FEM Approximation Properties and Convergence

Paul J. Atzberger

206D: Finite Element Methods University of California Santa Barbara

Definition

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m*-norm for $m \ge 1$ as

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m*-norm for $m \ge 1$ as

$$\|\mathbf{v}\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|\mathbf{v}\|_{m,T_j}}.$$

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m*-norm for $m \ge 1$ as

$$\|\mathbf{v}\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|\mathbf{v}\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m*-norm for $m \ge 1$ as

$$\|\mathbf{v}\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|\mathbf{v}\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $\|v\|_{m,h} = \|v\|_m$.

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m*-norm for $m \ge 1$ as

$$\|\mathbf{v}\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|\mathbf{v}\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $||v||_{m,h} = ||v||_m$. For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative.

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m*-norm for $m \ge 1$ as

$$\|\mathbf{v}\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|\mathbf{v}\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $\|v\|_{m,h} = \|v\|_m$. For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative. Denote by $S_h = S(\mathcal{T}_h)$ the **space generated by** \mathcal{T}_h .

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m*-norm for $m \ge 1$ as

$$\|\mathbf{v}\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|\mathbf{v}\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $\|v\|_{m,h} = \|v\|_m$. For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative. Denote by $S_h = S(\mathcal{T}_h)$ the space generated by \mathcal{T}_h .

Definition

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m*-norm for $m \ge 1$ as

$$\|\mathbf{v}\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|\mathbf{v}\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $||v||_{m,h} = ||v||_m$. For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative. Denote by $S_h = S(\mathcal{T}_h)$ the **space generated by** \mathcal{T}_h .

Definition

The interpolation associated with elements of S_h having nodal variables $N_i[v]$ is the mapping

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m*-norm for $m \ge 1$ as

$$\|\mathbf{v}\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|\mathbf{v}\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $||v||_{m,h} = ||v||_m$. For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative. Denote by $S_h = S(\mathcal{T}_h)$ the **space generated by** \mathcal{T}_h .

Definition

The interpolation associated with elements of S_h having nodal variables $N_i[v]$ is the mapping

```
\mathcal{I}_h: H^m(\Omega) \to \mathcal{S}_h, so that w|_{\mathcal{I}_i} = [\mathcal{I}_h v]_{\mathcal{I}_i} satisfies N_i[w] = N_i[v].
```

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m*-norm for $m \ge 1$ as

$$\|\mathbf{v}\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|\mathbf{v}\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $||v||_{m,h} = ||v||_m$. For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative. Denote by $S_h = S(\mathcal{T}_h)$ the **space generated by** \mathcal{T}_h .

Definition

The interpolation associated with elements of S_h having nodal variables $N_i[v]$ is the mapping

$$\mathcal{I}_h: H^m(\Omega) \to \mathcal{S}_h$$
, so that $w|_{\mathcal{T}_i} = [\mathcal{I}_h v]_{\mathcal{T}_i}$ satisfies $N_i[w] = N_i[v]$.

When $N_i[v] = v(\mathbf{x}_i)$ and $\mathcal{P} = \mathcal{P}_t$ this is piecewise polynomial interpolation of the nodal values.

Definition

For a partition $\mathcal{T}_h = \{T_1, T_2, \dots, T_N\}$, define the **mesh-dependent** *m*-norm for $m \ge 1$ as

$$\|\mathbf{v}\|_{m,h} := \sqrt{\sum_{T_j \in \mathcal{T}_h} \|\mathbf{v}\|_{m,T_j}}.$$

Technically, this might not always be a proper norm but is useful for analysis.

For each $v \in H^m(\Omega)$ we have $\|v\|_{m,h} = \|v\|_m$. For 1D, $m \ge 2$ by the Sobolev Embedding Theorem $H^m(\Omega) \subset C^0(\Omega)$, where v has a continuous representative. Denote by $S_h = S(\mathcal{T}_h)$ the space generated by \mathcal{T}_h .

Definition

The interpolation associated with elements of S_h having nodal variables $N_i[v]$ is the mapping

$$\mathcal{I}_h: H^m(\Omega) \to \mathcal{S}_h$$
, so that $w|_{\mathcal{T}_i} = [\mathcal{I}_h v]_{\mathcal{T}_i}$ satisfies $N_i[w] = N_i[v]$.

When $N_i[v] = v(\mathbf{x}_i)$ and $\mathcal{P} = \mathcal{P}_t$ this is piecewise polynomial interpolation of the nodal values. **Goal:** Obtain estimates of $||v - I_h v||_{m,h}$ in terms of $||v||_{t,\Omega}$ and h with $m \leq t$.

Paul J. Atzberger, UCSB

Finite Element Methods

A domain Ω is said to be **star-shaped** with respect to a ball $\mathcal{B}(\mathbf{x}_0, r) := {\mathbf{x} \in \mathbb{R}^d | ||\mathbf{x} - \mathbf{x}_0|| \le r}$, if for every $\mathbf{x} \in \Omega$ the closed convex hull of ${\mathbf{x}} \bigcup \mathcal{B}$ is contained in Ω .

A domain Ω is said to be **star-shaped** with respect to a ball $\mathcal{B}(\mathbf{x}_0, r) := {\mathbf{x} \in \mathbb{R}^d | ||\mathbf{x} - \mathbf{x}_0|| \le r}$, if for every $\mathbf{x} \in \Omega$ the closed convex hull of ${\mathbf{x}} \bigcup \mathcal{B}$ is contained in Ω .

Definition

A domain Ω is said to be **star-shaped** with respect to a ball $\mathcal{B}(\mathbf{x}_0, r) := {\mathbf{x} \in \mathbb{R}^d || \mathbf{x} - \mathbf{x}_0 || \le r}$, if for every $\mathbf{x} \in \Omega$ the closed convex hull of ${\mathbf{x}} \bigcup \mathcal{B}$ is contained in Ω .

Definition

For a bounded domain Ω , the **chunkiness parameter** γ is defined to be the ratio of the diameter d_{Ω} of Ω to the largest radius r_{max} for which Ω is star-shaped, $\gamma = d_{\Omega}/r_{max}$.

A domain Ω is said to be **star-shaped** with respect to a ball $\mathcal{B}(\mathbf{x}_0, r) := {\mathbf{x} \in \mathbb{R}^d | ||\mathbf{x} - \mathbf{x}_0|| \le r}$, if for every $\mathbf{x} \in \Omega$ the closed convex hull of ${\mathbf{x}} \bigcup \mathcal{B}$ is contained in Ω .

Definition

For a bounded domain Ω , the **chunkiness parameter** γ is defined to be the ratio of the diameter d_{Ω} of Ω to the largest radius r_{max} for which Ω is star-shaped, $\gamma = d_{\Omega}/r_{max}$.

An open domain Ω is said to satisfy the **cone condition** with angle ϕ and radius r if at every point $\mathbf{x} \in \Omega$ we have $\mathbf{x} + C_{\phi,r,\mathbf{e}_{\mathbf{x}}} \subset \Omega$ for some orientation $\mathbf{e}_{\mathbf{x}}$.

Lemma

A domain Ω is said to be **star-shaped** with respect to a ball $\mathcal{B}(\mathbf{x}_0, r) := {\mathbf{x} \in \mathbb{R}^d | ||\mathbf{x} - \mathbf{x}_0|| \le r}$, if for every $\mathbf{x} \in \Omega$ the closed convex hull of ${\mathbf{x}} \bigcup \mathcal{B}$ is contained in Ω .

Definition

For a bounded domain Ω , the **chunkiness parameter** γ is defined to be the ratio of the diameter d_{Ω} of Ω to the largest radius r_{max} for which Ω is star-shaped, $\gamma = d_{\Omega}/r_{max}$.

An open domain Ω is said to satisfy the **cone condition** with angle ϕ and radius r if at every point $\mathbf{x} \in \Omega$ we have $\mathbf{x} + C_{\phi,r,\mathbf{e}_{\mathbf{x}}} \subset \Omega$ for some orientation $\mathbf{e}_{\mathbf{x}}$.

Lemma

Consider an Ω that is bounded and star-shaped with respect to $\mathcal{B}(\mathbf{x}_c, r_c)$ and contained within $\mathcal{B}(\mathbf{x}_c, R)$. Then Ω satisfies an **interior cone condition** with radius r_c and angle $\phi = 2 \arcsin(r_c/2R)$.

