m, T_{h}}^{2} & =\sum_{\ell \leq m}|w|_{\ell, T_{h}}^{2}=\sum_{\ell \leq m} h^{-2 \ell+2}|v|_{\ell, T_{1}^{\text {ref }}}^{2} \leq h^{-2 m+2}\|v\|_{m, T_{1}^{\text {ref }}}^{2}, \\
|v|_{\ell, T_{1}}^{2} & =\sum_{|\alpha|=\ell} \int_{T_{1}^{\text {ref }}}\left(\partial^{\alpha} v\right)^{2} d \mathbf{x}^{\text {ref }}=\sum_{|\alpha|=\ell} \int_{T_{h}} h^{2 \ell}\left(\partial^{\alpha} w\right)^{2} h^{-2} d \mathbf{x}=h^{2 \ell-2}|w|_{\ell, T_{h}}^{2} .
\end{aligned}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x, h y)$, so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$. Now

$$
\begin{aligned}
\|w\|_{m, T_{h}}^{2} & =\sum_{\ell \leq m}|w|_{\ell, T_{h}}^{2}=\sum_{\ell \leq m} h^{-2 \ell+2}|v|_{\ell, T_{1}^{\text {ref }}}^{2} \leq h^{-2 m+2}\|v\|_{m, T_{1}^{\text {ref }}}^{2}, \\
|v|_{\ell, T_{1}}^{2} & =\sum_{|\alpha|=\ell} \int_{T_{1}^{\text {ref }}}\left(\partial^{\alpha} v\right)^{2} d \mathbf{x}^{\text {ref }}=\sum_{|\alpha|=\ell} \int_{T_{h}} h^{2 \ell}\left(\partial^{\alpha} w\right)^{2} h^{-2} d \mathbf{x}=h^{2 \ell-2}|w|_{\ell, T_{h}}^{2} .
\end{aligned}
$$

Now let $w=u-\mathcal{I}_{h} u$ then we obtain

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x, h y)$, so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$. Now

$$
\begin{aligned}
\|w\|_{m, T_{h}}^{2} & =\sum_{\ell \leq m}|w|_{\ell, T_{h}}^{2}=\sum_{\ell \leq m} h^{-2 \ell+2}|v|_{\ell, T_{1}^{\text {ref }}}^{2} \leq h^{-2 m+2}\|v\|_{m, T_{1}^{\text {ref }}}^{2}, \\
|v|_{\ell, T_{1}}^{2} & =\sum_{|\alpha|=\ell} \int_{T_{1}^{\text {ref }}}\left(\partial^{\alpha} v\right)^{2} d \mathbf{x}^{\text {ref }}=\sum_{|\alpha|=\ell} \int_{T_{h}} h^{2 \ell}\left(\partial^{\alpha} w\right)^{2} h^{-2} d \mathbf{x}=h^{2 \ell-2}|w|_{\ell, T_{h}}^{2} .
\end{aligned}
$$

Now let $w=u-\mathcal{I}_{h} u$ then we obtain

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, T_{h}} \leq h^{-m+1}\left\|u-\mathcal{I}_{h} u\right\|_{m, T_{1}^{r e f}}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x, h y)$, so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$. Now

$$
\begin{aligned}
\|w\|_{m, T_{h}}^{2} & =\sum_{\ell \leq m}|w|_{\ell, T_{h}}^{2}=\sum_{\ell \leq m} h^{-2 \ell+2}|v|_{\ell, T_{1}^{\text {ref }}}^{2} \leq h^{-2 m+2}\|v\|_{m, T_{1}^{\text {ref }}}^{2}, \\
|v|_{\ell, T_{1}}^{2} & =\sum_{|\alpha|=\ell} \int_{T_{1}^{\text {ref }}}\left(\partial^{\alpha} v\right)^{2} d \mathbf{x}^{\text {ref }}=\sum_{|\alpha|=\ell} \int_{T_{h}} h^{2 \ell}\left(\partial^{\alpha} w\right)^{2} h^{-2} d \mathbf{x}=h^{2 \ell-2}|w|_{\ell, T_{h}}^{2} .
\end{aligned}
$$

Now let $w=u-\mathcal{I}_{h} u$ then we obtain

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, T_{h}} \leq h^{-m+1}\left\|u-\mathcal{I}_{h} u\right\|_{m, T_{1}^{\text {ref }}} \leq h^{-m+1}\left\|u-\mathcal{I}_{h} u\right\|_{t, T_{1}^{\text {ref }}}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w(h x, h y)$, so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$. Now

$$
\begin{aligned}
\|w\|_{m, T_{h}}^{2} & =\sum_{\ell \leq m}|w|_{\ell, T_{h}}^{2}=\sum_{\ell \leq m} h^{-2 \ell+2}|v|_{\ell, T_{1}^{\text {ref }}}^{2} \leq h^{-2 m+2}\|v\|_{m, T_{1}^{\text {ref }}}^{2}, \\
|v|_{\ell, T_{1}}^{2} & =\sum_{|\alpha|=\ell} \int_{T_{1}^{\text {ref }}}\left(\partial^{\alpha} v\right)^{2} d \mathbf{x}^{\text {ref }}=\sum_{|\alpha|=\ell} \int_{T_{h}} h^{2 \ell}\left(\partial^{\alpha} w\right)^{2} h^{-2} d \mathbf{x}=h^{2 \ell-2}|w|_{\ell, T_{h}}^{2} .
\end{aligned}
$$

Now let $w=u-\mathcal{I}_{h} u$ then we obtain

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, T_{h}} \leq h^{-m+1}\left\|u-\mathcal{I}_{h} u\right\|_{m, T_{1}^{\text {ref }}} \leq h^{-m+1}\left\|u-\mathcal{I}_{h} u\right\|_{t, T_{1}^{\text {ref }}} \leq h^{-m+1} c|u|_{t, T_{1}^{\text {ref }}}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega} \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let $t \geq 2$ and suppose $T_{h}=h T_{1}^{\text {ref }}=\{(x, y) \mid \tilde{y} \leq \tilde{x}, \tilde{x} \in[0, h]\}$.
Given $v \in H^{t}\left(T_{1}^{\text {ref }}\right)$ we have $v(x, y)=w\left(h x\right.$, hy), so $\partial^{\alpha} v=h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \leq t$. Now

$$
\begin{aligned}
\|w\|_{m, T_{h}}^{2} & =\sum_{\ell \leq m}|w|_{\ell, T_{h}}^{2}=\sum_{\ell \leq m} h^{-2 \ell+2}|v|_{\ell, T_{1}^{\text {ref }}}^{2} \leq h^{-2 m+2}\|v\|_{m, T_{1}^{\text {ref }}}^{2}, \\
|v|_{\ell, T_{1}}^{2} & =\sum_{|\alpha|=\ell} \int_{T_{1}^{\text {ref }}}\left(\partial^{\alpha} v\right)^{2} d \mathbf{x}^{\text {ref }}=\sum_{|\alpha|=\ell} \int_{T_{h}} h^{2 \ell}\left(\partial^{\alpha} w\right)^{2} h^{-2} d \mathbf{x}=h^{2 \ell-2}|w|_{\ell, T_{h}}^{2} .
\end{aligned}
$$

Now let $w=u-\mathcal{I}_{h} u$ then we obtain

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, T_{h}} \leq h^{-m+1}\left\|u-\mathcal{I}_{h} u\right\|_{m, T_{1}^{\text {ref }}} \leq h^{-m+1}\left\|u-\mathcal{I}_{h} u\right\|_{t, T_{1}^{\text {ref }}} \leq h^{-m+1} c|u|_{t, T_{1}^{\text {eef }}} \leq h^{t-m} c|u|_{t, T_{h}}
$$

Approximation by Finite Elements

Transformation Formula

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
F \quad \mid \quad \hat{\Omega} \rightarrow \Omega
$$

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{array}{rll}
F & \mid & \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{array}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{array}{rll}
F & \mid & \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{array}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

By the chain rule we have for directions $\hat{y}_{1}, \ldots \hat{y}_{m}$ that

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{array}{rll}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{array}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

By the chain rule we have for directions $\hat{y}_{1}, \ldots \hat{y}_{m}$ that

$$
D^{m} \hat{v}(\hat{x})\left(\hat{y}_{1}, \ldots, \hat{y}_{m}\right)=D^{m} v(x)\left(B \hat{y}_{1}, \ldots, B \hat{y}_{m}\right) .
$$

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

By the chain rule we have for directions $\hat{y}_{1}, \ldots \hat{y}_{m}$ that

$$
D^{m} \hat{v}(\hat{x})\left(\hat{y}_{1}, \ldots, \hat{y}_{m}\right)=D^{m} v(x)\left(B \hat{y}_{1}, \ldots, B \hat{y}_{m}\right) .
$$

This gives $\left\|D^{m} \hat{v}\right\|_{\mathbb{R}^{n m}} \leq\|B\|^{m}\left\|D^{m} v\right\|_{\mathbb{R}^{n m}}$.

