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Approximation by Finite Elements

Definition

For a partition Th = {T1,T2, . . . ,TN}, define the mesh-dependent m-norm for m ≥ 1 as

∥v∥m,h :=

√∑
Tj∈Th

∥v∥m,Tj .

Technically, this might not always be a proper norm but is useful for analysis.

For each v ∈ Hm(Ω) we have ∥v∥m,h = ∥v∥m.
For 1D, m ≥ 2 by the Sobolev Embedding Theorem Hm(Ω) ⊂ C 0(Ω), where v has a continuous representative.
Denote by Sh = S(Th) the space generated by Th.

Definition
The interpolation associated with elements of Sh having nodal variables Ni [v ] is the mapping

Ih : Hm(Ω) → Sh, so that w |Tj = [Ihv ]Tj satisfies Ni [w ] = Ni [v ].

When Ni [v ] = v(xi ) and P = Pt this is piecewise polynomial interpolation of the nodal values.
Goal: Obtain estimates of ∥v − Ihv∥m,h in terms of ∥v∥t,Ω and h with m ≤ t.
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Approximation by Finite Elements

Definition

A domain Ω is said to be star-shaped with respect to a ball
B(x0, r) := {x ∈ Rd |∥x− x0∥ ≤ r}, if for every x ∈ Ω the closed convex
hull of {x}

⋃
B is contained in Ω.

Definition
For a bounded domain Ω, the chunkiness parameter γ is defined to be the ratio of the diameter dΩ of Ω to the
largest radius rmax for which Ω is star-shaped, γ = dΩ/rmax .

An open domain Ω is said to satisfy the cone condition with angle ϕ and radius r if at every point x ∈ Ω we
have x+ Cϕ,r,ex ⊂ Ω for some orientation ex.

Lemma
Consider an Ω that is bounded and star-shaped with respect to B(xc , rc) and contained within B(xc ,R). Then
Ω satisfies an interior cone condition with radius rc and angle ϕ = 2arcsin (rc/2R).
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Approximation by Finite Elements

Bramble-Hilbert Lemma

Consider the interpolation operator Is over s = t(t + 1)/2 points z1, z2, . . . , zs on Ω which maps from
H t → Pt−1 well-defined for polynomials of degree ≤ t − 1, t ≥ 2. Assume the domain Ω ⊂ R2 has Lipschitz
continuous boundary and satisfies the cone condition. Then there exists a constant c = c(Ω, z1, . . . , zs) so the
following bound holds

∥u − Isu∥t ≤ c|u|t , ∀u ∈ H t(Ω).

Proof: Let

∥|v∥| := |v |t +
s∑

i=1

|v(zi )|.

We show the norms ∥| · ∥| and ∥ · ∥t are equivalent. If this were the case, the bound would follow from

∥u − Isu∥t ≤ c∥|u − Isu∥| = c

(
|u − Isu|t +

s∑
i=1

|(u − Isu)(zi )|

)
= c|u − Isu|t = c|u|t .

This makes use of Isu(zi ) = u(zi ) at the interpolation points and that DαIsu = 0 for all |α| = t.
We obtain one direction of equivalence, since H t ⊂ H2 ⊂ C 0 by the Sobolev Embedding Theorem, so we have

|v(zi )| ≤ c∥v∥t ⇒ ∥|v∥| ≤ (1 + cs)∥v∥t .
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Proof (continued):

To get the other direction, we do proof by contradiction. Suppose that

∥v∥t ≤ c∥|v∥|, ∀v ∈ H t(Ω) fails for every positive c .

This would imply there exists a sequence {vk} in H t(Ω) with k ≥ 1

∥vk∥t = 1, ∥|vk∥| ≤ 1/k.

We can select a subseqeunce that converges in H t−1(Ω) (Rellich Selection Theorem). WLOG, assume the
sequence vk itself converges. Since |vk |t → 0, we have by Cauchy sequence that
∥vk − vℓ∥t ≤ ∥vk − vℓ∥t−1 + (|vk |t + |vℓ|t)2. This shows that vk is also a Cauchy sequence in H t(Ω). By
completeness there exists a v∗ ∈ H t(Ω). By continuity we have

∥v∗∥t = 1 and ∥|v∗∥| = 0.
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Proof (continued): By completeness there exists a v∗ ∈ H t(Ω). By continuity we have

∥v∗∥t = 1 and ∥|v∗∥| = 0.