Bramble-Hilbert Lemma

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof:

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof: Let

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof: Let

$$||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof: Let

$$||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof: Let

$$||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof: Let

$$||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

 $\|u - \mathcal{I}_s u\|_t \leq c \||u - I_s u\||$

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof: Let

$$||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$\|u - \mathcal{I}_s u\|_t \leq c \||u - I_s u\|| = c \left(|u - \mathcal{I}_s u|_t + \sum_{i=1}^s |(u - \mathcal{I}_s u)(z_i)| \right)$$

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof: Let

$$||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$|u-\mathcal{I}_s u||_t \leq c |||u-I_s u||| = c \left(|u-\mathcal{I}_s u|_t + \sum_{i=1}^s |(u-\mathcal{I}_s u)(z_i)|\right) = c|u-\mathcal{I}_s u|_t = c|u|_t.$$

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof: Let

$$||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$|u-\mathcal{I}_s u||_t \leq c |||u-I_s u||| = c \left(|u-\mathcal{I}_s u|_t + \sum_{i=1}^s |(u-\mathcal{I}_s u)(z_i)|\right) = c|u-\mathcal{I}_s u|_t = c|u|_t.$$

This makes use of $\mathcal{I}_s u(z_i) = u(z_i)$ at the interpolation points

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof: Let

$$||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$|u-\mathcal{I}_{s}u||_{t}\leq c|||u-I_{s}u||=c\left(|u-\mathcal{I}_{s}u|_{t}+\sum_{i=1}^{s}|(u-\mathcal{I}_{s}u)(z_{i})|\right)=c|u-\mathcal{I}_{s}u|_{t}=c|u|_{t}.$$

This makes use of $\mathcal{I}_s u(z_i) = u(z_i)$ at the interpolation points and that $D^{\alpha} \mathcal{I}_s u = 0$ for all $|\alpha| = t$.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof: Let

$$||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$|u-\mathcal{I}_{s}u||_{t}\leq c|||u-I_{s}u||=c\left(|u-\mathcal{I}_{s}u|_{t}+\sum_{i=1}^{s}|(u-\mathcal{I}_{s}u)(z_{i})|\right)=c|u-\mathcal{I}_{s}u|_{t}=c|u|_{t}.$$

This makes use of $\mathcal{I}_s u(z_i) = u(z_i)$ at the interpolation points and that $D^{\alpha} \mathcal{I}_s u = 0$ for all $|\alpha| = t$. We obtain one direction of equivalence, since $H^t \subset H^2 \subset C^0$ by the Sobolev Embedding Theorem, so we have

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof: Let

$$||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$\|u-\mathcal{I}_{\mathfrak{s}}u\|_{\mathfrak{t}}\leq c\||u-I_{\mathfrak{s}}u\||=c\left(|u-\mathcal{I}_{\mathfrak{s}}u|_{\mathfrak{t}}+\sum_{i=1}^{\mathfrak{s}}|(u-\mathcal{I}_{\mathfrak{s}}u)(z_{i})|
ight)=c|u-\mathcal{I}_{\mathfrak{s}}u|_{\mathfrak{t}}=c|u|_{\mathfrak{t}}.$$

This makes use of $\mathcal{I}_s u(z_i) = u(z_i)$ at the interpolation points and that $D^{\alpha} \mathcal{I}_s u = 0$ for all $|\alpha| = t$. We obtain one direction of equivalence, since $H^t \subset H^2 \subset C^0$ by the Sobolev Embedding Theorem, so we have

$$|v(z_i)| \leq c \|v\|_t \Rightarrow \||v\||$$
Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof: Let

$$||v||| := |v|_t + \sum_{i=1}^s |v(z_i)|.$$

We show the norms $\||\cdot\||$ and $\|\cdot\|_t$ are equivalent. If this were the case, the bound would follow from

$$\|u-\mathcal{I}_{\mathfrak{s}}u\|_{\mathfrak{t}}\leq c\||u-I_{\mathfrak{s}}u\||=c\left(|u-\mathcal{I}_{\mathfrak{s}}u|_{\mathfrak{t}}+\sum_{i=1}^{\mathfrak{s}}|(u-\mathcal{I}_{\mathfrak{s}}u)(z_{i})|
ight)=c|u-\mathcal{I}_{\mathfrak{s}}u|_{\mathfrak{t}}=c|u|_{\mathfrak{t}}.$$

This makes use of $\mathcal{I}_s u(z_i) = u(z_i)$ at the interpolation points and that $D^{\alpha} \mathcal{I}_s u = 0$ for all $|\alpha| = t$. We obtain one direction of equivalence, since $H^t \subset H^2 \subset C^0$ by the Sobolev Embedding Theorem, so we have

$$|v(z_i)| \leq c ||v||_t \Rightarrow |||v||| \leq (1+cs)||v||_t.$$

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued):

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that $\|v\|_t \leq c \||v\||, \ \forall v \in H^t(\Omega)$ fails for every positive c.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that $\|v\|_t \leq c \||v\||, \quad \forall v \in H^t(\Omega)$ fails for every positive c.

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \ge 1$

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

 $\|v\|_t \leq c \||v\||, \ \forall v \in H^t(\Omega)$ fails for every positive c.

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \ge 1$

 $\|v_k\|_t = 1, \ \||v_k\|| \le 1/k.$

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

 $\|v\|_t \leq c \||v\||, \ \forall v \in H^t(\Omega)$ fails for every positive c.

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \ge 1$

$$\|v_k\|_t = 1, \||v_k\|| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem).

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

 $\|v\|_t \leq c \||v\||, \ \forall v \in H^t(\Omega)$ fails for every positive c.

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \ge 1$

$$\|v_k\|_t = 1, \ \||v_k\|| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_k itself converges.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

 $\|v\|_t \leq c \||v\||, \ \forall v \in H^t(\Omega)$ fails for every positive c.

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \ge 1$

$$\|v_k\|_t = 1, \ \||v_k\|| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_k itself converges. Since $|v_k|_t \to 0$, we have by Cauchy sequence that $||v_k - v_\ell||_t \le ||v_k - v_\ell||_{t-1} + (|v_k|_t + |v_\ell|_t)^2$.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

 $\|v\|_t \leq c \||v\||, \ \forall v \in H^t(\Omega)$ fails for every positive c.

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \ge 1$

$$\|v_k\|_t = 1, \ \||v_k\|| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_k itself converges. Since $|v_k|_t \to 0$, we have by Cauchy sequence that $||v_k - v_\ell||_t \le ||v_k - v_\ell||_{t-1} + (|v_k|_t + |v_\ell|_t)^2$. This shows that v_k is also a Cauchy sequence in $H^t(\Omega)$.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

 $\|v\|_t \leq c \||v\||, \ \forall v \in H^t(\Omega)$ fails for every positive c.

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \ge 1$

$$\|v_k\|_t = 1, \ \||v_k\|| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_k itself converges. Since $|v_k|_t \to 0$, we have by Cauchy sequence that $||v_k - v_\ell||_t \le ||v_k - v_\ell||_{t-1} + (|v_k|_t + |v_\ell|_t)^2$. This shows that v_k is also a Cauchy sequence in $H^t(\Omega)$. By completeness there exists a $v^* \in H^t(\Omega)$.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

 $\|v\|_t \leq c \||v\||, \ \forall v \in H^t(\Omega)$ fails for every positive c.

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \ge 1$

$$\|v_k\|_t = 1, \ \||v_k\|| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_k itself converges. Since $|v_k|_t \to 0$, we have by Cauchy sequence that $||v_k - v_\ell||_t \le ||v_k - v_\ell||_{t-1} + (|v_k|_t + |v_\ell|_t)^2$. This shows that v_k is also a Cauchy sequence in $H^t(\Omega)$. By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_{t-1}$ well-defined for polynomials of degree $\leq t-1$, $t \geq 2$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): To get the other direction, we do proof by contradiction. Suppose that

 $\|v\|_t \leq c \||v\||, \ \forall v \in H^t(\Omega)$ fails for every positive c.

This would imply there exists a sequence $\{v_k\}$ in $H^t(\Omega)$ with $k \ge 1$

$$\|v_k\|_t = 1, \ \||v_k\|| \le 1/k.$$

We can select a subsequence that converges in $H^{t-1}(\Omega)$ (Rellich Selection Theorem). WLOG, assume the sequence v_k itself converges. Since $|v_k|_t \to 0$, we have by Cauchy sequence that $||v_k - v_\ell||_t \le ||v_k - v_\ell||_{t-1} + (|v_k|_t + |v_\ell|_t)^2$. This shows that v_k is also a Cauchy sequence in $H^t(\Omega)$. By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

 $\|v^*\|_t = 1$ and $\||v^*\|| = 0.$

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

 $\|v^*\|_t = 1$ and $\||v^*\|| = 0$.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

 $\|v^*\|_t = 1$ and $\||v^*\|| = 0.$

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} .

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

 $\|v^*\|_t = 1$ and $\||v^*\|| = 0.$

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} . Since $v^*(z_i) = 0$ we have the null polynomial $v^* \equiv 0$.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

 $\|v^*\|_t = 1$ and $\||v^*\|| = 0.$

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} . Since $v^*(z_i) = 0$ we have the null polynomial $v^* \equiv 0$.

The v^* needing to be null polynomial gives a contradiction.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

 $\|v^*\|_t = 1$ and $\||v^*\|| = 0.$

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} . Since $v^*(z_i) = 0$ we have the null polynomial $v^* \equiv 0$.

The v^* needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false.

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

 $\|v^*\|_t = 1$ and $\||v^*\|| = 0.$

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} . Since $v^*(z_i) = 0$ we have the null polynomial $v^* \equiv 0$.

The v^* needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false. Therefore,

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

 $\|v^*\|_t = 1$ and $\||v^*\|| = 0.$

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} . Since $v^*(z_i) = 0$ we have the null polynomial $v^* \equiv 0$.

The v^* needing to be null polynomial gives a contradiction. Having no *c* exist for the bound must be false. Therefore,

$$\|oldsymbol{v}\|_t \leq c \||oldsymbol{v}\||, \ \ orall oldsymbol{v} \in H^1(\Omega).$$

Consider the interpolation operator \mathcal{I}_s over s = t(t+1)/2 points z_1, z_2, \ldots, z_s on $\overline{\Omega}$ which maps from $H^t \to \mathcal{P}_t$ well-defined for polynomials of degree $\leq t-1$. Assume the domain $\Omega \subset \mathbb{R}^2$ has Lipschitz continuous boundary and satisfies the cone condition. Then there exists a constant $c = c(\Omega, z_1, \ldots, z_s)$ so the following bound holds

 $\|u - \mathcal{I}_s u\|_t \leq c |u|_t, \ \forall u \in H^t(\Omega).$

Proof (continued): By completeness there exists a $v^* \in H^t(\Omega)$. By continuity we have

 $\|v^*\|_t = 1$ and $\||v^*\|| = 0.$

This implies that $|v^*|_t = 0$ which implies v^* is a polynomial in \mathcal{P}_{t-1} . Since $v^*(z_i) = 0$ we have the null polynomial $v^* \equiv 0$.