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

By the chain rule we have for directions $\hat{y}_{1}, \ldots \hat{y}_{m}$ that

$$
D^{m} \hat{v}(\hat{x})\left(\hat{y}_{1}, \ldots, \hat{y}_{m}\right)=D^{m} v(x)\left(B \hat{y}_{1}, \ldots, B \hat{y}_{m}\right) .
$$

This gives $\left\|D^{m} \hat{v}\right\|_{\mathbb{R}^{n m}} \leq\|B\|^{m}\left\|D^{m} v\right\|_{\mathbb{R}^{n m}}$. The derivatives are estimated by $\partial_{i_{1}} \ldots \partial_{i_{m}} v=D^{m} v\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)$ to obtain

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

By the chain rule we have for directions $\hat{y}_{1}, \ldots \hat{y}_{m}$ that

$$
D^{m} \hat{v}(\hat{x})\left(\hat{y}_{1}, \ldots, \hat{y}_{m}\right)=D^{m} v(x)\left(B \hat{y}_{1}, \ldots, B \hat{y}_{m}\right) .
$$

This gives $\left\|D^{m} \hat{v}\right\|_{\mathbb{R}^{n m}} \leq\|B\|^{m}\left\|D^{m} v\right\|_{\mathbb{R}^{n m}}$. The derivatives are estimated by $\partial_{i_{1}} \ldots \partial_{i_{m}} v=D^{m} v\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)$ to obtain

$$
\sum_{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2} \leq n^{m} \max _{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2}
$$

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

By the chain rule we have for directions $\hat{y}_{1}, \ldots \hat{y}_{m}$ that

$$
D^{m} \hat{v}(\hat{x})\left(\hat{y}_{1}, \ldots, \hat{y}_{m}\right)=D^{m} v(x)\left(B \hat{y}_{1}, \ldots, B \hat{y}_{m}\right) .
$$

This gives $\left\|D^{m} \hat{v}\right\|_{\mathbb{R}^{n m}} \leq\|B\|^{m}\left\|D^{m} v\right\|_{\mathbb{R}^{n m}}$. The derivatives are estimated by $\partial_{i_{1}} \ldots \partial_{i_{m}} v=D^{m} v\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)$ to obtain

$$
\sum_{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2} \leq n^{m} \max _{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2} \leq n^{m}\left\|D^{m} \hat{v}\right\|^{2}
$$

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

By the chain rule we have for directions $\hat{y}_{1}, \ldots \hat{y}_{m}$ that

$$
D^{m} \hat{v}(\hat{x})\left(\hat{y}_{1}, \ldots, \hat{y}_{m}\right)=D^{m} v(x)\left(B \hat{y}_{1}, \ldots, B \hat{y}_{m}\right) .
$$

This gives $\left\|D^{m} \hat{v}\right\|_{\mathbb{R}^{n m}} \leq\|B\|^{m}\left\|D^{m} v\right\|_{\mathbb{R}^{n m}}$. The derivatives are estimated by $\partial_{i_{1}} \ldots \partial_{i_{m}} v=D^{m} v\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)$ to obtain

$$
\sum_{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2} \leq n^{m} \max _{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2} \leq n^{m}\left\|D^{m} \hat{v}\right\|^{2} \leq n^{m}\|B\|^{2 m}\left\|D^{m} v\right\|^{2}
$$

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

By the chain rule we have for directions $\hat{y}_{1}, \ldots \hat{y}_{m}$ that

$$
D^{m} \hat{v}(\hat{x})\left(\hat{y}_{1}, \ldots, \hat{y}_{m}\right)=D^{m} v(x)\left(B \hat{y}_{1}, \ldots, B \hat{y}_{m}\right) .
$$

This gives $\left\|D^{m} \hat{v}\right\|_{\mathbb{R}^{n m}} \leq\|B\|^{m}\left\|D^{m} v\right\|_{\mathbb{R}^{n m}}$. The derivatives are estimated by $\partial_{i_{1}} \ldots \partial_{i_{m}} v=D^{m} v\left(e_{i_{1}}, \ldots, e_{i_{m}}\right)$ to obtain

$$
\sum_{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2} \leq n^{m} \max _{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2} \leq n^{m}\left\|D^{m} \hat{v}\right\|^{2} \leq n^{m}\|B\|^{2 m}\left\|D^{m} v\right\|^{2} \leq n^{2 m}\|B\|^{2 m} \sum_{|\alpha|=m}\left|\partial^{\alpha} v\right|^{2}
$$

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{array}{rll}
F & \mid & \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{array}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{array}{rll}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{array}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:
Integrating both size and using Jacobian of the transformation

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{array}{rll}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{array}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

Integrating both size and using Jacobian of the transformation

$$
|\hat{v}|_{m, \hat{\Omega}}^{2}=\int_{\hat{\Omega}} \sum_{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2} d \hat{\mathbf{x}}
$$

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

Integrating both size and using Jacobian of the transformation

$$
|\hat{v}|_{m, \hat{\Omega}}^{2}=\int_{\hat{\Omega}} \sum_{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2} d \hat{\mathbf{x}} \leq n^{2 m}\|B\|^{2 m} \int_{\Omega} \sum_{|\alpha|=m}\left|\partial^{\alpha} v\right|^{2} \cdot\left|\operatorname{det} B^{-1}\right| d \mathbf{x}
$$

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

Integrating both size and using Jacobian of the transformation

$$
|\hat{v}|_{m, \hat{\Omega}}^{2}=\int_{\hat{\Omega}} \sum_{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2} d \hat{\mathbf{x}} \leq n^{2 m}\|B\|^{2 m} \int_{\Omega} \sum_{|\alpha|=m}\left|\partial^{\alpha} v\right|^{2} \cdot\left|\operatorname{det} B^{-1}\right| d \mathbf{x}=n^{2 m}\|B\|^{2 m}|\operatorname{det} B|^{-1}|v|_{m, \Omega}^{2}
$$

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

Integrating both size and using Jacobian of the transformation

$$
|\hat{v}|_{m, \hat{\Omega}}^{2}=\int_{\hat{\Omega}} \sum_{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2} d \hat{\mathbf{x}} \leq n^{2 m}\|B\|^{2 m} \int_{\Omega} \sum_{|\alpha|=m}\left|\partial^{\alpha} v\right|^{2} \cdot\left|\operatorname{det} B^{-1}\right| d \mathbf{x}=n^{2 m}\|B\|^{2 m}|\operatorname{det} B|^{-1}|v|_{m, \Omega}^{2}
$$

By taking square root we obtain the bound.

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$
\begin{aligned}
F & \mid \hat{\Omega} \rightarrow \Omega \\
F \hat{x} & =x_{0}+B \hat{x} \quad(B \text { non-singular linear operator })
\end{aligned}
$$

If $v \in H^{m}(\Omega)$, then $\hat{v}:=v \circ F \in H^{m}(\hat{\Omega})$ and there exists constant $c=c(\hat{\Omega}, m)$ so that

$$
|\hat{v}|_{m, \hat{\Omega}} \leq c\|B\|^{m}|\operatorname{det} B|^{-1 / 2}|v|_{m, \Omega}
$$

Proof:

Integrating both size and using Jacobian of the transformation

$$
|\hat{v}|_{m, \hat{\Omega}}^{2}=\int_{\hat{\Omega}} \sum_{|\alpha|=m}\left|\partial^{\alpha} \hat{v}\right|^{2} d \hat{\mathbf{x}} \leq n^{2 m}\|B\|^{2 m} \int_{\Omega} \sum_{|\alpha|=m}\left|\partial^{\alpha} v\right|^{2} \cdot\left|\operatorname{det} B^{-1}\right| d \mathbf{x}=n^{2 m}\|B\|^{2 m}|\operatorname{det} B|^{-1}|v|_{m, \Omega}^{2}
$$

By taking square root we obtain the bound.