This implies that |v∗|t = 0 which implies v∗ is a polynomial in Pt−1. Since v∗(zi ) = 0 we have the null
polynomial v∗ ≡ 0.

The v∗ needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false.
Therefore,

∥v∥t ≤ c∥|v∥|, ∀v ∈ H1(Ω).
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Approximation by Finite Elements

Bramble-Hilbert Lemma II:

Let Ω ⊂ R2 be domain with Lipschitz continuous boundary. Suppose t ≥ 2 and L is a bounded linear mapping
of H t(Ω) into a normed linear space Z. If Pt−1 ⊂ ker(L), then there exists a constant c = c(Ω)∥L∥ ≥ 0, so that

∥Lv∥Z ≤ c|v |t , for all v ∈ H t(Ω).

Proof:

Let Ih : H t(Ω) → Pt−1 be the interpolation operator. Using the first BH-Lemma and fact Ih(v) ∈ ker(L) we
have

∥Lv∥Z = ∥L(v − Ihv)∥Z ≤ ∥L∥ · ∥v − Ihv∥t ≤ c∥L∥ · |v |t .
■
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This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t ≥ 2 and suppose Th = hT ref

1 = {(x , y) | ỹ ≤ x̃ , x̃ ∈ [0, h]}.
Given v ∈ H t(T ref

1 ) we have v(x , y) = w(hx , hy), so ∂αv = h|α|∂αw with |α| ≤ t. Now
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1 = {(x , y) | ỹ ≤ x̃ , x̃ ∈ [0, h]}.
Given v ∈ H t(T ref

1 ) we have v(x , y) = w(hx , hy), so ∂αv = h|α|∂αw with |α| ≤ t. Now

∥w∥2m,Th
=

∑
ℓ≤m

|w |2ℓ,Th
=
∑
ℓ≤m

h−2ℓ+2|v |2ℓ,T ref
1

≤ h−2m+2∥v∥2m,T ref
1
,

|v |2ℓ,T ref
1

=
∑
|α|=ℓ

∫
T ref
1

(∂αv)2 dxref =
∑
|α|=ℓ

∫
Th

h2ℓ (∂αw)2 h−2dx = h2ℓ−2|w |2ℓ,Th
.

Now let w = u − Ihu then we obtain

∥u − Ihu∥m,Th ≤ h−m+1∥u − Ihu∥m,T ref
1

≤ h−m+1∥u − Ihu∥t,T ref
1

≤ h−m+1c|u|t,T ref
1

≤ ht−mc|u|t,Th . ■

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Approximation by Finite Elements

Theorem for Triangulations

Consider Th a shape-regular triangulation of Ω. For t ≥ 2 there exists a constant c = c(Ω.κ, t) such that

∥u − Ihu∥m,h ≤ cht−m|u|t,Ω ∀u ∈ H t(Ω), 0 ≤ m ≤ t.

The Ih denotes the interpolation operator by piecewise polynomials of degree ≤ t − 1.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Remark: Let t ≥ 2 and suppose Th = hT ref
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Approximation by Finite Elements

Transformation Formula

Let Ω and Ω̂ be affine equivalent in sense that there exists a bijective affine mapping

F | Ω̂ → Ω

F x̂ = x0 + Bx̂ (B non-singular linear operator)

If v ∈ Hm(Ω), then v̂ := v ◦ F ∈ Hm(Ω̂) and there exists constant c = c(Ω̂,m) so that

|v̂ |m,Ω̂ ≤ c∥B∥m| detB|−1/2|v |m,Ω.

Proof:
By the chain rule we have for directions ŷ1, . . . ŷm that

Dmv̂(x̂)(ŷ1, . . . , ŷm) = Dmv(x)(Bŷ1, . . . ,Bŷm).

