Mixed Methods

Paul J. Atzberger
206D: Finite Element Methods University of California Santa Barbara

Saddle Point Problems

Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$
a: X \times X \rightarrow \mathbb{R}, \quad b: X \times M \rightarrow \mathbb{R}, \quad \text { (continuous bilinear forms) }
$$

Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$
a: X \times X \rightarrow \mathbb{R}, \quad b: X \times M \rightarrow \mathbb{R}, \quad \text { (continuous bilinear forms) }
$$

Saddle Point Problems

Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$
a: X \times X \rightarrow \mathbb{R}, \quad b: X \times M \rightarrow \mathbb{R}, \quad \text { (continuous bilinear forms) }
$$

Saddle Point Problems

Find the minimum $u \in X$ of

Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$
a: X \times X \rightarrow \mathbb{R}, \quad b: X \times M \rightarrow \mathbb{R}, \quad \text { (continuous bilinear forms) }
$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$
J[u]=\frac{1}{2} a(u, u)-(f, u) \text { subject to } b(u, \mu)=(g, \mu), \forall \mu \in M
$$

Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$
a: X \times X \rightarrow \mathbb{R}, \quad b: X \times M \rightarrow \mathbb{R}, \quad \text { (continuous bilinear forms) }
$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$
J[u]=\frac{1}{2} a(u, u)-(f, u) \text { subject to } b(u, \mu)=(g, \mu), \forall \mu \in M
$$

Consider the Lagrangian

Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$
a: X \times X \rightarrow \mathbb{R}, \quad b: X \times M \rightarrow \mathbb{R}, \quad \text { (continuous bilinear forms) }
$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$
J[u]=\frac{1}{2} a(u, u)-(f, u) \text { subject to } b(u, \mu)=(g, \mu), \forall \mu \in M \text {. }
$$

Consider the Lagrangian

$$
\mathcal{L}(u, \lambda):=J[u]+[b(u, \lambda)-(g, \lambda)] .
$$

Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$
a: X \times X \rightarrow \mathbb{R}, \quad b: X \times M \rightarrow \mathbb{R}, \quad \text { (continuous bilinear forms) }
$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$
J[u]=\frac{1}{2} a(u, u)-(f, u) \text { subject to } b(u, \mu)=(g, \mu), \forall \mu \in M \text {. }
$$

Consider the Lagrangian

$$
\mathcal{L}(u, \lambda):=J[u]+[b(u, \lambda)-(g, \lambda)] .
$$

We seek the minimum of $\mathcal{L}(\cdot, \lambda)$ with fixed λ.

Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$
a: X \times X \rightarrow \mathbb{R}, \quad b: X \times M \rightarrow \mathbb{R}, \quad \text { (continuous bilinear forms) }
$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$
J[u]=\frac{1}{2} a(u, u)-(f, u) \text { subject to } b(u, \mu)=(g, \mu), \forall \mu \in M .
$$

Consider the Lagrangian

$$
\mathcal{L}(u, \lambda):=J[u]+[b(u, \lambda)-(g, \lambda)] .
$$

We seek the minimum of $\mathcal{L}(\cdot, \lambda)$ with fixed λ. Can we find λ_{0} so this minimum satisfies the constraints?

Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$
a: X \times X \rightarrow \mathbb{R}, \quad b: X \times M \rightarrow \mathbb{R}, \quad \text { (continuous bilinear forms) }
$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$
J[u]=\frac{1}{2} a(u, u)-(f, u) \text { subject to } b(u, \mu)=(g, \mu), \forall \mu \in M \text {. }
$$

Consider the Lagrangian

$$
\mathcal{L}(u, \lambda):=J[u]+[b(u, \lambda)-(g, \lambda)] .
$$

We seek the minimum of $\mathcal{L}(\cdot, \lambda)$ with fixed λ. Can we find λ_{0} so this minimum satisfies the constraints?
When \mathcal{L} contains only bilinear and quadratic expressions in u and λ, we obtain a saddle point problem.