Approximation by Finite Elements

Definition

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j},

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j}, r_{j} is the smallest radius of circle containing T_{j},

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j},
r_{j} is the smallest radius of circle containing T_{j},
$h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j},
r_{j} is the smallest radius of circle containing T_{j},
$h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.
A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j},
r_{j} is the smallest radius of circle containing T_{j},
$h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.
A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

$$
\rho_{T} \geq h_{T} / \kappa
$$

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j},
r_{j} is the smallest radius of circle containing T_{j},
$h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.
A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

$$
\rho_{T} \geq h_{T} / \kappa
$$

Let $F \mid T_{1} \rightarrow T_{2}$ then $\hat{x} \rightarrow B \hat{x}+X_{0}$ is an affine map.

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j}, r_{j} is the smallest radius of circle containing T_{j}, $h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.

A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

$$
\rho_{T} \geq h_{T} / \kappa
$$

Let $F \mid T_{1} \rightarrow T_{2}$ then $\hat{x} \rightarrow B \hat{x}+X_{0}$ is an affine map.
Claim: $\|B\| \leq r_{2} / \rho_{1}$, and $\left\|B^{-1}\right\| \leq r_{1} / \rho_{2}$.

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j}, r_{j} is the smallest radius of circle containing T_{j}, $h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.

A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

$$
\rho_{T} \geq h_{T} / \kappa
$$

Let $F \mid T_{1} \rightarrow T_{2}$ then $\hat{x} \rightarrow B \hat{x}+X_{0}$ is an affine map.
Claim: $\|B\| \leq r_{2} / \rho_{1}$, and $\left\|B^{-1}\right\| \leq r_{1} / \rho_{2}$.
Note: Gives condition number $\|B\|\left\|B^{-1}\right\| \leq r_{1} r_{2} /\left(\rho_{1} \rho_{2}\right)$.

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j}, r_{j} is the smallest radius of circle containing T_{j}, $h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.

A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

$$
\rho_{T} \geq h_{T} / \kappa
$$

Let $F \mid T_{1} \rightarrow T_{2}$ then $\hat{x} \rightarrow B \hat{x}+X_{0}$ is an affine map.
Claim: $\|B\| \leq r_{2} / \rho_{1}$, and $\left\|B^{-1}\right\| \leq r_{1} / \rho_{2}$.
Note: Gives condition number $\|B\|\left\|B^{-1}\right\| \leq r_{1} r_{2} /\left(\rho_{1} \rho_{2}\right)$.
This will become poor for triangles that are small "slivers."

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j},
r_{j} is the smallest radius of circle containing T_{j},
$h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.
A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

$$
\rho_{T} \geq h_{T} / \kappa .
$$

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j},
r_{j} is the smallest radius of circle containing T_{j},
$h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.
A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

$$
\rho_{T} \geq h_{T} / \kappa .
$$

We now prove

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j},
r_{j} is the smallest radius of circle containing T_{j},
$h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.
A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

$$
\rho_{T} \geq h_{T} / \kappa .
$$

We now prove

Theorem for Triangulations

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j},
r_{j} is the smallest radius of circle containing T_{j},
$h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.
A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

$$
\rho_{T} \geq h_{T} / \kappa .
$$

We now prove

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω.

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j},
r_{j} is the smallest radius of circle containing T_{j}, $h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.

A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

$$
\rho_{T} \geq h_{T} / \kappa .
$$

We now prove

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega, \kappa, t)$ such that

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j},
r_{j} is the smallest radius of circle containing T_{j}, $h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.

A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

$$
\rho_{T} \geq h_{T} / \kappa .
$$

We now prove

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega, \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega}, \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

Approximation by Finite Elements

Definition

For triangle $T_{j} \in \mathcal{T}$,
ρ_{j} is the largest radius of circle inscribed in T_{j},
r_{j} is the smallest radius of circle containing T_{j},
$h_{j}=\frac{1}{2} \operatorname{diameter}\left(T_{j}\right)$.
A mesh \mathcal{T}_{h} is called shape-regular if there exists a κ so that for every triangle $T \in \mathcal{T}_{h}$

$$
\rho_{T} \geq h_{T} / \kappa .
$$

We now prove

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega, \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, h} \leq c h^{t-m}|u|_{t, \Omega}, \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.

Proof:

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$. Let $F: T_{\text {ref }} \rightarrow T$ with $T=T_{j} \in \mathcal{T}_{h}$.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$. Let $F: T_{\text {ref }} \rightarrow T$ with $T=T_{j} \in \mathcal{T}_{h}$. Now by applying transform formula to F we obtain

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$. Let $F: T_{\text {ref }} \rightarrow T$ with $T=T_{j} \in \mathcal{T}_{h}$. Now by applying transform formula to F we obtain

$$
\left|u-\mathcal{I}_{h} u\right|_{m, T} \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2}\left|\hat{u}-\mathcal{I}_{h} \hat{u}\right|_{m, T_{\text {ref }}}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$. Let $F: T_{\text {ref }} \rightarrow T$ with $T=T_{j} \in \mathcal{T}_{h}$. Now by applying transform formula to F we obtain

$$
\left|u-\mathcal{I}_{h} u\right|_{m, T} \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2}\left|\hat{u}-\mathcal{I}_{h} \hat{u}\right|_{m, T_{\text {ref }}} \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c|\hat{u}|_{t, T_{r e f}}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$. Let $F: T_{\text {ref }} \rightarrow T$ with $T=T_{j} \in \mathcal{T}_{h}$. Now by applying transform formula to F we obtain

$$
\begin{aligned}
\left|u-\mathcal{I}_{h} u\right|_{m, T} & \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2}\left|\hat{u}-\mathcal{I}_{h} \hat{u}\right|_{m, T_{r e f}} \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c|\hat{u}|_{t, T_{r e f}} \\
& \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c\|B\|^{t} \cdot|\operatorname{det} B|^{1 / 2}|u|_{t, T}
\end{aligned}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$. Let $F: T_{\text {ref }} \rightarrow T$ with $T=T_{j} \in \mathcal{T}_{h}$. Now by applying transform formula to F we obtain

$$
\begin{aligned}
\left|u-\mathcal{I}_{h} u\right|_{m, T} & \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2}\left|\hat{u}-\mathcal{I}_{h} \hat{u}\right|_{m, T_{r e f}} \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c|\hat{u}|_{t, T_{r e f}} \\
& \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c\|B\|^{t} \cdot|\operatorname{det} B|^{1 / 2}|u|_{t, T} \leq c\left(\|B\|\left\|B^{-1}\right\|\right)^{m}\|B\|^{t-m}|u|_{t, T}
\end{aligned}
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$. Let $F: T_{\text {ref }} \rightarrow T$ with $T=T_{j} \in \mathcal{T}_{h}$. Now by applying transform formula to F we obtain

$$
\begin{aligned}
\left|u-\mathcal{I}_{h} u\right|_{m, T} & \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2}\left|\hat{u}-\mathcal{I}_{h} \hat{u}\right|_{m, T_{\text {ref }}} \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c|\hat{u}|_{t, T_{\text {ref }}} \\
& \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c\|B\|^{t} \cdot|\operatorname{det} B|^{1 / 2}|u|_{t, T} \leq c\left(\|B\|\left\|B^{-1}\right\|\right)^{m}\|B\|^{t-m}|u|_{t, T}
\end{aligned}
$$

By the shape regularity we have $r / \rho \leq \kappa$ and $\|B\| \cdot\left\|B^{-1}\right\| \leq(2+\sqrt{2}) \kappa$.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$. Let $F: T_{\text {ref }} \rightarrow T$ with $T=T_{j} \in \mathcal{T}_{h}$. Now by applying transform formula to F we obtain

$$
\begin{aligned}
\left|u-\mathcal{I}_{h} u\right|_{m, T} & \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2}\left|\hat{u}-\mathcal{I}_{h} \hat{u}\right|_{m, T_{r e f}} \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c|\hat{u}|_{t, T_{r e f}} \\
& \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c\|B\|^{t} \cdot|\operatorname{det} B|^{1 / 2}|u|_{t, T} \leq c\left(\|B\|\left\|B^{-1}\right\|\right)^{m}\|B\|^{t-m}|u|_{t, T}
\end{aligned}
$$