The v^* needing to be null polynomial gives a contradiction. Having no c exist for the bound must be false. Therefore,

$$\|oldsymbol{v}\|_t \leq c \||oldsymbol{v}\||, \ \ orall oldsymbol{v} \in H^1(\Omega).$$

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

 $\|Lv\|_{\mathcal{Z}} \leq c|v|_t, \;\; ext{for all } v \in H^t(\Omega).$

Proof:

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

 $\|Lv\|_{\mathcal{Z}} \leq c|v|_t$, for all $v \in H^t(\Omega)$.

Proof:

Let $\mathcal{I}_h : H^t(\Omega) \to \mathcal{P}_{t-1}$ be the interpolation operator.

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

 $\|Lv\|_{\mathcal{Z}} \leq c|v|_t$, for all $v \in H^t(\Omega)$.

Proof:

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

 $\|Lv\|_{\mathcal{Z}} \leq c|v|_t$, for all $v \in H^t(\Omega)$.

Proof:

$$\|Lv\|_{\mathcal{Z}} = \|L(v - \mathcal{I}_h v)\|_{\mathcal{Z}}$$

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

 $\|Lv\|_{\mathcal{Z}} \leq c|v|_t$, for all $v \in H^t(\Omega)$.

Proof:

$$\|Lv\|_{\mathcal{Z}} = \|L(v - \mathcal{I}_h v)\|_{\mathcal{Z}} \le \|L\| \cdot \|v - \mathcal{I}_h v\|_t$$

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

 $\|Lv\|_{\mathcal{Z}} \leq c|v|_t$, for all $v \in H^t(\Omega)$.

Proof:

$$\|Lv\|_{\mathcal{Z}} = \|L(v-\mathcal{I}_hv)\|_{\mathcal{Z}} \leq \|L\|\cdot\|v-\mathcal{I}_hv\|_t \leq c\|L\|\cdot|v|_t.$$

Let $\Omega \subset \mathbb{R}^2$ be domain with Lipschitz continuous boundary. Suppose $t \geq 2$ and L is a bounded linear mapping of $H^t(\Omega)$ into a normed linear space \mathcal{Z} . If $\mathcal{P}_{t-1} \subset \ker(L)$, then there exists a constant $c = c(\Omega) \|L\| \geq 0$, so that

 $\|Lv\|_{\mathcal{Z}} \leq c|v|_t$, for all $v \in H^t(\Omega)$.

Proof:

$$\|Lv\|_{\mathcal{Z}} = \|L(v-\mathcal{I}_hv)\|_{\mathcal{Z}} \leq \|L\|\cdot\|v-\mathcal{I}_hv\|_t \leq c\|L\|\cdot|v|_t.$$

Theorem for Triangulations

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω .

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$|u - \mathcal{I}_h u||_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$|u - \mathcal{I}_h u||_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem.

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises.
Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}$.

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy),

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$.

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$. Now

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$. Now $\|w\|_{m, T_h}^2 = \sum_{\ell \le m} |w|_{\ell, T_h}^2$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$. Now

$$\|w\|_{m,T_{h}}^{2} = \sum_{\ell \leq m} |w|_{\ell,T_{h}}^{2} = \sum_{\ell \leq m} h^{-2\ell+2} |v|_{\ell,T_{1}^{ref}}^{2}$$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$. Now $\|w\|_{m, T_h}^2 = \sum_{\ell \le m} |w|_{\ell, T_h}^2 = \sum_{\ell \le m} h^{-2\ell+2} |v|_{\ell, T_1^{ref}}^2 \le h^{-2m+2} \|v\|_{m, T_1^{ref}}^2$, $|v|_{\ell, T_1^{ref}}^2$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$. Now

$$\begin{split} \|w\|_{m,T_{h}}^{2} &= \sum_{\ell \leq m} |w|_{\ell,T_{h}}^{2} = \sum_{\ell \leq m} h^{-2\ell+2} |v|_{\ell,T_{1}^{ref}}^{2} \leq h^{-2m+2} \|v\|_{m,T_{1}^{ref}}^{2}, \\ |v|_{\ell,T_{1}^{ref}}^{2} &= \sum_{|\alpha|=\ell} \int_{T_{1}^{ref}} (\partial^{\alpha} v)^{2} d\mathsf{x}^{ref} \end{split}$$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$. Now $\|w\|_{m, T_h}^2 = \sum_{\ell \le m} |w|_{\ell, T_h}^2 = \sum_{\ell \le m} h^{-2\ell+2} |v|_{\ell, T_1^{ref}}^2 \le h^{-2m+2} \|v\|_{m, T_1^{ref}}^2$,

$$|\mathbf{v}|^2_{\ell,T_1^{ref}} = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} \mathbf{v})^2 \, d\mathbf{x}^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} \, (\partial^{\alpha} w)^2 \, h^{-2} d\mathbf{x}$$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$. Now $\|w\|_{m,T_h}^2 = \sum_{\ell \le m} |w|_{\ell,T_h}^2 = \sum_{\ell \le m} h^{-2\ell+2} |v|_{\ell,T_1^{ref}}^2 \le h^{-2m+2} \|v\|_{m,T_1^{ref}}^2$, $|v|_{\ell,T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 d\mathbf{x}^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} (\partial^{\alpha} w)^2 h^{-2} d\mathbf{x} = h^{2\ell-2} |w|_{\ell,T_h}^2$.

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$. Now $\|w\|_{m, T_h}^2 = \sum_{\ell \le m} |w|_{\ell, T_h}^2 = \sum_{\ell \le m} h^{-2\ell+2} |v|_{\ell, T_1^{ref}}^2 \le h^{-2m+2} \|v\|_{m, T_1^{ref}}^2$, $|v|_{\ell, T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 d\mathbf{x}^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} (\partial^{\alpha} w)^2 h^{-2} d\mathbf{x} = h^{2\ell-2} |w|_{\ell, T_h}^2$.

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$. Now $\|w\|_{m, T_h}^2 = \sum_{\ell \le m} |w|_{\ell, T_h}^2 = \sum_{\ell \le m} h^{-2\ell+2} |v|_{\ell, T_1^{ref}}^2 \le h^{-2m+2} \|v\|_{m, T_1^{ref}}^2$, $|v|_{\ell, T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 d\mathbf{x}^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} (\partial^{\alpha} w)^2 h^{-2} d\mathbf{x} = h^{2\ell-2} |w|_{\ell, T_h}^2$.

Now let $w = u - \mathcal{I}_h u$ then we obtain

 $\|u - \mathcal{I}_h u\|_{m, \mathcal{T}_h} \leq h^{-m+1} \|u - \mathcal{I}_h u\|_{m, \mathcal{T}_1^{ref}}$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$. Now $\|w\|_{m, T_h}^2 = \sum_{\ell \le m} |w|_{\ell, T_h}^2 = \sum_{\ell \le m} h^{-2\ell+2} |v|_{\ell, T_1^{ref}}^2 \le h^{-2m+2} \|v\|_{m, T_1^{ref}}^2$, $|v|_{\ell, T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 d\mathbf{x}^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} (\partial^{\alpha} w)^2 h^{-2} d\mathbf{x} = h^{2\ell-2} |w|_{\ell, T_h}^2$.

$$\|u - \mathcal{I}_h u\|_{m, \mathcal{T}_h} \le h^{-m+1} \|u - \mathcal{I}_h u\|_{m, \mathcal{T}_1^{ref}} \le h^{-m+1} \|u - \mathcal{I}_h u\|_{t, \mathcal{T}_1^{ref}}$$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$. Now $\|w\|_{m, T_h}^2 = \sum_{\ell \le m} |w|_{\ell, T_h}^2 = \sum_{\ell \le m} h^{-2\ell+2} |v|_{\ell, T_1^{ref}}^2 \le h^{-2m+2} \|v\|_{m, T_1^{ref}}^2$, $|v|_{\ell, T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 d\mathbf{x}^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} (\partial^{\alpha} w)^2 h^{-2} d\mathbf{x} = h^{2\ell-2} |w|_{\ell, T_h}^2$.

$$\|u - \mathcal{I}_h u\|_{m, \mathcal{T}_h} \le h^{-m+1} \|u - \mathcal{I}_h u\|_{m, \mathcal{T}_1^{ref}} \le h^{-m+1} \|u - \mathcal{I}_h u\|_{t, \mathcal{T}_1^{ref}} \le h^{-m+1} c |u|_{t, \mathcal{T}_1^{ref}}$$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u-\mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

This will be proved later as part of a more general theorem. Below we give sketch of how the bound arises. **Remark:** Let $t \ge 2$ and suppose $T_h = hT_1^{ref} = \{(x, y) \mid \tilde{y} \le \tilde{x}, \ \tilde{x} \in [0, h]\}$. Given $v \in H^t(T_1^{ref})$ we have v(x, y) = w(hx, hy), so $\partial^{\alpha} v = h^{|\alpha|} \partial^{\alpha} w$ with $|\alpha| \le t$. Now $\|w\|_{m, T_h}^2 = \sum_{\ell \le m} |w|_{\ell, T_h}^2 = \sum_{\ell \le m} h^{-2\ell+2} |v|_{\ell, T_1^{ref}}^2 \le h^{-2m+2} \|v\|_{m, T_1^{ref}}^2$, $|v|_{\ell, T_1^{ref}}^2 = \sum_{|\alpha|=\ell} \int_{T_1^{ref}} (\partial^{\alpha} v)^2 d\mathbf{x}^{ref} = \sum_{|\alpha|=\ell} \int_{T_h} h^{2\ell} (\partial^{\alpha} w)^2 h^{-2} d\mathbf{x} = h^{2\ell-2} |w|_{\ell, T_h}^2$.

$$\|u - \mathcal{I}_h u\|_{m, \mathcal{T}_h} \le h^{-m+1} \|u - \mathcal{I}_h u\|_{m, \mathcal{T}_1^{ref}} \le h^{-m+1} \|u - \mathcal{I}_h u\|_{t, \mathcal{T}_1^{ref}} \le h^{-m+1} c |u|_{t, \mathcal{T}_1^{ref}} \le h^{t-m} c |u|_{t, \mathcal{T}_h}.$$