Saddle Point Problems

Saddle Point Problem I

Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
a(u, v)+b(v, \lambda)=\langle f, v\rangle, \quad \forall v \in X
$$

Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X, \\
b(u, v) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X, \\
b(u, v) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X, \\
b(u, v) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

When the solution $\left(u^{*}, \lambda^{*}\right)$ is solution of the saddle-point conditions, this corresponds to

Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X \\
b(u, v) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

When the solution $\left(u^{*}, \lambda^{*}\right)$ is solution of the saddle-point conditions, this corresponds to

$$
\mathcal{L}\left(u^{*}, \lambda\right) \leq \mathcal{L}\left(u^{*}, \lambda^{*}\right) \leq \mathcal{L}\left(u, \lambda^{*}\right), \quad \forall(u, \lambda) \in X \times M
$$

Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X \\
b(u, v) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

When the solution $\left(u^{*}, \lambda^{*}\right)$ is solution of the saddle-point conditions, this corresponds to

$$
\mathcal{L}\left(u^{*}, \lambda\right) \leq \mathcal{L}\left(u^{*}, \lambda^{*}\right) \leq \mathcal{L}\left(u, \lambda^{*}\right), \quad \forall(u, \lambda) \in X \times M
$$

Assumes that $a(v, v) \geq 0$.

Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X \\
b(u, v) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

When the solution $\left(u^{*}, \lambda^{*}\right)$ is solution of the saddle-point conditions, this corresponds to

$$
\mathcal{L}\left(u^{*}, \lambda\right) \leq \mathcal{L}\left(u^{*}, \lambda^{*}\right) \leq \mathcal{L}\left(u, \lambda^{*}\right), \quad \forall(u, \lambda) \in X \times M
$$

Assumes that $a(v, v) \geq 0$.
Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form a, but also of properties for the constraints b beyond simply linear independence.

Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X \\
b(u, v) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

When the solution $\left(u^{*}, \lambda^{*}\right)$ is solution of the saddle-point conditions, this corresponds to

$$
\mathcal{L}\left(u^{*}, \lambda\right) \leq \mathcal{L}\left(u^{*}, \lambda^{*}\right) \leq \mathcal{L}\left(u, \lambda^{*}\right), \quad \forall(u, \lambda) \in X \times M
$$

Assumes that $a(v, v) \geq 0$.
Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form a, but also of properties for the constraints b beyond simply linear independence.

Consider the overall linear mapping for the above problem

Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X \\
b(u, v) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

When the solution $\left(u^{*}, \lambda^{*}\right)$ is solution of the saddle-point conditions, this corresponds to

$$
\mathcal{L}\left(u^{*}, \lambda\right) \leq \mathcal{L}\left(u^{*}, \lambda^{*}\right) \leq \mathcal{L}\left(u, \lambda^{*}\right), \quad \forall(u, \lambda) \in X \times M
$$

Assumes that $a(v, v) \geq 0$.
Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form a, but also of properties for the constraints b beyond simply linear independence.

Consider the overall linear mapping for the above problem

$$
L: X \times M \rightarrow X^{\prime} \times M^{\prime}, \quad \text { maps } \quad(u, \lambda) \mapsto(f, g)
$$

Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X \\
b(u, v) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

When the solution $\left(u^{*}, \lambda^{*}\right)$ is solution of the saddle-point conditions, this corresponds to

$$
\mathcal{L}\left(u^{*}, \lambda\right) \leq \mathcal{L}\left(u^{*}, \lambda^{*}\right) \leq \mathcal{L}\left(u, \lambda^{*}\right), \quad \forall(u, \lambda) \in X \times M
$$

Assumes that $a(v, v) \geq 0$.
Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form a, but also of properties for the constraints b beyond simply linear independence.

Consider the overall linear mapping for the above problem

$$
L: X \times M \rightarrow X^{\prime} \times M^{\prime}, \quad \text { maps } \quad(u, \lambda) \mapsto(f, g)
$$

Need ways to characterize when L is invertible (solvable) and the inverse is continuous (stable).

Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X \\
b(u, v) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

When the solution $\left(u^{*}, \lambda^{*}\right)$ is solution of the saddle-point conditions, this corresponds to

$$
\mathcal{L}\left(u^{*}, \lambda\right) \leq \mathcal{L}\left(u^{*}, \lambda^{*}\right) \leq \mathcal{L}\left(u, \lambda^{*}\right), \quad \forall(u, \lambda) \in X \times M
$$

Assumes that $a(v, v) \geq 0$.
Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form a, but also of properties for the constraints b beyond simply linear independence.