By the shape regularity we have $r / \rho \leq \kappa$ and $\|B\| \cdot\left\|B^{-1}\right\| \leq(2+\sqrt{2}) \kappa$. This implies $\|B\| \leq h / \hat{\rho} \leq 4 h$.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$. Let $F: T_{\text {ref }} \rightarrow T$ with $T=T_{j} \in \mathcal{T}_{h}$. Now by applying transform formula to F we obtain

$$
\begin{aligned}
\left|u-\mathcal{I}_{h} u\right|_{m, T} & \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2}\left|\hat{u}-\mathcal{I}_{h} \hat{u}\right|_{m, T_{r e f}} \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c|\hat{u}|_{t, T_{r e f}} \\
& \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c\|B\|^{t} \cdot|\operatorname{det} B|^{1 / 2}|u|_{t, T} \leq c\left(\|B\|\left\|B^{-1}\right\|\right)^{m}\|B\|^{t-m}|u|_{t, T}
\end{aligned}
$$

By the shape regularity we have $r / \rho \leq \kappa$ and $\|B\| \cdot\left\|B^{-1}\right\| \leq(2+\sqrt{2}) \kappa$. This implies $\|B\| \leq h / \hat{\rho} \leq 4 h$. Putting this together we obtain

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$. Let $F: T_{\text {ref }} \rightarrow T$ with $T=T_{j} \in \mathcal{T}_{h}$. Now by applying transform formula to F we obtain

$$
\begin{aligned}
\left|u-\mathcal{I}_{h} u\right|_{m, T} & \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2}\left|\hat{u}-\mathcal{I}_{h} \hat{u}\right|_{m, T_{r e f}} \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c|\hat{u}|_{t, T_{r e f}} \\
& \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c\|B\|^{t} \cdot|\operatorname{det} B|^{1 / 2}|u|_{t, T} \leq c\left(\|B\|\left\|B^{-1}\right\|\right)^{m}\|B\|^{t-m}|u|_{t, T}
\end{aligned}
$$

By the shape regularity we have $r / \rho \leq \kappa$ and $\|B\| \cdot\left\|B^{-1}\right\| \leq(2+\sqrt{2}) \kappa$. This implies $\|B\| \leq h / \hat{\rho} \leq 4 h$. Putting this together we obtain

$$
\left|u-\mathcal{I}_{h} u\right|_{\ell, T} \leq c h^{t-\ell}|u|_{t, T} .
$$

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$. Let $F: T_{\text {ref }} \rightarrow T$ with $T=T_{j} \in \mathcal{T}_{h}$. Now by applying transform formula to F we obtain

$$
\begin{aligned}
\left|u-\mathcal{I}_{h} u\right|_{m, T} & \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2}\left|\hat{u}-\mathcal{I}_{h} \hat{u}\right|_{m, T_{r e f}} \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c|\hat{u}|_{t, T_{r e f}} \\
& \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c\|B\|^{t} \cdot|\operatorname{det} B|^{1 / 2}|u|_{t, T} \leq c\left(\|B\|\left\|B^{-1}\right\|\right)^{m}\|B\|^{t-m}|u|_{t, T}
\end{aligned}
$$

By the shape regularity we have $r / \rho \leq \kappa$ and $\|B\| \cdot\left\|B^{-1}\right\| \leq(2+\sqrt{2}) \kappa$. This implies $\|B\| \leq h / \hat{\rho} \leq 4 h$. Putting this together we obtain

$$
\left|u-\mathcal{I}_{h} u\right|_{\ell, T} \leq c h^{t-\ell}|u|_{t, T} .
$$

By summing the squares of these local inequalities we obtain the global bound stated in the theorem.

Approximation by Finite Elements

Theorem for Triangulations

Consider \mathcal{T}_{h} a shape-regular triangulation of Ω. For $t \geq 2$ there exists a constant $c=c(\Omega . \kappa, t)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m} \leq c h^{t-m}|u|_{t, \Omega} \quad \forall u \in H^{t}(\Omega), \quad 0 \leq m \leq t .
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise polynomials of degree $\leq t-1$.
Proof: This is proved by showing the inequality holds on each triangle T_{j} of a shape-regular triangulation \mathcal{T}_{h}. We choose as our reference triangle $\hat{T}=\{(x, y) \mid 0 \leq y \leq 1-x, x \in[0,1]\}$ the half-square which has $\hat{r}=2^{-1 / 2}$ and $\hat{\rho}=(2+\sqrt{2})^{-1} \geq 2 / 7$. Let $F: T_{\text {ref }} \rightarrow T$ with $T=T_{j} \in \mathcal{T}_{h}$. Now by applying transform formula to F we obtain

$$
\begin{aligned}
\left|u-\mathcal{I}_{h} u\right|_{m, T} & \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2}\left|\hat{u}-\mathcal{I}_{h} \hat{u}\right|_{m, T_{r e f}} \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c|\hat{u}|_{t, T_{r e f}} \\
& \leq c\|B\|^{-m}|\operatorname{det} B|^{-1 / 2} \cdot c\|B\|^{t} \cdot|\operatorname{det} B|^{1 / 2}|u|_{t, T} \leq c\left(\|B\|\left\|B^{-1}\right\|\right)^{m}\|B\|^{t-m}|u|_{t, T}
\end{aligned}
$$

By the shape regularity we have $r / \rho \leq \kappa$ and $\|B\| \cdot\left\|B^{-1}\right\| \leq(2+\sqrt{2}) \kappa$. This implies $\|B\| \leq h / \hat{\rho} \leq 4 h$. Putting this together we obtain

$$
\left|u-\mathcal{I}_{h} u\right|_{\ell, T} \leq c h^{t-\ell}|u|_{t, T} .
$$

By summing the squares of these local inequalities we obtain the global bound stated in the theorem.

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
C^{1} elements	$3 \leq t \leq 6$
Argyris element	$3 \leq t \leq 5$
Bell element	$3 \leq t \leq 4 \quad(m \leq 2)$
Hsieh-Clough-Tocher element	
reduc. Hsieh-Clough-Tocher element	$t r$

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
C^{1} elements	$3 \leq t \leq 6$
Argyris element	$3 \leq t \leq 5$
Bell element	$3 \leq t \leq 4 \quad(m \leq 2)$
Hsieh-Clough-Tocher element	
reduc. Hsieh-Clough-Tocher element	$t r$

Proof:

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
Argyris element	$3 \leq t \leq 6$
Bell element	$3 \leq t \leq 5$
Hsieh-Clough-Tocher element	$3 \leq t \leq 4 \quad(m \leq 2)$
reduc. Hsieh-Clough-Tocher element	$t=3 \quad(m \leq 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K}=[0,1] \times[0,1]$ satisfies

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
Argyris element	$3 \leq t \leq 6$
Bell element	$3 \leq t \leq 5$
Hsieh-Clough-Tocher element	$3 \leq t \leq 4 \quad(m \leq 2)$
reduc. Hsieh-Clough-Tocher element	$t=3$

Proof: It suffices to show interpolation on the unit square $\mathcal{K}=[0,1] \times[0,1]$ satisfies

$$
\left\|u-\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c|u|_{2, \mathcal{K}}, \quad \forall u \in H^{2}(\mathcal{K})
$$

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
Argyris element	$3 \leq t \leq 6$
Bell element	$3 \leq t \leq 5$
Hsieh-Clough-Tocher element	$3 \leq t \leq 4 \quad(m \leq 2)$
reduc. Hsieh-Clough-Tocher element	$t=3$

Proof: It suffices to show interpolation on the unit square $\mathcal{K}=[0,1] \times[0,1]$ satisfies

$$
\left\|u-\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c|u|_{2, \mathcal{K}}, \quad \forall u \in H^{2}(\mathcal{K})
$$

By embedding theorem $H^{2}(\mathcal{K}) \subset C^{0}(\mathcal{K})$ so values of u at the four corners are bounded by $c\|u\|_{2, \mathcal{K}}$.