Approximation by Finite Elements

Transformation Formula

Paul J. Atzberger, UCSB

Approximation by Finite Elements

Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$F \mid \hat{\Omega}
ightarrow \Omega$$

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$egin{array}{ccc} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} \end{array}$$
 (B non-singular linear operator

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} & (B ext{ non-singular linear operator}) \end{array}$$

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} & (B ext{ non-singular linear operator}) \end{array}$$

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $|\hat{v}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} & (B ext{ non-singular linear operator}) \end{array}$$

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $|\hat{v}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$

Proof:

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} & (B ext{ non-singular linear operator}) \end{array}$$

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $|\hat{\mathbf{v}}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |\mathbf{v}|_{m,\Omega}.$

Proof:

By the chain rule we have for directions $\hat{y}_1, \ldots \hat{y}_m$ that

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} & (B ext{ non-singular linear operator}) \end{array}$$

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $|\hat{\mathbf{v}}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |\mathbf{v}|_{m,\Omega}.$

Proof:

By the chain rule we have for directions $\hat{y}_1, \ldots, \hat{y}_m$ that

$$D^m \hat{v}(\hat{x})(\hat{y}_1,\ldots,\hat{y}_m) = D^m v(x)(B\hat{y}_1,\ldots,B\hat{y}_m).$$

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} & (B ext{ non-singular linear operator}) \end{array}$$

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $|\hat{\mathbf{v}}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |\mathbf{v}|_{m,\Omega}.$

Proof:

By the chain rule we have for directions $\hat{y}_1, \ldots, \hat{y}_m$ that

$$D^m \hat{v}(\hat{x})(\hat{y}_1,\ldots,\hat{y}_m) = D^m v(x)(B\hat{y}_1,\ldots,B\hat{y}_m).$$

This gives $\|D^m \hat{v}\|_{\mathbb{R}^{nm}} \leq \|B\|^m \|D^m v\|_{\mathbb{R}^{nm}}$.

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} & (B ext{ non-singular linear operator}) \end{array}$$

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $\|\hat{v}\|_{m,\hat{\Omega}}\leq c\|B\|^m|\det B|^{-1/2}|v|_{m,\Omega}.$

Proof:

By the chain rule we have for directions $\hat{y}_1, \ldots, \hat{y}_m$ that

$$D^m \hat{v}(\hat{x})(\hat{y}_1,\ldots,\hat{y}_m) = D^m v(x)(B\hat{y}_1,\ldots,B\hat{y}_m).$$

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} & (B ext{ non-singular linear operator}) \end{array}$$

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $\|\hat{v}\|_{m,\hat{\Omega}}\leq c\|B\|^m|\det B|^{-1/2}|v|_{m,\Omega}.$

Proof:

By the chain rule we have for directions $\hat{y}_1, \ldots, \hat{y}_m$ that

$$D^m \hat{v}(\hat{x})(\hat{y}_1,\ldots,\hat{y}_m) = D^m v(x)(B\hat{y}_1,\ldots,B\hat{y}_m).$$

$$\sum_{|\alpha|=m} |\partial^{\alpha} \hat{\mathbf{v}}|^2 \le n^m \max_{|\alpha|=m} |\partial^{\alpha} \hat{\mathbf{v}}|^2$$

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} & (B ext{ non-singular linear operator}) \end{array}$$

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{\mathbf{v}}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |\mathbf{v}|_{m,\Omega}.$$

Proof:

By the chain rule we have for directions $\hat{y}_1, \ldots, \hat{y}_m$ that

$$D^m \hat{v}(\hat{x})(\hat{y}_1,\ldots,\hat{y}_m) = D^m v(x)(B\hat{y}_1,\ldots,B\hat{y}_m).$$

$$\sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^2 \le n^m \max_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^2 \le n^m \|D^m \hat{v}\|^2$$

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} & (B ext{ non-singular linear operator}) \end{array}$$

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{\mathbf{v}}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |\mathbf{v}|_{m,\Omega}.$$

Proof:

By the chain rule we have for directions $\hat{y}_1, \ldots, \hat{y}_m$ that

$$D^m \hat{v}(\hat{x})(\hat{y}_1,\ldots,\hat{y}_m) = D^m v(x)(B\hat{y}_1,\ldots,B\hat{y}_m).$$

$$\sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^2 \le n^m \max_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^2 \le n^m \|D^m \hat{v}\|^2 \le n^m \|B\|^{2m} \|D^m v\|^2$$

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

$$egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} & (B ext{ non-singular linear operator}) \end{array}$$

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

$$|\hat{\mathbf{v}}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |\mathbf{v}|_{m,\Omega}.$$

Proof:

By the chain rule we have for directions $\hat{y}_1, \ldots, \hat{y}_m$ that

$$D^m \hat{v}(\hat{x})(\hat{y}_1,\ldots,\hat{y}_m) = D^m v(x)(B\hat{y}_1,\ldots,B\hat{y}_m).$$

$$\sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^{2} \leq n^{m} \max_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^{2} \leq n^{m} \|D^{m} \hat{v}\|^{2} \leq n^{m} \|B\|^{2m} \|D^{m} v\|^{2} \leq n^{2m} \|B\|^{2m} \sum_{|\alpha|=m} |\partial^{\alpha} v|^{2}.$$

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

 $egin{aligned} F & \mid & \hat{\Omega}
ightarrow \Omega \ F\hat{x} & = & x_0 + B\hat{x} \quad (B \text{ non-singular linear operator}) \end{aligned}$ If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $|\hat{v}|_{m,\hat{\Omega}}\leq c\|B\|^m|\det B|^{-1/2}|v|_{m,\Omega}.$

Proof:

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

 $egin{aligned} F & \mid & \hat{\Omega}
ightarrow \Omega \ F\hat{x} & = & x_0 + B\hat{x} \quad (B ext{ non-singular linear operator}) \end{aligned}$ If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that $|\hat{v}|_{m,\hat{\Omega}} \leq c ||B||^m |\det B|^{-1/2} |v|_{m,\Omega}. \end{aligned}$

Proof:

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

 $egin{array}{ccc} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} & (B ext{ non-singular linear operator}) \end{array}$

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $|\hat{\mathbf{v}}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |\mathbf{v}|_{m,\Omega}.$

Proof:

$$|\hat{\mathbf{v}}|_{m,\hat{\Omega}}^2 = \int_{\hat{\Omega}} \sum_{|lpha|=m} |\partial^{lpha} \hat{\mathbf{v}}|^2 d\hat{\mathbf{x}}$$

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

 $egin{array}{ccc} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} \end{array}$ (B non-singular linear operator)

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $|\hat{\mathbf{v}}|_{m,\hat{\Omega}}\leq c\|B\|^m|\det B|^{-1/2}|\mathbf{v}|_{m,\Omega}.$

Proof:

$$|\hat{\boldsymbol{v}}|_{m,\hat{\Omega}}^2 = \int_{\hat{\Omega}} \sum_{|\alpha|=m} |\partial^{\alpha} \hat{\boldsymbol{v}}|^2 d\hat{\boldsymbol{x}} \le n^{2m} \|B\|^{2m} \int_{\Omega} \sum_{|\alpha|=m} |\partial^{\alpha} \boldsymbol{v}|^2 \cdot |\mathsf{det}B^{-1}| d\boldsymbol{x}$$

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

 $egin{array}{ccc} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} \end{array}$ (B non-singular linear operator)

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $|\hat{\mathbf{v}}|_{m,\hat{\Omega}}\leq c\|B\|^m|\det B|^{-1/2}|\mathbf{v}|_{m,\Omega}.$

Proof:

$$|\hat{v}|_{m,\hat{\Omega}}^{2} = \int_{\hat{\Omega}} \sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^{2} d\hat{\mathbf{x}} \leq n^{2m} \|B\|^{2m} \int_{\Omega} \sum_{|\alpha|=m} |\partial^{\alpha} v|^{2} \cdot |\mathsf{det}B^{-1}| d\mathbf{x} = n^{2m} \|B\|^{2m} |\mathsf{det}B|^{-1} |v|_{m,\Omega}^{2}.$$

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

 $egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} \end{array}$ (B non-singular linear operator)

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $|\hat{\mathbf{v}}|_{m,\hat{\Omega}}\leq c\|B\|^m|\det B|^{-1/2}|\mathbf{v}|_{m,\Omega}.$

Proof:

Integrating both size and using Jacobian of the transformation

$$|\hat{v}|_{m,\hat{\Omega}}^{2} = \int_{\hat{\Omega}} \sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^{2} d\hat{\mathbf{x}} \leq n^{2m} \|B\|^{2m} \int_{\Omega} \sum_{|\alpha|=m} |\partial^{\alpha} v|^{2} \cdot |\mathsf{det}B^{-1}| d\mathbf{x} = n^{2m} \|B\|^{2m} |\mathsf{det}B|^{-1} |v|_{m,\Omega}^{2}.$$

By taking square root we obtain the bound.
Transformation Formula

Let Ω and $\hat{\Omega}$ be affine equivalent in sense that there exists a bijective affine mapping

 $egin{array}{rcl} F & \mid & \hat{\Omega}
ightarrow \Omega \ F \hat{x} & = & x_0 + B \hat{x} \end{array}$ (B non-singular linear operator)

If $v \in H^m(\Omega)$, then $\hat{v} := v \circ F \in H^m(\hat{\Omega})$ and there exists constant $c = c(\hat{\Omega}, m)$ so that

 $|\hat{v}|_{m,\hat{\Omega}} \leq c \|B\|^m |\det B|^{-1/2} |v|_{m,\Omega}.$

Proof:

Integrating both size and using Jacobian of the transformation

$$|\hat{v}|_{m,\hat{\Omega}}^{2} = \int_{\hat{\Omega}} \sum_{|\alpha|=m} |\partial^{\alpha} \hat{v}|^{2} d\hat{\mathbf{x}} \leq n^{2m} \|B\|^{2m} \int_{\Omega} \sum_{|\alpha|=m} |\partial^{\alpha} v|^{2} \cdot |\mathsf{det}B^{-1}| d\mathbf{x} = n^{2m} \|B\|^{2m} |\mathsf{det}B|^{-1} |v|_{m,\Omega}^{2}.$$

By taking square root we obtain the bound. \blacksquare

Definition

For triangle $T_j \in \mathcal{T}$,

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j ,

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_i is the smallest radius of circle containing T_i ,

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

 $\rho_T \geq h_T/\kappa.$

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

 $\rho_T \geq h_T/\kappa.$

Let $F|T_1 \rightarrow T_2$ then $\hat{x} \rightarrow B\hat{x} + X_0$ is an affine map.