Consider the overall linear mapping for the above problem

$$
L: X \times M \rightarrow X^{\prime} \times M^{\prime}, \quad \text { maps } \quad(u, \lambda) \mapsto(f, g)
$$

Need ways to characterize when L is invertible (solvable) and the inverse is continuous (stable).

Functional Analysis

Isomorphism

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle L u, v\rangle:=a(u, v), \forall v \in V$.

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle L u, v\rangle:=a(u, v), \forall v \in V$. Variational problem: $a(u, v)=\langle f, v\rangle, \forall v \in V \Rightarrow\langle L u, v\rangle=\langle f, v\rangle$, formally $u=L^{-1} f$.

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle L u, v\rangle:=a(u, v), \forall v \in V$.
Variational problem: $a(u, v)=\langle f, v\rangle, \forall v \in V \Rightarrow\langle L u, v\rangle=\langle f, v\rangle$, formally $u=L^{-1} f$. Definition:

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle L u, v\rangle:=a(u, v), \quad \forall v \in V$.
Variational problem: $a(u, v)=\langle f, v\rangle, \forall v \in V \Rightarrow\langle L u, v\rangle=\langle f, v\rangle$, formally $u=L^{-1} f$. Definition: For $V \subset X$ closed, the $V^{0}:=\left\{\ell \in X^{\prime}:\langle\ell, v\rangle=0, \forall v \in V\right\}$ is called the polar set.

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle L u, v\rangle:=a(u, v), \quad \forall v \in V$.
Variational problem: $a(u, v)=\langle f, v\rangle, \forall v \in V \Rightarrow\langle L u, v\rangle=\langle f, v\rangle$, formally $u=L^{-1} f$.
Definition: For $V \subset X$ closed, the $V^{0}:=\left\{\ell \in X^{\prime}:\langle\ell, v\rangle=0, \forall v \in V\right\}$ is called the polar set.

Theorem (Inf-Sup Condition)

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle L u, v\rangle:=a(u, v), \quad \forall v \in V$.
Variational problem: $a(u, v)=\langle f, v\rangle, \forall v \in V \Rightarrow\langle L u, v\rangle=\langle f, v\rangle$, formally $u=L^{-1} f$.
Definition: For $V \subset X$ closed, the $V^{0}:=\left\{\ell \in X^{\prime}:\langle\ell, v\rangle=0, \forall v \in V\right\}$ is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle L u, v\rangle:=a(u, v), \forall v \in V$.
Variational problem: $a(u, v)=\langle f, v\rangle, \forall v \in V \Rightarrow\langle L u, v\rangle=\langle f, v\rangle$, formally $u=L^{-1} f$.
Definition: For $V \subset X$ closed, the $V^{0}:=\left\{\ell \in X^{\prime}:\langle\ell, v\rangle=0, \forall v \in V\right\}$ is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \rightarrow \mathbb{R}$ satisfies the conditions:

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle L u, v\rangle:=a(u, v), \forall v \in V$.
Variational problem: $a(u, v)=\langle f, v\rangle, \forall v \in V \Rightarrow\langle L u, v\rangle=\langle f, v\rangle$, formally $u=L^{-1} f$.
Definition: For $V \subset X$ closed, the $V^{0}:=\left\{\ell \in X^{\prime}:\langle\ell, v\rangle=0, \forall v \in V\right\}$ is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satisfies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\| v$.

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle L u, v\rangle:=a(u, v), \quad \forall v \in V$.
Variational problem: $a(u, v)=\langle f, v\rangle, \forall v \in V \Rightarrow\langle L u, v\rangle=\langle f, v\rangle$, formally $u=L^{-1} f$.
Definition: For $V \subset X$ closed, the $V^{0}:=\left\{\ell \in X^{\prime}:\langle\ell, v\rangle=0, \forall v \in V\right\}$ is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satisfies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\| v$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle L u, v\rangle:=a(u, v), \quad \forall v \in V$.
Variational problem: $a(u, v)=\langle f, v\rangle, \forall v \in V \Rightarrow\langle L u, v\rangle=\langle f, v\rangle$, formally $u=L^{-1} f$.
Definition: For $V \subset X$ closed, the $V^{0}:=\left\{\ell \in X^{\prime}:\langle\ell, v\rangle=0, \forall v \in V\right\}$ is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satisfies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\| v$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\|_{U}\|v\|_{V}} \geq \alpha>0 .
$$

Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle L u, v\rangle:=a(u, v), \quad \forall v \in V$.
Variational problem: $a(u, v)=\langle f, v\rangle, \forall v \in V \Rightarrow\langle L u, v\rangle=\langle f, v\rangle$, formally $u=L^{-1} f$.
Definition: For $V \subset X$ closed, the $V^{0}:=\left\{\ell \in X^{\prime}:\langle\ell, v\rangle=0, \forall v \in V\right\}$ is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satisfies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\| v$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\|_{U}\|v\|_{V}} \geq \alpha>0 .
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$.

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L,

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$,

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\| v} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v} a\left(u_{1}-u_{2}, v\right)=0$.

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v} a\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{u}=0$,

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a}\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{U}=0$, so $u_{1}=u_{2}$.

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\| v} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a} a\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\| u=0$, so $u_{1}=u_{2}$. For $f \in L(U)$,

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\| v} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a}\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{U}=0$, so $u_{1}=u_{2}$. For $f \in L(U)$, by injectivity, exists unique $u=L^{-1} f$.

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a}\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{u}=0$, so $u_{1}=u_{2}$. For $f \in L(U)$, by injectivity, exists unique $u=L^{-1} f$.
By (ii) $\Rightarrow \alpha\|u\|_{u} \leq \sup _{v \in V} \frac{a(u, v)}{\|v\|_{v}}$

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a}\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{u}=0$, so $u_{1}=u_{2}$. For $f \in L(U)$, by injectivity, exists unique $u=L^{-1} f$.
By (ii) $\Rightarrow \alpha\|u\|_{U} \leq \sup _{v \in V} \frac{a(u, v)}{\|v\|_{v}}=\sup _{v \in V} \frac{\langle f, v\rangle}{\|v\|_{v}}$

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a}\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{u}=0$, so $u_{1}=u_{2}$. For $f \in L(U)$, by injectivity, exists unique $u=L^{-1} f$.
By (ii) $\Rightarrow \alpha\|u\| u \leq \sup _{v \in V} \frac{a(u, v)}{\|v\|_{v}}=\sup _{v \in V} \frac{\langle f, v\rangle}{\|v\|_{v}}=\|f\|_{v^{\prime}} \Rightarrow\|L u\|_{v^{\prime}}$

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a}\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{u}=0$, so $u_{1}=u_{2}$. For $f \in L(U)$, by injectivity, exists unique $u=L^{-1} f$.
By (ii) $\Rightarrow \alpha\|u\|_{u} \leq \sup _{v \in v} \frac{a(u, v)}{\|v\|_{v}}=\sup _{v \in v} \frac{\langle f, v\rangle}{\|v\|_{v}}=\|f\|_{v^{\prime}} \Rightarrow\|L u\|_{v^{\prime}} \geq \alpha\|u\|_{u}$

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a} a\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{U}=0$, so $u_{1}=u_{2}$. For $f \in L(U)$, by injectivity, exists unique $u=L^{-1} f$.
By (ii) $\Rightarrow \alpha\|u\|_{u} \leq \sup _{v \in v} \frac{a(u, v)}{\|v\|_{v}}=\sup _{v \in v} \frac{\langle f, v\rangle}{\|v\|_{v}}=\|f\|_{v^{\prime}} \Rightarrow\|L u\|_{v^{\prime}} \geq \alpha\|u\|_{u} \Rightarrow\left\|L^{-1} f\right\|_{u}$

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v} a\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{U}=0$, so $u_{1}=u_{2}$. For $f \in L(U)$, by injectivity, exists unique $u=L^{-1} f$.
By (ii) $\Rightarrow \alpha\|u\|_{u} \leq \sup _{v \in V} \frac{a(u, v)}{\|v\|_{v}}=\sup _{v \in V} \frac{\langle f, v\rangle}{\|v\|_{v}}=\|f\|_{v^{\prime}} \Rightarrow\|L u\|_{v^{\prime}} \geq \alpha\|u\|_{u} \Rightarrow\left\|L^{-1} f\right\|_{u} \leq \alpha^{-1}\|f\|_{v^{\prime}}$,