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
C^{1} elements	
Argyris element	$3 \leq t \leq 6$
Bell element	$3 \leq t \leq 5$
Hsieh-Clough-Tocher element	$3 \leq t \leq 4 \quad(m \leq 2)$
reduc. Hsieh-Clough-Tocher element	$t=3 \quad(m \leq 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K}=[0,1] \times[0,1]$ satisfies

$$
\left\|u-\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c|u|_{2, \mathcal{K}}, \quad \forall u \in H^{2}(\mathcal{K})
$$

By embedding theorem $H^{2}(\mathcal{K}) \subset C^{0}(\mathcal{K})$ so values of u at the four corners are bounded by $c\|u\|_{2, \mathcal{K}}$. The interpolation operator \mathcal{I}_{h} depends linearly on these four vertices,

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
C^{1} elements	
Argyris element	$3 \leq t \leq 6$
Bell element	$3 \leq t \leq 5$
Hsieh-Clough-Tocher element	$3 \leq t \leq 4 \quad(m \leq 2)$
reduc. Hsieh-Clough-Tocher element	$t=3 \quad(m \leq 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K}=[0,1] \times[0,1]$ satisfies

$$
\left\|u-\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c|u|_{2, \mathcal{K}}, \quad \forall u \in H^{2}(\mathcal{K})
$$

By embedding theorem $H^{2}(\mathcal{K}) \subset C^{0}(\mathcal{K})$ so values of u at the four corners are bounded by $c\|u\|_{2, \mathcal{K}}$. The interpolation operator \mathcal{I}_{h} depends linearly on these four vertices, so

$$
\left\|\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c_{1} \max _{\mathbf{x} \in \mathcal{K}}|u(\mathbf{x})| \leq c_{2}\|u\|_{2, \mathcal{K}}
$$

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
C^{1} elements	
Argyris element	$3 \leq t \leq 6$
Bell element	$3 \leq t \leq 5$
Hsieh-Clough-Tocher element	$3 \leq t \leq 4 \quad(m \leq 2)$
reduc. Hsieh-Clough-Tocher element	$t=3 \quad(m \leq 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K}=[0,1] \times[0,1]$ satisfies

$$
\left\|u-\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c|u|_{2, \mathcal{K}}, \quad \forall u \in H^{2}(\mathcal{K})
$$

By embedding theorem $H^{2}(\mathcal{K}) \subset C^{0}(\mathcal{K})$ so values of u at the four corners are bounded by $c\|u\|_{2, \mathcal{K}}$. The interpolation operator \mathcal{I}_{h} depends linearly on these four vertices, so

$$
\left\|\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c_{1} \max _{\mathbf{x} \in \mathcal{K}}|u(\mathbf{x})| \leq c_{2}\|u\|_{2, \mathcal{K}}
$$

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
Argyris element	
Bell element	$3 \leq t \leq 6$
Hsieh-Clough-Tocher element	$3 \leq t \leq 5 \quad$
reduc. Hsieh-Clough-Tocher element	$t \leq t \leq 4 \quad(m \leq 2)$

Proof (continued): The interpolation operator \mathcal{I}_{h} depends linearly on these four vertices,

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
C^{1} elements	
Argyris element	$3 \leq t \leq 6$
Bell element	$3 \leq t \leq 5$
Hsieh-Clough-Tocher element	$3 \leq t \leq 4 \quad(m \leq 2)$
reduc. Hsieh-Clough-Tocher element	$t=3 \quad(m \leq 2)$

Proof (continued): The interpolation operator \mathcal{I}_{h} depends linearly on these four vertices, so

$$
\left\|\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c_{1} \max _{\mathbf{x} \in \mathcal{K}}|u(\mathbf{x})| \leq c_{2}\|u\|_{2, \mathcal{K}} .
$$

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
C^{1} elements	
Argyris element	$3 \leq t \leq 6$
Bell element	$3 \leq t \leq 5$
Hsieh-Clough-Tocher element	$3 \leq t \leq 4 \quad(m \leq 2)$
reduc. Hsieh-Clough-Tocher element	$t=3 \quad(m \leq 2)$

Proof (continued): The interpolation operator \mathcal{I}_{h} depends linearly on these four vertices, so

$$
\left\|\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c_{1} \max _{\mathbf{x} \in \mathcal{K}}|u(\mathbf{x})| \leq c_{2}\|u\|_{2, \mathcal{K}} .
$$

This yields

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
C^{1} elements	$3 \leq t \leq 6$
Argyris element	$3 \leq t \leq 5$
Bell element $3 \leq t \leq 4 \quad(m \leq 2)$ Hsieh-Clough-Tocher element reduc. Hsieh-Clough-Tocher element t	

Proof (continued): The interpolation operator \mathcal{I}_{h} depends linearly on these four vertices, so

$$
\left\|\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c_{1} \max _{\mathbf{x} \in \mathcal{K}}|u(\mathbf{x})| \leq c_{2}\|u\|_{2, \mathcal{K}} .
$$

This yields

$$
\left\|u-\mathcal{I}_{h} u\right\|_{2} \leq\|u\|_{2}+\left\|\mathcal{I}_{h} u\right\|_{2} \leq\left(c_{2}+1\right)\|u\|_{2} .
$$

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
C^{1} elements	$3 \leq t \leq 6$
Argyris element	$3 \leq t \leq 5$
Bell element $3 \leq t \leq 4 \quad(m \leq 2)$ Hsieh-Clough-Tocher element reduc. Hsieh-Clough-Tocher element t	

Proof (continued): The interpolation operator \mathcal{I}_{h} depends linearly on these four vertices, so

$$
\left\|\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c_{1} \max _{\mathbf{x} \in \mathcal{K}}|u(\mathbf{x})| \leq c_{2}\|u\|_{2, \mathcal{K}} .
$$

This yields

$$
\left\|u-\mathcal{I}_{h} u\right\|_{2} \leq\|u\|_{2}+\left\|\mathcal{I}_{h} u\right\|_{2} \leq\left(c_{2}+1\right)\|u\|_{2} .
$$

When u is linear polynomial then $\mathcal{I}_{h} u=u$ and $u-\mathcal{I}_{h} u=0$.

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
Argyris element	$3 \leq t \leq 6$
Bell element	$3 \leq t \leq 5$
Hsieh-Clough-Tocher element	$3 \leq t \leq 4 \quad(m \leq 2)$
reduc. Hsieh-Clough-Tocher element	$t=3$

Proof (continued): The interpolation operator \mathcal{I}_{h} depends linearly on these four vertices, so

$$
\left\|\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c_{1} \max _{\mathbf{x} \in \mathcal{K}}|u(\mathbf{x})| \leq c_{2}\|u\|_{2, \mathcal{K}}
$$

This yields

$$
\left\|u-\mathcal{I}_{h} u\right\|_{2} \leq\|u\|_{2}+\left\|\mathcal{I}_{h} u\right\|_{2} \leq\left(c_{2}+1\right)\|u\|_{2} .
$$

When u is linear polynomial then $\mathcal{I}_{h} u=u$ and $u-\mathcal{I}_{h} u=0$.
By Bramble-Hilbert II we have the result.

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
Argyris element	$3 \leq t \leq 6$
Bell element	$3 \leq t \leq 5$
Hsieh-Clough-Tocher element	$3 \leq t \leq 4 \quad(m \leq 2)$
reduc. Hsieh-Clough-Tocher element	$t=3$

Proof (continued): The interpolation operator \mathcal{I}_{h} depends linearly on these four vertices, so

$$
\left\|\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c_{1} \max _{\mathbf{x} \in \mathcal{K}}|u(\mathbf{x})| \leq c_{2}\|u\|_{2, \mathcal{K}}
$$

This yields

$$
\left\|u-\mathcal{I}_{h} u\right\|_{2} \leq\|u\|_{2}+\left\|\mathcal{I}_{h} u\right\|_{2} \leq\left(c_{2}+1\right)\|u\|_{2} .
$$

When u is linear polynomial then $\mathcal{I}_{h} u=u$ and $u-\mathcal{I}_{h} u=0$.
By Bramble-Hilbert II we have the result.

Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_{h} a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c=c(\Omega, \kappa)$ such that

$$
\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{2-m}|u|_{2, \Omega}, \quad \forall u \in H^{2}(\Omega)
$$

The \mathcal{I}_{h} denotes the interpolation operator by piecewise bilinear elements.

$\left\\|u-I_{h} u\right\\|_{m, h} \leq c h^{t-m}\|u\|_{t, \Omega}$	$0 \leq m \leq t$
C^{0} elements	
linear triangle	$t=2$
quadratic triangle	$2 \leq t \leq 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	$t=2$
serendipity element	$2 \leq t \leq 3$
9 node quadrilateral	$2 \leq t \leq 3$
Argyris element	$3 \leq t \leq 6$
Bell element	$3 \leq t \leq 5$
Hsieh-Clough-Tocher element	$3 \leq t \leq 4 \quad(m \leq 2)$
reduc. Hsieh-Clough-Tocher element	$t=3$

Proof (continued): The interpolation operator \mathcal{I}_{h} depends linearly on these four vertices, so

$$
\left\|\mathcal{I}_{h} u\right\|_{2, \mathcal{K}} \leq c_{1} \max _{\mathbf{x} \in \mathcal{K}}|u(\mathbf{x})| \leq c_{2}\|u\|_{2, \mathcal{K}}
$$

This yields

$$
\left\|u-\mathcal{I}_{h} u\right\|_{2} \leq\|u\|_{2}+\left\|\mathcal{I}_{h} u\right\|_{2} \leq\left(c_{2}+1\right)\|u\|_{2} .
$$

When u is linear polynomial then $\mathcal{I}_{h} u=u$ and $u-\mathcal{I}_{h} u=0$.
By Bramble-Hilbert II we have the result.
Remark: For Serendipity Elements a similar proof technique can be used to obtain $\left\|u-\mathcal{I}_{h} u\right\|_{m, \Omega} \leq c h^{t-m}|u|_{t, \Omega}, \forall u \in H^{t}(\Omega), m=0,1, t=2,3$.

Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements $\left\{\mathcal{S}_{h}\right\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c=c(\kappa, k, t)$ so that

$$
\left\|v_{h}\right\|_{t, h} \leq c h^{m-t}\left\|v_{h}\right\|_{m, h}, \quad 0 \leq m \leq t, \quad v_{h} \in \mathcal{S}_{h} .
$$

Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements $\left\{\mathcal{S}_{h}\right\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c=c(\kappa, k, t)$ so that

$$
\left\|v_{h}\right\|_{t, h} \leq c h^{m-t}\left\|v_{h}\right\|_{m, h}, \quad 0 \leq m \leq t, \quad v_{h} \in \mathcal{S}_{h} .
$$

Proof (sketch):

Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements $\left\{\mathcal{S}_{h}\right\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c=c(\kappa, k, t)$ so that

$$
\left\|v_{h}\right\|_{t, h} \leq c h^{m-t}\left\|v_{h}\right\|_{m, h}, \quad 0 \leq m \leq t, \quad v_{h} \in \mathcal{S}_{h} .
$$

Proof (sketch):
By use of reference element T and transformation formula this reduces to proving

Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements $\left\{\mathcal{S}_{h}\right\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c=c(\kappa, k, t)$ so that

$$
\left\|v_{h}\right\|_{t, h} \leq c h^{m-t}\left\|v_{h}\right\|_{m, h}, \quad 0 \leq m \leq t, \quad v_{h} \in \mathcal{S}_{h} .
$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$
|v|_{t, T} \leq c|v|_{m, T} \quad \forall v \in \mathcal{P}
$$

where $c=c(\mathcal{P})$.

Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements $\left\{\mathcal{S}_{h}\right\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c=c(\kappa, k, t)$ so that

$$
\left\|v_{h}\right\|_{t, h} \leq c h^{m-t}\left\|v_{h}\right\|_{m, h}, \quad 0 \leq m \leq t, \quad v_{h} \in \mathcal{S}_{h} .
$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$
|v|_{t, T} \leq c|v|_{m, T} \quad \forall v \in \mathcal{P}
$$

where $c=c(\mathcal{P})$. We scale by h the unit reference element which yields the factor $c h^{m-t}$ (as in prior proofs).

Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements $\left\{\mathcal{S}_{h}\right\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c=c(\kappa, k, t)$ so that

$$
\left\|v_{h}\right\|_{t, h} \leq c h^{m-t}\left\|v_{h}\right\|_{m, h}, \quad 0 \leq m \leq t, \quad v_{h} \in \mathcal{S}_{h} .
$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$
|v|_{t, T} \leq c|v|_{m, T} \quad \forall v \in \mathcal{P}
$$

where $c=c(\mathcal{P})$. We scale by h the unit reference element which yields the factor $c h^{m-t}$ (as in prior proofs). We use the equivalence of the norms $\|\cdot\|_{t, T}$ and $\|\cdot\|_{m, T}$ on the finite dimensional space $\mathcal{Q}=\mathcal{P} \bigoplus^{m-1} \mathcal{P}$.

Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements $\left\{\mathcal{S}_{h}\right\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c=c(\kappa, k, t)$ so that

$$
\left\|v_{h}\right\|_{t, h} \leq c h^{m-t}\left\|v_{h}\right\|_{m, h}, \quad 0 \leq m \leq t, \quad v_{h} \in \mathcal{S}_{h} .
$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$
|v|_{t, T} \leq c|v|_{m, T} \quad \forall v \in \mathcal{P}
$$

where $c=c(\mathcal{P})$. We scale by h the unit reference element which yields the factor $c h^{m-t}$ (as in prior proofs).
We use the equivalence of the norms $\|\cdot\|_{t, T}$ and $\|\cdot\|_{m, T}$ on the finite dimensional space $\mathcal{Q}=\mathcal{P} \bigoplus \mathcal{P}_{m-1}$. Let $I_{h} v \in \mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points.

Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements $\left\{\mathcal{S}_{h}\right\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c=c(\kappa, k, t)$ so that

$$
\left\|v_{h}\right\|_{t, h} \leq c h^{m-t}\left\|v_{h}\right\|_{m, h}, \quad 0 \leq m \leq t, \quad v_{h} \in \mathcal{S}_{h} .
$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$
|v|_{t, T} \leq c|v|_{m, T} \quad \forall v \in \mathcal{P}
$$

where $c=c(\mathcal{P})$. We scale by h the unit reference element which yields the factor $c h^{m-t}$ (as in prior proofs).
We use the equivalence of the norms $\|\cdot\|_{t, T}$ and $\|\cdot\|_{m, T}$ on the finite dimensional space $\mathcal{Q}=\mathcal{P} \bigoplus^{\operatorname{P}} \boldsymbol{P}_{m-1}$. Let $I_{h} v \in \mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points. Since $t>m$, we have $\left|I_{h} v\right|_{t}=0$.

Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements $\left\{\mathcal{S}_{h}\right\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c=c(\kappa, k, t)$ so that

$$
\left\|v_{h}\right\|_{t, h} \leq c h^{m-t}\left\|v_{h}\right\|_{m, h}, \quad 0 \leq m \leq t, \quad v_{h} \in \mathcal{S}_{h} .
$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$
|v|_{t, T} \leq c|v|_{m, T} \quad \forall v \in \mathcal{P}
$$

where $c=c(\mathcal{P})$. We scale by h the unit reference element which yields the factor $c h^{m-t}$ (as in prior proofs).
We use the equivalence of the norms $\|\cdot\|_{t, T}$ and $\|\cdot\|_{m, T}$ on the finite dimensional space $\mathcal{Q}=\mathcal{P} \bigoplus^{\operatorname{P}} \boldsymbol{P}_{m-1}$. Let $I_{h} v \in \mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points. Since $t>m$, we have $\left|I_{h} v\right|_{t}=0$. By the Bramble-Hilbert lemma

Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements $\left\{\mathcal{S}_{h}\right\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c=c(\kappa, k, t)$ so that

$$
\left\|v_{h}\right\|_{t, h} \leq c h^{m-t}\left\|v_{h}\right\|_{m, h}, \quad 0 \leq m \leq t, \quad v_{h} \in \mathcal{S}_{h} .
$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$
|v|_{t, T} \leq c|v|_{m, T} \quad \forall v \in \mathcal{P}
$$

where $c=c(\mathcal{P})$. We scale by h the unit reference element which yields the factor $c h^{m-t}$ (as in prior proofs).
We use the equivalence of the norms $\|\cdot\|_{t, T}$ and $\|\cdot\|_{m, T}$ on the finite dimensional space $\mathcal{Q}=\mathcal{P} \bigoplus^{\operatorname{P}} \boldsymbol{P}_{m-1}$. Let $I_{h} v \in \mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points. Since $t>m$, we have $\left|I_{h} v\right|_{t}=0$. By the Bramble-Hilbert lemma

$$
|v|_{t}=\left|v-I_{h} v\right|_{t} \leq\left\|v-I_{h} v\right\|_{t} \leq c\left\|v-I_{h} v\right\|_{m} \leq c^{\prime}|v|_{m} .
$$

Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements $\left\{\mathcal{S}_{h}\right\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c=c(\kappa, k, t)$ so that

$$
\left\|v_{h}\right\|_{t, h} \leq c h^{m-t}\left\|v_{h}\right\|_{m, h}, \quad 0 \leq m \leq t, \quad v_{h} \in \mathcal{S}_{h} .
$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$
|v|_{t, T} \leq c|v|_{m, T} \quad \forall v \in \mathcal{P}
$$

where $c=c(\mathcal{P})$. We scale by h the unit reference element which yields the factor $c h^{m-t}$ (as in prior proofs).
We use the equivalence of the norms $\|\cdot\|_{t, T}$ and $\|\cdot\|_{m, T}$ on the finite dimensional space $\mathcal{Q}=\mathcal{P} \bigoplus^{(} \mathcal{P}_{m-1}$. Let $I_{h} v \in \mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points. Since $t>m$, we have $\left|I_{h} v\right|_{t}=0$. By the Bramble-Hilbert lemma

$$
|v|_{t}=\left|v-I_{h} v\right|_{t} \leq\left\|v-I_{h} v\right\|_{t} \leq c\left\|v-I_{h} v\right\|_{m} \leq c^{\prime}|v|_{m} .
$$

Clément's Interpolation

The interpolation operator I_{h} could only be applied to H^{2} functions. Alternative for H^{1}.

Clément's Interpolation

The interpolation operator I_{h} could only be applied to H^{2} functions. Alternative for H^{1}. Let \mathcal{T}_{h} be a shape-regular triangulation of Ω.

Clément's Interpolation

The interpolation operator I_{h} could only be applied to H^{2} functions. Alternative for H^{1}. Let \mathcal{T}_{h} be a shape-regular triangulation of Ω. Given node \mathbf{x}_{j}, let

Clément's Interpolation

The interpolation operator I_{h} could only be applied to H^{2} functions. Alternative for H^{1}. Let \mathcal{T}_{h} be a shape-regular triangulation of Ω. Given node \mathbf{x}_{j}, let

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime}, \text { (support), } \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \quad \text { (neighborhood) }
$$

Clément's Interpolation

The interpolation operator I_{h} could only be applied to H^{2} functions. Alternative for H^{1}. Let \mathcal{T}_{h} be a shape-regular triangulation of Ω. Given node \mathbf{x}_{j}, let

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime}, \text { (support), } \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \quad \text { (neighborhood) }
$$

By shape regularity the area satisfies estimate $\mu\left(\bar{\omega}_{T}\right) \leq c(\kappa) h_{T}^{2}$ and number triangles belonging to $\bar{\omega}_{T}$ is bounded.

Clément's Interpolation

The interpolation operator I_{h} could only be applied to H^{2} functions. Alternative for H^{1}. Let \mathcal{T}_{h} be a shape-regular triangulation of Ω. Given node \mathbf{x}_{j}, let

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime}, \text { (support), } \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \quad \text { (neighborhood) }
$$

By shape regularity the area satisfies estimate $\mu\left(\bar{\omega}_{T}\right) \leq c(\kappa) h_{T}^{2}$ and number triangles belonging to $\bar{\omega}_{T}$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_{h}: H^{1}(\Omega) \rightarrow \mathcal{M}_{0}^{1}$ so that

Clément's Interpolation

The interpolation operator I_{h} could only be applied to H^{2} functions. Alternative for H^{1}. Let \mathcal{T}_{h} be a shape-regular triangulation of Ω. Given node \mathbf{x}_{j}, let

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime}, \text { (support), } \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \quad \text { (neighborhood) }
$$

By shape regularity the area satisfies estimate $\mu\left(\bar{\omega}_{T}\right) \leq c(\kappa) h_{T}^{2}$ and number triangles belonging to $\bar{\omega}_{T}$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_{h}: H^{1}(\Omega) \rightarrow \mathcal{M}_{0}^{1}$ so that

$$
\left\|v-\mathcal{I}_{h} v\right\|_{m, T} \leq c h_{T}^{1-m}\|v\|_{1, \bar{\omega}_{T}} \forall v \in H^{1}(\Omega), m=0,1, T \in \mathcal{T}_{h}
$$

Clément's Interpolation

The interpolation operator I_{h} could only be applied to H^{2} functions. Alternative for H^{1}. Let \mathcal{T}_{h} be a shape-regular triangulation of Ω. Given node \mathbf{x}_{j}, let

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime}, \text { (support), } \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \quad \text { (neighborhood) }
$$

By shape regularity the area satisfies estimate $\mu\left(\bar{\omega}_{T}\right) \leq c(\kappa) h_{T}^{2}$ and number triangles belonging to $\bar{\omega}_{T}$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_{h}: H^{1}(\Omega) \rightarrow \mathcal{M}_{0}^{1}$ so that

$$
\begin{aligned}
\left\|v-\mathcal{I}_{h} v\right\|_{m, T} & \leq c h_{T}^{1-m}\|v\|_{1, \bar{\omega}_{T}} \forall v \in H^{1}(\Omega), m=0,1, T \in \mathcal{T}_{h} \\
\left\|v-\mathcal{I}_{h} v\right\|_{0, e} & \leq c h_{T}^{1 / 2}\|v\|_{1, \bar{\omega}_{T}} \forall v \in H^{1}(\Omega), e \in \partial T, T \in \mathcal{T}_{h} .
\end{aligned}
$$

Clément's Interpolation

The interpolation operator I_{h} could only be applied to H^{2} functions. Alternative for H^{1}. Let \mathcal{T}_{h} be a shape-regular triangulation of Ω. Given node \mathbf{x}_{j}, let

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime}, \text { (support), } \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \quad \text { (neighborhood) }
$$

By shape regularity the area satisfies estimate $\mu\left(\bar{\omega}_{T}\right) \leq c(\kappa) h_{T}^{2}$ and number triangles belonging to $\bar{\omega}_{T}$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_{h}: H^{1}(\Omega) \rightarrow \mathcal{M}_{0}^{1}$ so that

$$
\begin{aligned}
\left\|v-\mathcal{I}_{h} v\right\|_{m, T} & \leq c h_{T}^{1-m}\|v\|_{1, \bar{\omega}_{T}} \forall v \in H^{1}(\Omega), m=0,1, T \in \mathcal{T}_{h} \\
\left\|v-\mathcal{I}_{h} v\right\|_{0, e} & \leq c h_{T}^{1 / 2}\|v\|_{1, \bar{\omega}_{T}} \forall v \in H^{1}(\Omega), e \in \partial T, T \in \mathcal{T}_{h}
\end{aligned}
$$

How do we construct such an operator \mathcal{I}_{h} in practice?

Clément's Interpolation

The interpolation operator I_{h} could only be applied to H^{2} functions. Alternative for H^{1}. Let \mathcal{T}_{h} be a shape-regular triangulation of Ω. Given node \mathbf{x}_{j}, let

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime}, \text { (support), } \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \quad \text { (neighborhood) }
$$

By shape regularity the area satisfies estimate $\mu\left(\bar{\omega}_{T}\right) \leq c(\kappa) h_{T}^{2}$ and number triangles belonging to $\bar{\omega}_{T}$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_{h}: H^{1}(\Omega) \rightarrow \mathcal{M}_{0}^{1}$ so that

$$
\begin{aligned}
\left\|v-\mathcal{I}_{h} v\right\|_{m, T} & \leq c h_{T}^{1-m}\|v\|_{1, \bar{\omega}_{T}} \forall v \in H^{1}(\Omega), m=0,1, T \in \mathcal{T}_{h} \\
\left\|v-\mathcal{I}_{h} v\right\|_{0, e} & \leq c h_{T}^{1 / 2}\|v\|_{1, \bar{\omega}_{T}} \forall v \in H^{1}(\Omega), e \in \partial T, T \in \mathcal{T}_{h}
\end{aligned}
$$

How do we construct such an operator \mathcal{I}_{h} in practice?