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

 $\rho_T \geq h_T/\kappa.$

Let $F|T_1 \rightarrow T_2$ then $\hat{x} \rightarrow B\hat{x} + X_0$ is an affine map.

Claim: $||B|| \le r_2/\rho_1$, and $||B^{-1}|| \le r_1/\rho_2$.

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

 $\rho_T \geq h_T/\kappa.$

Let $F|T_1 \rightarrow T_2$ then $\hat{x} \rightarrow B\hat{x} + X_0$ is an affine map.

Claim: $||B|| \le r_2/\rho_1$, and $||B^{-1}|| \le r_1/\rho_2$.

Note: Gives condition number $||B|| ||B^{-1}|| \leq r_1 r_2 / (\rho_1 \rho_2)$.

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

 $\rho_T \geq h_T/\kappa.$

Let $F|T_1 \rightarrow T_2$ then $\hat{x} \rightarrow B\hat{x} + X_0$ is an affine map.

Claim: $||B|| \le r_2/\rho_1$, and $||B^{-1}|| \le r_1/\rho_2$.

Note: Gives condition number $||B|| ||B^{-1}|| \leq r_1 r_2 / (\rho_1 \rho_2)$.

This will become poor for triangles that are small "slivers."

Definition

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

 $\rho_T \geq h_T/\kappa.$

Definition

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$
.

We now prove

Definition

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$

We now prove

Theorem for Triangulations

Definition

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$

We now prove

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω .

Definition

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$

We now prove

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega, \kappa, t)$ such that

Definition

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$

We now prove

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega, \kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega}, \quad \forall u \in H^t(\Omega), \quad 0 \leq m \leq t.$$

Definition

For triangle $T_j \in \mathcal{T}$, ρ_j is the largest radius of circle inscribed in T_j , r_j is the smallest radius of circle containing T_j , $h_j = \frac{1}{2}$ diameter(T_j).

A mesh \mathcal{T}_h is called **shape-regular** if there exists a κ so that for every triangle $\mathcal{T} \in \mathcal{T}_h$

$$\rho_T \geq h_T/\kappa$$

We now prove

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega, \kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_{m,h} \leq ch^{t-m} |u|_{t,\Omega}, \quad \forall u \in H^t(\Omega), \quad 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Paul J. Atzberger, UCSB

Theorem for Triangulations

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$|u - \mathcal{I}_h u||_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Proof:

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation T_h .

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{\mathcal{T}} = \{(x, y) | 0 \le y \le 1 - x, x \in [0, 1]\}$ the half-square which has $\hat{r} = 2^{-1/2}$ and $\hat{\rho} = (2 + \sqrt{2})^{-1} \ge 2/7$.

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

$$\|u - \mathcal{I}_h u\|_{m,T} \le c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,T_{ref}}$$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

$$|u - \mathcal{I}_h u|_{m, \mathcal{T}} \quad \leq \quad c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m, \mathcal{T}_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t, \mathcal{T}_{ref}}$$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

$$\begin{aligned} |u - \mathcal{I}_{h}u|_{m,T} &\leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_{h}\hat{u}|_{m,T_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,T_{ref}} \\ &\leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^{t} \cdot |\det B|^{1/2} |u|_{t,T} \end{aligned}$$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

$$\begin{aligned} |u - \mathcal{I}_h u|_{m, \mathcal{T}} &\leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m, \mathcal{T}_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t, \mathcal{T}_{ref}} \\ &\leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t, \mathcal{T}} \leq c \left(\|B\| \|B^{-1}\|\right)^m \|B\|^{t-m} |u|_{t, \mathcal{T}}. \end{aligned}$$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T} = \{(x, y) | 0 \le y \le 1 - x, x \in [0, 1]\}$ the half-square which has $\hat{r} = 2^{-1/2}$ and $\hat{\rho} = (2 + \sqrt{2})^{-1} \ge 2/7$. Let $F : T_{ref} \to T$ with $T = T_j \in \mathcal{T}_h$. Now by applying transform formula to F we obtain

$$\begin{aligned} |u - \mathcal{I}_h u|_{m, \tau} &\leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m, \tau_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t, \tau_{ref}} \\ &\leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t, \tau} \leq c \left(\|B\| \|B^{-1}\|\right)^m \|B\|^{t-m} |u|_{t, \tau}. \end{aligned}$$

By the shape regularity we have $r/\rho \leq \kappa$ and $||B|| \cdot ||B^{-1}|| \leq (2 + \sqrt{2})\kappa$.

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T} = \{(x, y) | 0 \le y \le 1 - x, x \in [0, 1]\}$ the half-square which has $\hat{r} = 2^{-1/2}$ and $\hat{\rho} = (2 + \sqrt{2})^{-1} \ge 2/7$. Let $F : T_{ref} \to T$ with $T = T_j \in \mathcal{T}_h$. Now by applying transform formula to F we obtain

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,\tau} &\leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,\tau_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,\tau_{ref}} \\ &\leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t,\tau} \leq c \left(\|B\| \|B^{-1}\|\right)^m \|B\|^{t-m} |u|_{t,\tau}. \end{aligned}$$

By the shape regularity we have $r/\rho \le \kappa$ and $\|B\| \cdot \|B^{-1}\| \le (2 + \sqrt{2})\kappa$. This implies $\|B\| \le h/\hat{\rho} \le 4h$.

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T} = \{(x, y) | 0 \le y \le 1 - x, x \in [0, 1]\}$ the half-square which has $\hat{r} = 2^{-1/2}$ and $\hat{\rho} = (2 + \sqrt{2})^{-1} \ge 2/7$. Let $F : T_{ref} \to T$ with $T = T_j \in \mathcal{T}_h$. Now by applying transform formula to F we obtain

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,\tau} &\leq c ||B||^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,\tau_{ref}} \leq c ||B||^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,\tau_{ref}} \\ &\leq c ||B||^{-m} |\det B|^{-1/2} \cdot c ||B||^t \cdot |\det B|^{1/2} |u|_{t,\tau} \leq c \left(||B|| ||B^{-1}|| \right)^m ||B||^{t-m} |u|_{t,\tau}. \end{aligned}$$

By the shape regularity we have $r/\rho \le \kappa$ and $||B|| \cdot ||B^{-1}|| \le (2 + \sqrt{2})\kappa$. This implies $||B|| \le h/\hat{\rho} \le 4h$. Putting this together we obtain

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T} = \{(x, y) | 0 \le y \le 1 - x, x \in [0, 1]\}$ the half-square which has $\hat{r} = 2^{-1/2}$ and $\hat{\rho} = (2 + \sqrt{2})^{-1} \ge 2/7$. Let $F : T_{ref} \to T$ with $T = T_j \in \mathcal{T}_h$. Now by applying transform formula to F we obtain

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,\tau} &\leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,\tau_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,\tau_{ref}} \\ &\leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t,\tau} \leq c \left(\|B\| \|B^{-1}\|\right)^m \|B\|^{t-m} |u|_{t,\tau}. \end{aligned}$$

By the shape regularity we have $r/\rho \le \kappa$ and $||B|| \cdot ||B^{-1}|| \le (2 + \sqrt{2})\kappa$. This implies $||B|| \le h/\hat{\rho} \le 4h$. Putting this together we obtain

$$|u - \mathcal{I}_h u|_{\ell,T} \leq ch^{t-\ell} |u|_{t,T}.$$

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T} = \{(x, y) | 0 \le y \le 1 - x, x \in [0, 1]\}$ the half-square which has $\hat{r} = 2^{-1/2}$ and $\hat{\rho} = (2 + \sqrt{2})^{-1} \ge 2/7$. Let $F : T_{ref} \to T$ with $T = T_j \in \mathcal{T}_h$. Now by applying transform formula to F we obtain

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,\tau} &\leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,\tau_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,\tau_{ref}} \\ &\leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t,\tau} \leq c \left(\|B\| \|B^{-1}\|\right)^m \|B\|^{t-m} |u|_{t,\tau}. \end{aligned}$$

By the shape regularity we have $r/\rho \le \kappa$ and $||B|| \cdot ||B^{-1}|| \le (2 + \sqrt{2})\kappa$. This implies $||B|| \le h/\hat{\rho} \le 4h$. Putting this together we obtain

$$|u-\mathcal{I}_h u|_{\ell,T} \leq ch^{t-\ell}|u|_{t,T}.$$

By summing the squares of these local inequalities we obtain the global bound stated in the theorem.

Paul J. Atzberger, UCSB

Consider \mathcal{T}_h a shape-regular triangulation of Ω . For $t \geq 2$ there exists a constant $c = c(\Omega.\kappa, t)$ such that

$$\|u - \mathcal{I}_h u\|_m \leq ch^{t-m} |u|_{t,\Omega} \quad \forall u \in H^t(\Omega), \ 0 \leq m \leq t.$$

The \mathcal{I}_h denotes the interpolation operator by piecewise polynomials of degree $\leq t - 1$.