This gives ∥Dmv̂∥Rnm ≤ ∥B∥m∥Dmv∥Rnm . The derivatives are estimated by ∂i1 . . . ∂imv = Dmv(ei1 , . . . , eim ) to
obtain ∑

|α|=m

|∂αv̂ |2 ≤ nm max
|α|=m

|∂αv̂ |2 ≤ nm∥Dmv̂∥2 ≤ nm∥B∥2m∥Dmv∥2 ≤ n2m∥B∥2m
∑

|α|=m

|∂αv |2.
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Proof:

Integrating both size and using Jacobian of the transformation

|v̂ |2m,Ω̂ =

∫
Ω̂

∑
|α|=m

|∂αv̂ |2d x̂ ≤ n2m∥B∥2m
∫
Ω

∑
|α|=m

|∂αv |2 · |detB−1|dx = n2m∥B∥2m| detB|−1|v |2m,Ω.

By taking square root we obtain the bound. ■
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Approximation by Finite Elements

Definition

For triangle Tj ∈ T ,
ρj is the largest radius of circle inscribed in Tj ,
rj is the smallest radius of circle containing Tj ,
hj =

1
2
diameter(Tj).

A mesh Th is called shape-regular if there exists a κ so that for every
triangle T ∈ Th

ρT ≥ hT/κ.

Let F |T1 → T2 then x̂ → Bx̂ + X0 is an affine map.

Claim: ∥B∥ ≤ r2/ρ1, and ∥B−1∥ ≤ r1/ρ2.

Note: Gives condition number ∥B∥∥B−1∥ ≤ r1r2/(ρ1ρ2).

This will become poor for triangles that are small ”slivers.”
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hj =

1
2
diameter(Tj).

A mesh Th is called shape-regular if there exists a κ so that for every
triangle T ∈ Th

ρT ≥ hT/κ.

We now prove

Theorem for Triangulations

Consider Th a shape-regular triangulation of Ω. For t ≥ 2 there exists a constant c = c(Ω, κ, t) such that

∥u − Ihu∥m,h ≤ cht−m|u|t,Ω, ∀u ∈ H t(Ω), 0 ≤ m ≤ t.

The Ih denotes the interpolation operator by piecewise polynomials of degree ≤ t − 1.
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This is proved by showing the inequality holds on each triangle Tj of a shape-regular triangulation Th.
We choose as our reference triangle T̂ = {(x , y)|0 ≤ y ≤ 1− x , x ∈ [0, 1]} the half-square which has r̂ = 2−1/2

and ρ̂ = (2 +
√
2)−1 ≥ 2/7. Let F : Tref → T with T = Tj ∈ Th. Now by applying transform formula to F we

obtain

|u − Ihu|m,T ≤ c∥B∥−m| detB|−1/2|û − Ihû|m,Tref ≤ c∥B∥−m| detB|−1/2 · c|û|t,Tref

≤ c∥B∥−m| detB|−1/2 · c∥B∥t · | detB|1/2|u|t,T ≤ c
(
∥B∥∥B−1∥

)m
∥B∥t−m|u|t,T .

By the shape regularity we have r/ρ ≤ κ and ∥B∥ · ∥B−1∥ ≤ (2 +
√
2)κ. This implies ∥B∥ ≤ h/ρ̂ ≤ 4h. Putting

this together we obtain
|u − Ihu|ℓ,T ≤ cht−ℓ|u|t,T .

By summing the squares of these local inequalities we obtain the global bound stated in the theorem. ■
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Approximation by Finite Elements

Theorem for Quadrilateral Bilinear Elements
Consider Th a quasi-uniform decomposition of Ω into parallelograms. There
exists a constant c = c(Ω, κ) such that

∥u − Ihu∥m,Ω ≤ ch2−m|u|2,Ω, ∀u ∈ H2(Ω).

The Ih denotes the interpolation operator by piecewise bilinear elements.

Proof: It suffices to show interpolation on the unit square K = [0, 1]× [0, 1] satisfies

∥u − Ihu∥2,K ≤ c|u|2,K, ∀u ∈ H2(K).

By embedding theorem H2(K) ⊂ C 0(K) so values of u at the four corners are bounded by c∥u∥2,K.

The interpolation operator Ih depends linearly on these four vertices, so

∥Ihu∥2,K ≤ c1 max
x∈K

|u(x)| ≤ c2∥u∥2,K

.
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The Ih denotes the interpolation operator by piecewise bilinear elements.

Proof (continued): The interpolation operator Ih depends linearly on these four vertices,

so

∥Ihu∥2,K ≤ c1 max
x∈K

|u(x)| ≤ c2∥u∥2,K.