Clément's Interpolation

Construction of interpolant:

Clément's Interpolation

Construction of interpolant:

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime}, \text { (support), } \quad \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \quad \text { (neighborhood). }
$$

Clément's Interpolation

Construction of interpolant:

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime}, \text { (support), } \quad \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \quad \text { (neighborhood). }
$$

For a given nodal point x_{j} let

$$
\bar{Q}_{j} v=\left\{\begin{array}{ll}
0 & \text { if } x_{j} \in \Gamma_{D} \\
Q_{j} v & \text { otherwise. }
\end{array}, \quad Q_{j}: L_{2}\left(\omega_{j}\right) \rightarrow \mathcal{P}_{0}\right.
$$

Clément's Interpolation

Construction of interpolant:

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime} \text {, (support), } \quad \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \text { (neighborhood). }
$$

For a given nodal point x_{j} let

$$
\bar{Q}_{j} v=\left\{\begin{array}{ll}
0 & \text { if } x_{j} \in \Gamma_{D} \\
Q_{j} v & \text { otherwise. }
\end{array}, \quad Q_{j}: L_{2}\left(\omega_{j}\right) \rightarrow \mathcal{P}_{0}\right.
$$

The Q_{j} is the L_{2}-projection onto constant functions.

Clément's Interpolation

Construction of interpolant:

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime}, \text { (support), } \quad \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \text { (neighborhood). }
$$

For a given nodal point x_{j} let

$$
\bar{Q}_{j} v=\left\{\begin{array}{ll}
0 & \text { if } x_{j} \in \Gamma_{D} \\
Q_{j} v & \text { otherwise. }
\end{array}, \quad Q_{j}: L_{2}\left(\omega_{j}\right) \rightarrow \mathcal{P}_{0}\right.
$$

The Q_{j} is the L_{2}-projection onto constant functions. The $\Gamma_{D} \subset \partial \Omega$ is part with Dirichlet boundary conditions.

Clément's Interpolation

Construction of interpolant:

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime}, \text { (support), } \quad \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \text { (neighborhood). }
$$

For a given nodal point x_{j} let

$$
\bar{Q}_{j} v=\left\{\begin{array}{ll}
0 & \text { if } x_{j} \in \Gamma_{D} \\
Q_{j} v & \text { otherwise. }
\end{array}, \quad Q_{j}: L_{2}\left(\omega_{j}\right) \rightarrow \mathcal{P}_{0}\right.
$$

The Q_{j} is the L_{2}-projection onto constant functions.
The $\Gamma_{D} \subset \partial \Omega$ is part with Dirichlet boundary conditions.
Clément's Interpolation:

$$
\mathcal{I}_{h} v:=\sum_{j}\left(\bar{Q}_{j} v\right) v_{j} \in \mathcal{M}_{0}^{1}, \quad v \in H^{1}(\Omega)
$$

Clément's Interpolation

Construction of interpolant:

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime} \text {, (support), } \quad \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \text { (neighborhood). }
$$

For a given nodal point x_{j} let

$$
\bar{Q}_{j} v=\left\{\begin{array}{ll}
0 & \text { if } x_{j} \in \Gamma_{D} \\
Q_{j} v & \text { otherwise } .
\end{array}, \quad Q_{j}: L_{2}\left(\omega_{j}\right) \rightarrow \mathcal{P}_{0}\right.
$$

The Q_{j} is the L_{2}-projection onto constant functions.
The $\Gamma_{D} \subset \partial \Omega$ is part with Dirichlet boundary conditions.
Clément's Interpolation:

$$
\mathcal{I}_{h} v:=\sum_{j}\left(\bar{Q}_{j} v\right) v_{j} \in \mathcal{M}_{0}^{1}, \quad v \in H^{1}(\Omega)
$$

The cardinal shape functions v_{j} form a partition of unity for elements (one on node j, zero at other nodes).

Clément's Interpolation

Construction of interpolant:

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime} \text {, (support), } \quad \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \text { (neighborhood). }
$$

For a given nodal point x_{j} let

$$
\bar{Q}_{j} v=\left\{\begin{array}{ll}
0 & \text { if } x_{j} \in \Gamma_{D} \\
Q_{j} v & \text { otherwise } .
\end{array}, \quad Q_{j}: L_{2}\left(\omega_{j}\right) \rightarrow \mathcal{P}_{0}\right.
$$

The Q_{j} is the L_{2}-projection onto constant functions.
The $\Gamma_{D} \subset \partial \Omega$ is part with Dirichlet boundary conditions.
Clément's Interpolation:

$$
\mathcal{I}_{h} v:=\sum_{j}\left(\bar{Q}_{j} v\right) v_{j} \in \mathcal{M}_{0}^{1}, \quad v \in H^{1}(\Omega)
$$

The cardinal shape functions v_{j} form a partition of unity for elements (one on node j, zero at other nodes).
Significance: Allows for a notion of interpolation of non-smooth functions, $v \in H^{1}(\Omega)$.

Clément's Interpolation

Construction of interpolant:

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime} \text {, (support), } \quad \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \text { (neighborhood). }
$$

For a given nodal point x_{j} let

$$
\bar{Q}_{j} v=\left\{\begin{array}{ll}
0 & \text { if } x_{j} \in \Gamma_{D} \\
Q_{j} v & \text { otherwise } .
\end{array}, \quad Q_{j}: L_{2}\left(\omega_{j}\right) \rightarrow \mathcal{P}_{0}\right.
$$

The Q_{j} is the L_{2}-projection onto constant functions.
The $\Gamma_{D} \subset \partial \Omega$ is part with Dirichlet boundary conditions.
Clément's Interpolation:

$$
\mathcal{I}_{h} v:=\sum_{j}\left(\bar{Q}_{j} v\right) v_{j} \in \mathcal{M}_{0}^{1}, \quad v \in H^{1}(\Omega)
$$

The cardinal shape functions v_{j} form a partition of unity for elements (one on node j, zero at other nodes).
Significance: Allows for a notion of interpolation of non-smooth functions, $v \in H^{1}(\Omega)$.
The \mathcal{I}_{h} has well-controlled error bounds (see above).

Clément's Interpolation

Construction of interpolant:

$$
\omega_{j}:=\omega_{\mathrm{x}_{j}}:=\bigcup_{T^{\prime} \mid \mathrm{x}_{j} \in T^{\prime}} T^{\prime} \text {, (support), } \quad \bar{\omega}_{T}:=\bigcup\left\{\omega_{j} \mid, \mathbf{x}_{j} \in T\right\} \text { (neighborhood). }
$$

For a given nodal point x_{j} let

$$
\bar{Q}_{j} v=\left\{\begin{array}{ll}
0 & \text { if } x_{j} \in \Gamma_{D} \\
Q_{j} v & \text { otherwise } .
\end{array}, \quad Q_{j}: L_{2}\left(\omega_{j}\right) \rightarrow \mathcal{P}_{0}\right.
$$

The Q_{j} is the L_{2}-projection onto constant functions.
The $\Gamma_{D} \subset \partial \Omega$ is part with Dirichlet boundary conditions.
Clément's Interpolation:

$$
\mathcal{I}_{h} v:=\sum_{j}\left(\bar{Q}_{j} v\right) v_{j} \in \mathcal{M}_{0}^{1}, \quad v \in H^{1}(\Omega)
$$

The cardinal shape functions v_{j} form a partition of unity for elements (one on node j, zero at other nodes).
Significance: Allows for a notion of interpolation of non-smooth functions, $v \in H^{1}(\Omega)$.
The \mathcal{I}_{h} has well-controlled error bounds (see above).