Proof: This is proved by showing the inequality holds on each triangle T_j of a shape-regular triangulation \mathcal{T}_h . We choose as our reference triangle $\hat{T} = \{(x, y) | 0 \le y \le 1 - x, x \in [0, 1]\}$ the half-square which has $\hat{r} = 2^{-1/2}$ and $\hat{\rho} = (2 + \sqrt{2})^{-1} \ge 2/7$. Let $F : T_{ref} \to T$ with $T = T_j \in \mathcal{T}_h$. Now by applying transform formula to F we obtain

$$\begin{aligned} |u - \mathcal{I}_h u|_{m,\tau} &\leq c \|B\|^{-m} |\det B|^{-1/2} |\hat{u} - \mathcal{I}_h \hat{u}|_{m,\tau_{ref}} \leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c |\hat{u}|_{t,\tau_{ref}} \\ &\leq c \|B\|^{-m} |\det B|^{-1/2} \cdot c \|B\|^t \cdot |\det B|^{1/2} |u|_{t,\tau} \leq c \left(\|B\| \|B^{-1}\| \right)^m \|B\|^{t-m} |u|_{t,\tau}. \end{aligned}$$

By the shape regularity we have $r/\rho \le \kappa$ and $||B|| \cdot ||B^{-1}|| \le (2 + \sqrt{2})\kappa$. This implies $||B|| \le h/\hat{\rho} \le 4h$. Putting this together we obtain

$$|u-\mathcal{I}_h u|_{\ell,T} \leq ch^{t-\ell}|u|_{t,T}.$$

By summing the squares of these local inequalities we obtain the global bound stated in the theorem. \blacksquare

Paul J. Atzberger, UCSB

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 \ (m \le 2)$
2	

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

Proof:

$ u - I_h u _{m,h} \le ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t \hspace{0.1in} = \hspace{0.1in} 3 \hspace{0.1in} (m \leq 2)$
Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \quad \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

Proof: It suffices to show interpolation on the unit square $\mathcal{K} = [0,1] \times [0,1]$ satisfies

$\ u-I_hu\ _{m,h} \le ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \leq 2)$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \quad \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

Proof: It suffices to show interpolation on the unit square $\mathcal{K} = [0,1] \times [0,1]$ satisfies

 $\|u - \mathcal{I}_h u\|_{2,\mathcal{K}} \leq c |u|_{2,\mathcal{K}}, \quad \forall u \in H^2(\mathcal{K}).$

$ u - I_h u _{m,h} \le ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh–Clough–Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$ u - I_h u _{m,h} \le ch'^{-m} u _{I,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4$ $(m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 \ (m \le 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K} = [0,1] \times [0,1]$ satisfies

$$\|u - \mathcal{I}_h u\|_{2,\mathcal{K}} \leq c |u|_{2,\mathcal{K}}, \quad \forall u \in H^2(\mathcal{K}).$$

By embedding theorem $H^2(\mathcal{K}) \subset C^0(\mathcal{K})$ so values of u at the four corners are bounded by $c ||u||_{2,\mathcal{K}}$.

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \quad \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$ u - I_h u _{m,h} \le ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4$ $(m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K} = [0,1] \times [0,1]$ satisfies

$$\|u - \mathcal{I}_h u\|_{2,\mathcal{K}} \leq c |u|_{2,\mathcal{K}}, \quad \forall u \in H^2(\mathcal{K}).$$

By embedding theorem $H^2(\mathcal{K}) \subset C^0(\mathcal{K})$ so values of u at the four corners are bounded by $c ||u||_{2,\mathcal{K}}$. The interpolation operator \mathcal{I}_h depends linearly on these four vertices,

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \quad \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$ u - I_h u _{m,h} \le ch'^{-m} u _{I,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4$ $(m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K} = [0,1] \times [0,1]$ satisfies

$$\|u - \mathcal{I}_h u\|_{2,\mathcal{K}} \leq c |u|_{2,\mathcal{K}}, \quad \forall u \in H^2(\mathcal{K}).$$

By embedding theorem $H^2(\mathcal{K}) \subset C^0(\mathcal{K})$ so values of u at the four corners are bounded by $c \|u\|_{2,\mathcal{K}}$.

The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

 $\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathbf{x}\in\mathcal{K}} |u(\mathbf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \quad \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

$ u - I_h u _{m,h} \le ch'^{-m} u _{I,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4$ $(m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Proof: It suffices to show interpolation on the unit square $\mathcal{K} = [0,1] \times [0,1]$ satisfies

$$\|u - \mathcal{I}_h u\|_{2,\mathcal{K}} \leq c |u|_{2,\mathcal{K}}, \quad \forall u \in H^2(\mathcal{K}).$$

By embedding theorem $H^2(\mathcal{K}) \subset C^0(\mathcal{K})$ so values of u at the four corners are bounded by $c \|u\|_{2,\mathcal{K}}$.

The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

 $\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathbf{x}\in\mathcal{K}} |u(\mathbf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices,

$\ u-I_hu\ _{m,h} \leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 \ (m \le 2)$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

 $\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathbf{x}\in\mathcal{K}} |u(\mathbf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$

$\ u - I_h u\ _{m,h} \le c h^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathbf{x}\in\mathcal{K}} |u(\mathbf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

This yields

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \leq m \leq t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \leq t \leq 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$
5	

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathbf{x}\in\mathcal{K}} |u(\mathbf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

This yields

$$\|u - \mathcal{I}_h u\|_2 \le \|u\|_2 + \|\mathcal{I}_h u\|_2 \le (c_2 + 1)\|u\|_2.$$

$\ u-I_hu\ _{m,h} \le ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathbf{x}\in\mathcal{K}} |u(\mathbf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

This yields

$$\|u - \mathcal{I}_h u\|_2 \le \|u\|_2 + \|\mathcal{I}_h u\|_2 \le (c_2 + 1)\|u\|_2.$$

When u is linear polynomial then $\mathcal{I}_h u = u$ and $u - \mathcal{I}_h u = 0$.

$\ u - I_h u\ _{m,h} \le c h^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4$ $(m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathbf{x}\in\mathcal{K}} |u(\mathbf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

This yields

$$\|u - \mathcal{I}_h u\|_2 \le \|u\|_2 + \|\mathcal{I}_h u\|_2 \le (c_2 + 1)\|u\|_2.$$

When u is linear polynomial then $\mathcal{I}_h u = u$ and $u - \mathcal{I}_h u = 0$. By Bramble-Hilbert II we have the result.

$\ u-I_hu\ _{m,h}\leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathbf{x}\in\mathcal{K}} |u(\mathbf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

This yields

$$\|u - \mathcal{I}_h u\|_2 \le \|u\|_2 + \|\mathcal{I}_h u\|_2 \le (c_2 + 1)\|u\|_2.$$

When u is linear polynomial then $\mathcal{I}_h u = u$ and $u - \mathcal{I}_h u = 0$. By Bramble-Hilbert II we have the result.

$\ u-I_hu\ _{m,h} \leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Theorem for Quadrilateral Bilinear Elements

Consider \mathcal{T}_h a quasi-uniform decomposition of Ω into parallelograms. There exists a constant $c = c(\Omega, \kappa)$ such that

$$\|u - \mathcal{I}_h u\|_{m,\Omega} \leq ch^{2-m} |u|_{2,\Omega}, \ \forall u \in H^2(\Omega).$$

The \mathcal{I}_h denotes the interpolation operator by piecewise bilinear elements.

Proof (continued): The interpolation operator \mathcal{I}_h depends linearly on these four vertices, so

$$\|\mathcal{I}_h u\|_{2,\mathcal{K}} \leq c_1 \max_{\mathbf{x}\in\mathcal{K}} |u(\mathbf{x})| \leq c_2 \|u\|_{2,\mathcal{K}}.$$

This yields

$$\|u - \mathcal{I}_h u\|_2 \le \|u\|_2 + \|\mathcal{I}_h u\|_2 \le (c_2 + 1)\|u\|_2.$$

When u is linear polynomial then $\mathcal{I}_h u = u$ and $u - \mathcal{I}_h u = 0$. By Bramble-Hilbert II we have the result.

Remark: For Serendipity Elements a similar proof technique can be used to obtain $||u - \mathcal{I}_h u||_{m,\Omega} \leq ch^{t-m} |u|_{t,\Omega}, \ \forall u \in H^t(\Omega), \ m = 0, 1, \ t = 2, 3.$

$\ u-I_hu\ _{m,h} \leq ch^{t-m} u _{t,\Omega}$	$0 \le m \le t$
C^0 elements	
linear triangle	t = 2
quadratic triangle	$2 \le t \le 3$
cubic triangle	$2 \le t \le 4$
bilinear quadrilateral	t = 2
serendipity element	$2 \le t \le 3$
9 node quadrilateral	$2 \le t \le 3$
C^1 elements	
Argyris element	$3 \le t \le 6$
Bell element	$3 \le t \le 5$
Hsieh-Clough-Tocher element	$3 \le t \le 4 (m \le 2)$
reduc. Hsieh-Clough-Tocher element	$t = 3 (m \le 2)$

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|\mathbf{v}_h\|_{t,h} \leq ch^{m-t} \|\mathbf{v}_h\|_{m,h}, \quad 0 \leq m \leq t, \quad \mathbf{v}_h \in \mathcal{S}_h.$$

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|\mathbf{v}_h\|_{t,h} \leq ch^{m-t} \|\mathbf{v}_h\|_{m,h}, \quad 0 \leq m \leq t, \quad \mathbf{v}_h \in \mathcal{S}_h.$$

Proof (sketch):

Theorem (Inverse Estimate)

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|\mathbf{v}_h\|_{t,h} \leq ch^{m-t} \|\mathbf{v}_h\|_{m,h}, \quad 0 \leq m \leq t, \quad \mathbf{v}_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t} \|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|\mathbf{v}|_{t,T} \leq c |\mathbf{v}|_{m,T} \quad \forall \mathbf{v} \in \mathcal{P},$$

where $c = c(\mathcal{P})$.