This yields
∥u − Ihu∥2 ≤ ∥u∥2 + ∥Ihu∥2 ≤ (c2 + 1)∥u∥2.

When u is linear polynomial then Ihu = u and u − Ihu = 0.
By Bramble-Hilbert II we have the result. ■

Remark: For Serendipity Elements a similar proof technique can be used to obtain
∥u − Ihu∥m,Ω ≤ cht−m|u|t,Ω, ∀u ∈ H t(Ω), m = 0, 1, t = 2, 3.
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Approximation by Finite Elements

Theorem (Inverse Estimate)

Consider affine family of elements {Sh} with piecewise polynomials of degree k having uniform partitions. There
exists a constant c = c(κ, k, t) so that

∥vh∥t,h ≤ chm−t∥vh∥m,h, 0 ≤ m ≤ t, vh ∈ Sh.

Proof (sketch):
By use of reference element T and transformation formula this reduces to proving

|v |t,T ≤ c|v |m,T ∀v ∈ P,

where c = c(P). We scale by h the unit reference element which yields the factor chm−t (as in prior proofs).

We use the equivalence of the norms ∥ · ∥t,T and ∥ · ∥m,T on the finite dimensional space Q = P
⊕

Pm−1.
Let Ihv ∈ Pm−1 be the polynomial interpolation at fixed points. Since t > m, we have |Ihv |t = 0.
By the Bramble-Hilbert lemma

|v |t = |v − Ihv |t ≤ ∥v − Ihv∥t ≤ c∥v − Ihv∥m ≤ c ′|v |m.

■
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Clément’s Interpolation

The interpolation operator Ih could only be applied to H2 functions. Alternative for H1.

Let Th be a shape-regular triangulation of Ω. Given node xj , let

ωj := ωxj :=
⋃

T ′ | xj∈T ′

T ′, (support), ω̄T :=
⋃

{ωj |, xj ∈ T} (neighborhood) .

By shape regularity the area satisfies estimate µ(ω̄T ) ≤ c(κ)h2
T and number triangles belonging to ω̄T is

bounded.

Clément’s Interpolation

Under the conditions above, there exists linear mapping Ih : H1(Ω) → M1
0 so that

∥v − Ihv∥m,T ≤ ch1−m
T ∥v∥1,ω̄T ∀v ∈ H1(Ω),m = 0, 1,T ∈ Th

∥v − Ihv∥0,e ≤ ch
1/2
T ∥v∥1,ω̄T ∀v ∈ H1(Ω), e ∈ ∂T ,T ∈ Th.

How do we construct such an operator Ih in practice?
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Clément’s Interpolation

Construction of interpolant:

ωj := ωxj :=
⋃

T ′ | xj∈T ′

T ′, (support), ω̄T :=
⋃

{ωj |, xj ∈ T} (neighborhood).

For a given nodal point xj let

Q̄jv =

{
0 if xj ∈ ΓD

Qjv otherwise.
, Qj : L2(ωj) → P0.

The Qj is the L2-projection onto constant functions.
The ΓD ⊂ ∂Ω is part with Dirichlet boundary conditions.

Clément’s Interpolation:

Ihv :=
∑
j

(Q̄jv)vj ∈ M1
0, v ∈ H1(Ω).

The cardinal shape functions vj form a partition of unity for elements (one on node j , zero at other nodes).

Significance: Allows for a notion of interpolation of non-smooth functions, v ∈ H1(Ω).
The Ih has well-controlled error bounds (see above).
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Construction of interpolant:

ωj := ωxj :=
⋃

T ′ | xj∈T ′

T ′, (support), ω̄T :=
⋃

{ωj |, xj ∈ T} (neighborhood).

For a given nodal point xj let

Q̄jv =

{
0 if xj ∈ ΓD

Qjv otherwise.
, Qj : L2(ωj) → P0.

The Qj is the L2-projection onto constant functions.
The ΓD ⊂ ∂Ω is part with Dirichlet boundary conditions.

Clément’s Interpolation:

Ihv :=
∑
j

(Q̄jv)vj ∈ M1
0, v ∈ H1(Ω).

The cardinal shape functions vj form a partition of unity for elements (one on node j , zero at other nodes).

Significance: Allows for a notion of interpolation of non-smooth functions, v ∈ H1(Ω).
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