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t} \|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

 $|v|_{t,T} \leq c |v|_{m,T} \quad \forall v \in \mathcal{P},$

where $c = c(\mathcal{P})$. We scale by h the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t} \|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|\mathbf{v}|_{t,T} \leq c |\mathbf{v}|_{m,T} \quad \forall \mathbf{v} \in \mathcal{P},$$

where $c = c(\mathcal{P})$. We scale by h the unit reference element which yields the factor ch^{m-t} (as in prior proofs). We use the equivalence of the norms $\|\cdot\|_{t,T}$ and $\|\cdot\|_{m,T}$ on the finite dimensional space $\mathcal{Q} = \mathcal{P} \bigoplus \mathcal{P}_{m-1}$.

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t} \|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|\mathbf{v}|_{t,T} \leq c |\mathbf{v}|_{m,T} \quad \forall \mathbf{v} \in \mathcal{P},$$

where $c = c(\mathcal{P})$. We scale by h the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

We use the equivalence of the norms $\|\cdot\|_{t,T}$ and $\|\cdot\|_{m,T}$ on the finite dimensional space $\mathcal{Q} = \mathcal{P} \bigoplus \mathcal{P}_{m-1}$. Let $I_h v \in \mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points.

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t} \|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|\mathbf{v}|_{t,T} \leq c |\mathbf{v}|_{m,T} \quad \forall \mathbf{v} \in \mathcal{P},$$

where $c = c(\mathcal{P})$. We scale by *h* the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

We use the equivalence of the norms $\|\cdot\|_{t,T}$ and $\|\cdot\|_{m,T}$ on the finite dimensional space $Q = \mathcal{P} \bigoplus \mathcal{P}_{m-1}$. Let $I_h v \in \mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points. Since t > m, we have $|I_h v|_t = 0$.

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t} \|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|\mathbf{v}|_{t,T} \leq c |\mathbf{v}|_{m,T} \quad \forall \mathbf{v} \in \mathcal{P},$$

where $c = c(\mathcal{P})$. We scale by *h* the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

We use the equivalence of the norms $\|\cdot\|_{t,T}$ and $\|\cdot\|_{m,T}$ on the finite dimensional space $Q = \mathcal{P} \bigoplus \mathcal{P}_{m-1}$. Let $I_h v \in \mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points. Since t > m, we have $|I_h v|_t = 0$. By the Bramble-Hilbert lemma

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t} \|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|\mathbf{v}|_{t,T} \leq c |\mathbf{v}|_{m,T} \quad \forall \mathbf{v} \in \mathcal{P},$$

where $c = c(\mathcal{P})$. We scale by h the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

We use the equivalence of the norms $\|\cdot\|_{t,T}$ and $\|\cdot\|_{m,T}$ on the finite dimensional space $Q = \mathcal{P} \bigoplus \mathcal{P}_{m-1}$. Let $I_h v \in \mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points. Since t > m, we have $|I_h v|_t = 0$. By the Bramble-Hilbert lemma

$$|v|_t = |v - I_h v|_t \le ||v - I_h v||_t \le c ||v - I_h v||_m \le c' |v|_m.$$

Consider affine family of elements $\{S_h\}$ with piecewise polynomials of degree k having uniform partitions. There exists a constant $c = c(\kappa, k, t)$ so that

$$\|v_h\|_{t,h} \leq ch^{m-t} \|v_h\|_{m,h}, \quad 0 \leq m \leq t, \quad v_h \in \mathcal{S}_h.$$

Proof (sketch):

By use of reference element T and transformation formula this reduces to proving

$$|\mathbf{v}|_{t,T} \leq c |\mathbf{v}|_{m,T} \quad \forall \mathbf{v} \in \mathcal{P},$$

where $c = c(\mathcal{P})$. We scale by h the unit reference element which yields the factor ch^{m-t} (as in prior proofs).

We use the equivalence of the norms $\|\cdot\|_{t,T}$ and $\|\cdot\|_{m,T}$ on the finite dimensional space $Q = \mathcal{P} \bigoplus \mathcal{P}_{m-1}$. Let $I_h v \in \mathcal{P}_{m-1}$ be the polynomial interpolation at fixed points. Since t > m, we have $|I_h v|_t = 0$. By the Bramble-Hilbert lemma

$$|v|_t = |v - I_h v|_t \le ||v - I_h v||_t \le c ||v - I_h v||_m \le c' |v|_m.$$

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 .

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω .

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node \mathbf{x}_j , let

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node \mathbf{x}_j , let

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{\mathcal{T}' \mid \mathbf{x}_j \in \mathcal{T}'} \mathcal{T}', \text{ (support)}, \quad \bar{\omega}_{\mathcal{T}} := \bigcup \{ \omega_j \mid, \mathbf{x}_j \in \mathcal{T} \} \text{ (neighborhood)}$$

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node \mathbf{x}_j , let

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{\mathcal{T}' \mid \mathbf{x}_j \in \mathcal{T}'} \mathcal{T}', \text{ (support)}, \quad \bar{\omega}_{\mathcal{T}} := \bigcup \{ \omega_j \mid, \mathbf{x}_j \in \mathcal{T} \} \text{ (neighborhood)}$$

By shape regularity the area satisfies estimate $\mu(\bar{\omega}_{\tau}) \leq c(\kappa)h_{\tau}^2$ and number triangles belonging to $\bar{\omega}_{\tau}$ is bounded.

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node \mathbf{x}_j , let

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{\mathcal{T}' \mid \mathbf{x}_j \in \mathcal{T}'} \mathcal{T}', \text{ (support)}, \quad \bar{\omega}_{\mathcal{T}} := \bigcup \{ \omega_j \mid, \mathbf{x}_j \in \mathcal{T} \} \text{ (neighborhood)}$$

By shape regularity the area satisfies estimate $\mu(\bar{\omega}_T) \leq c(\kappa)h_T^2$ and number triangles belonging to $\bar{\omega}_T$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_h: H^1(\Omega) \to \mathcal{M}_0^1$ so that

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node \mathbf{x}_j , let

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{\mathcal{T}' \mid \mathbf{x}_j \in \mathcal{T}'} \mathcal{T}', \text{ (support)}, \quad \bar{\omega}_{\mathcal{T}} := \bigcup \{ \omega_j \mid, \mathbf{x}_j \in \mathcal{T} \} \text{ (neighborhood)}$$

By shape regularity the area satisfies estimate $\mu(\bar{\omega}_{\tau}) \leq c(\kappa)h_{\tau}^2$ and number triangles belonging to $\bar{\omega}_{\tau}$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_h: H^1(\Omega) \to \mathcal{M}_0^1$ so that

$$\| \mathbf{v} - \mathcal{I}_h \mathbf{v} \|_{m,T} \le ch_T^{1-m} \| \mathbf{v} \|_{1,ar{\omega}_T} \ orall \mathbf{v} \in H^1(\Omega), m = 0, 1, T \in \mathcal{T}_h$$

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node \mathbf{x}_j , let

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{\mathcal{T}' \mid \mathbf{x}_j \in \mathcal{T}'} \mathcal{T}', \text{ (support)}, \quad \bar{\omega}_{\mathcal{T}} := \bigcup \{ \omega_j \mid, \mathbf{x}_j \in \mathcal{T} \} \text{ (neighborhood)}$$

By shape regularity the area satisfies estimate $\mu(\bar{\omega}_T) \leq c(\kappa)h_T^2$ and number triangles belonging to $\bar{\omega}_T$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_h: H^1(\Omega) \to \mathcal{M}_0^1$ so that

$$\begin{split} \| v - \mathcal{I}_h v \|_{m,T} &\leq c h_T^{1-m} \| v \|_{1,\bar{\omega}_T} \, \forall v \in H^1(\Omega), m = 0, 1, T \in \mathcal{T}_h \\ \| v - \mathcal{I}_h v \|_{0,e} &\leq c h_T^{1/2} \| v \|_{1,\bar{\omega}_T} \, \forall v \in H^1(\Omega), e \in \partial T, T \in \mathcal{T}_h. \end{split}$$

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node \mathbf{x}_j , let

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{\mathcal{T}' \mid \mathbf{x}_j \in \mathcal{T}'} \mathcal{T}', \text{ (support)}, \quad \bar{\omega}_{\mathcal{T}} := \bigcup \{ \omega_j \mid, \mathbf{x}_j \in \mathcal{T} \} \text{ (neighborhood)}$$

By shape regularity the area satisfies estimate $\mu(\bar{\omega}_T) \leq c(\kappa)h_T^2$ and number triangles belonging to $\bar{\omega}_T$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_h: H^1(\Omega) \to \mathcal{M}_0^1$ so that

$$\begin{split} \| \boldsymbol{v} - \mathcal{I}_h \boldsymbol{v} \|_{m,T} &\leq c h_T^{1-m} \| \boldsymbol{v} \|_{1, \bar{\omega}_T} \; \forall \boldsymbol{v} \in H^1(\Omega), m = 0, 1, T \in \mathcal{T}_h \\ \| \boldsymbol{v} - \mathcal{I}_h \boldsymbol{v} \|_{0, e} &\leq c h_T^{1/2} \| \boldsymbol{v} \|_{1, \bar{\omega}_T} \; \forall \boldsymbol{v} \in H^1(\Omega), e \in \partial T, T \in \mathcal{T}_h. \end{split}$$

How do we construct such an operator \mathcal{I}_h in practice?

The interpolation operator I_h could only be applied to H^2 functions. Alternative for H^1 . Let \mathcal{T}_h be a shape-regular triangulation of Ω . Given node \mathbf{x}_j , let

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{\mathcal{T}' \mid \mathbf{x}_j \in \mathcal{T}'} \mathcal{T}', \text{ (support)}, \quad \bar{\omega}_{\mathcal{T}} := \bigcup \{ \omega_j \mid, \mathbf{x}_j \in \mathcal{T} \} \text{ (neighborhood)}$$

By shape regularity the area satisfies estimate $\mu(\bar{\omega}_T) \leq c(\kappa)h_T^2$ and number triangles belonging to $\bar{\omega}_T$ is bounded.

Clément's Interpolation

Under the conditions above, there exists linear mapping $\mathcal{I}_h: H^1(\Omega) \to \mathcal{M}_0^1$ so that

$$\begin{split} \| \boldsymbol{v} - \mathcal{I}_h \boldsymbol{v} \|_{m,T} &\leq c h_T^{1-m} \| \boldsymbol{v} \|_{1, \bar{\omega}_T} \; \forall \boldsymbol{v} \in H^1(\Omega), m = 0, 1, T \in \mathcal{T}_h \\ \| \boldsymbol{v} - \mathcal{I}_h \boldsymbol{v} \|_{0, e} &\leq c h_T^{1/2} \| \boldsymbol{v} \|_{1, \bar{\omega}_T} \; \forall \boldsymbol{v} \in H^1(\Omega), e \in \partial T, T \in \mathcal{T}_h. \end{split}$$

How do we construct such an operator \mathcal{I}_h in practice?

Construction of interpolant:

Construction of interpolant:

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{T' \mid \mathbf{x}_j \in T'} T', \text{ (support)}, \qquad \bar{\omega}_T := \bigcup \{\omega_j \mid, \mathbf{x}_j \in T\} \text{ (neighborhood)}.$$

Construction of interpolant:

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{\mathcal{T}' \mid \mathbf{x}_j \in \mathcal{T}'} \mathcal{T}', \text{ (support)}, \qquad \bar{\omega}_{\mathcal{T}} := \bigcup \{\omega_j \mid, \mathbf{x}_j \in \mathcal{T}\} \text{ (neighborhood)}.$$

For a given nodal point x_j let

$$ar{Q}_j oldsymbol{v} = \left\{egin{array}{ccc} 0 & ext{if } x_j \in \Gamma_D \ Q_j oldsymbol{v} & ext{otherwise.} \end{array}
ight., \qquad egin{array}{ccc} Q_j : L_2(\omega_j) o \mathcal{P}_0. \end{array}
ight.$$

Construction of interpolant:

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{\mathcal{T}' \mid \mathbf{x}_j \in \mathcal{T}'} \mathcal{T}', \text{ (support)}, \qquad \bar{\omega}_{\mathcal{T}} := \bigcup \{\omega_j \mid, \mathbf{x}_j \in \mathcal{T}\} \text{ (neighborhood)}.$$

,

For a given nodal point x_i let

$$ar{\mathcal{Q}}_j
u = \left\{egin{array}{cc} 0 & ext{if } x_j \in \Gamma_D \ Q_j \,
u & ext{otherwise.} \end{array}
ight.$$

$$Q_j:L_2(\omega_j) o \mathcal{P}_0$$

The Q_j is the L_2 -projection onto constant functions.

(

Construction of interpolant:

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{\mathcal{T}' \mid \mathbf{x}_j \in \mathcal{T}'} \mathcal{T}', \text{ (support)}, \qquad \bar{\omega}_{\mathcal{T}} := \bigcup \{\omega_j \mid, \mathbf{x}_j \in \mathcal{T}\} \text{ (neighborhood)}.$$

,

For a given nodal point x_i let

$$ar{\mathcal{Q}}_j
u = \left\{egin{array}{cc} 0 & ext{if } x_j \in \Gamma_D \ Q_j \,
u & ext{otherwise.} \end{array}
ight.$$

$$Q_j: L_2(\omega_j) o \mathcal{P}_0.$$

The Q_j is the L_2 -projection onto constant functions. The $\Gamma_D \subset \partial \Omega$ is part with Dirichlet boundary conditions.

Construction of interpolant:

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{T' \mid \mathbf{x}_j \in T'} T', \text{ (support)}, \qquad \bar{\omega}_T := \bigcup \{\omega_j \mid, \mathbf{x}_j \in T\} \text{ (neighborhood)}.$$

For a given nodal point x_i let

$$ar{Q}_j
u = \left\{egin{array}{cc} 0 & ext{if } x_j \in \Gamma_D \ Q_j
u & ext{otherwise.} \end{array}
ight.,$$

$$Q_j: L_2(\omega_j) o \mathcal{P}_0.$$

The Q_j is the L_2 -projection onto constant functions. The $\Gamma_D \subset \partial \Omega$ is part with Dirichlet boundary conditions.

Clément's Interpolation:

$${\mathcal I}_h {m v} := \sum_j (ar Q_j {m v}) {m v}_j \in {\mathcal M}^1_0, \;\; {m v} \in {m H}^1(\Omega).$$

Construction of interpolant:

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{T' \mid \mathbf{x}_j \in T'} T', \text{ (support)}, \qquad \bar{\omega}_T := \bigcup \{\omega_j \mid, \mathbf{x}_j \in T\} \text{ (neighborhood)}.$$

For a given nodal point x_i let

$$ar{Q}_j
u = \left\{egin{array}{cc} 0 & ext{if } x_j \in \Gamma_D \ Q_j
u & ext{otherwise.} \end{array}
ight.,$$

$$Q_j:L_2(\omega_j) o \mathcal{P}_0$$

The Q_j is the L_2 -projection onto constant functions. The $\Gamma_D \subset \partial \Omega$ is part with Dirichlet boundary conditions.

Clément's Interpolation:

$${\mathcal I}_h {f v} := \sum_j (ar Q_j {f v}) {f v}_j \in {\mathcal M}^1_0, \;\; {f v} \in {\mathcal H}^1(\Omega).$$

The cardinal shape functions v_j form a partition of unity for elements (one on node j, zero at other nodes).

Construction of interpolant:

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{\mathcal{T}' \mid \mathbf{x}_j \in \mathcal{T}'} \mathcal{T}', \text{ (support)}, \qquad \bar{\omega}_{\mathcal{T}} := \bigcup \{\omega_j \mid, \mathbf{x}_j \in \mathcal{T}\} \text{ (neighborhood)}.$$

For a given nodal point x_j let

$$ar{Q}_j
u = \left\{egin{array}{cc} 0 & ext{if } x_j \in \Gamma_D \ Q_j \,
u & ext{otherwise.} \end{array}
ight.,$$

$$Q_j: L_2(\omega_j) o \mathcal{P}_0.$$

The Q_j is the L_2 -projection onto constant functions. The $\Gamma_D \subset \partial \Omega$ is part with Dirichlet boundary conditions.

Clément's Interpolation:

$${\mathcal I}_h {f v} := \sum_j (ar Q_j {f v}) {f v}_j \in {\mathcal M}^1_0, \;\; {f v} \in {\mathcal H}^1(\Omega).$$

The cardinal shape functions v_j form a partition of unity for elements (one on node j, zero at other nodes). Significance: Allows for a notion of interpolation of non-smooth functions, $v \in H^1(\Omega)$.

Construction of interpolant:

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{T' \mid \mathbf{x}_j \in T'} T', \text{ (support)}, \qquad \bar{\omega}_T := \bigcup \{\omega_j \mid, \mathbf{x}_j \in T\} \text{ (neighborhood)}.$$

For a given nodal point x_j let

$$ar{Q}_j
u = \left\{egin{array}{cc} 0 & ext{if } x_j \in \Gamma_D \ Q_j
u & ext{otherwise.} \end{array}
ight.,$$

$$Q_j:L_2(\omega_j) o \mathcal{P}_0.$$

The Q_j is the L_2 -projection onto constant functions. The $\Gamma_D \subset \partial \Omega$ is part with Dirichlet boundary conditions.

Clément's Interpolation:

$${\mathcal I}_h {f v} := \sum_j (ar Q_j {f v}) {f v}_j \in {\mathcal M}^1_0, \ \ {f v} \in {\mathcal H}^1(\Omega).$$

The cardinal shape functions v_j form a partition of unity for elements (one on node j, zero at other nodes).

Significance: Allows for a notion of interpolation of non-smooth functions, $v \in H^1(\Omega)$. The \mathcal{I}_h has well-controlled error bounds (see above).

Construction of interpolant:

$$\omega_j := \omega_{\mathbf{x}_j} := \bigcup_{T' \mid \mathbf{x}_j \in T'} T', \text{ (support)}, \qquad \bar{\omega}_T := \bigcup \{\omega_j \mid, \mathbf{x}_j \in T\} \text{ (neighborhood)}.$$

For a given nodal point x_j let

$$ar{Q}_j
u = \left\{egin{array}{cc} 0 & ext{if } x_j \in \Gamma_D \ Q_j
u & ext{otherwise.} \end{array}
ight.,$$

$$Q_j:L_2(\omega_j) o \mathcal{P}_0.$$

The Q_j is the L_2 -projection onto constant functions. The $\Gamma_D \subset \partial \Omega$ is part with Dirichlet boundary conditions.

Clément's Interpolation:

$${\mathcal I}_h {f v} := \sum_j (ar Q_j {f v}) {f v}_j \in {\mathcal M}^1_0, \ \ {f v} \in {\mathcal H}^1(\Omega).$$

The cardinal shape functions v_j form a partition of unity for elements (one on node j, zero at other nodes).

Significance: Allows for a notion of interpolation of non-smooth functions, $v \in H^1(\Omega)$. The \mathcal{I}_h has well-controlled error bounds (see above).