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\| u\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a} a\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{U}=0$, so $u_{1}=u_{2}$. For $f \in L(U)$, by injectivity, exists unique $u=L^{-1} f$.
By (ii) $\Rightarrow \alpha\|u\| u \leq \sup _{v \in V} \frac{a(u, v)}{\|v\|_{v}}=\sup _{v \in V} \frac{\langle f, v\rangle}{\|v\|_{v}}=\|f\|_{v^{\prime}} \Rightarrow\|L u\|_{v^{\prime}} \geq \alpha\|u\|_{u} \Rightarrow\left\|L^{-1} f\right\| u \leq \alpha^{-1}\|f\|_{v^{\prime}}$, so L^{-1} is continuous on $\operatorname{Im}(L)$.

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a} a\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{U}=0$, so $u_{1}=u_{2}$. For $f \in L(U)$, by injectivity, exists unique $u=L^{-1} f$.
By (ii) $\Rightarrow \alpha\|u\| u \leq \sup _{v \in V} \frac{a(u, v)}{\|v\|_{v}}=\sup _{v \in V} \frac{\langle f, v\rangle}{\|v\|_{v}}=\|f\|_{v^{\prime}} \Rightarrow\|L u\|_{v^{\prime}} \geq \alpha\|u\|_{u} \Rightarrow\left\|L^{-1} f\right\| u \leq \alpha^{-1}\|f\|_{v^{\prime}}$, so L^{-1} is continuous on $\operatorname{Im}(L)$. Continuity of L, L^{-1} implies $L(U)$ closed.

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a} a\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{U}=0$, so $u_{1}=u_{2}$. For $f \in L(U)$, by injectivity, exists unique $u=L^{-1} f$.
By (ii) $\Rightarrow \alpha\|u\| u \leq \sup _{v \in V} \frac{a(u, v)}{\|v\|_{v}}=\sup _{v \in V} \frac{\langle f, v\rangle}{\|v\|_{v}}=\|f\|_{v^{\prime}} \Rightarrow\|L u\|_{v^{\prime}} \geq \alpha\|u\|_{u} \Rightarrow\left\|L^{-1} f\right\| u \leq \alpha^{-1}\|f\|_{v^{\prime}}$, so L^{-1} is continuous on $\operatorname{Im}(L)$. Continuity of L, L^{-1} implies $L(U)$ closed. Condition (iii) ensures only element in polar set is $\{0\}$

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a} a\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{u}=0$, so $u_{1}=u_{2}$. For $f \in L(U)$, by injectivity, exists unique $u=L^{-1} f$.
By (ii) $\Rightarrow \alpha\|u\|_{u} \leq \sup _{v \in V} \frac{a(u, v)}{\|v\|_{v}}=\sup _{v \in V} \frac{\langle f, v\rangle}{\|v\|_{v}}=\|f\|_{v^{\prime}} \Rightarrow\|L u\|_{v^{\prime}} \geq \alpha\|u\|_{u} \Rightarrow\left\|L^{-1} f\right\|_{u} \leq \alpha^{-1}\|f\|_{v^{\prime}}$, so L^{-1} is continuous on $\operatorname{Im}(L)$. Continuity of L, L^{-1} implies $L(U)$ closed. Condition (iii) ensures only element in polar set is $\{0\}$ so L is surjective (thm).

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\| u\|v\|_{v}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L: U \rightarrow V^{\prime}$. Condition (ii) gives us invertibility of L, since if $L u_{1}=L u_{2}$ then $a\left(u_{1}, v\right)=a\left(u_{2}, v\right), \forall v \in V$, giving $\sup _{v \in v a} a\left(u_{1}-u_{2}, v\right)=0$. By (ii) this only occurs if $\left\|u_{1}-u_{2}\right\|_{U}=0$, so $u_{1}=u_{2}$. For $f \in L(U)$, by injectivity, exists unique $u=L^{-1} f$.
By (ii) $\Rightarrow \alpha\|u\| u \leq \sup _{v \in V} \frac{a(u, v)}{\|v\|_{v}}=\sup _{v \in V} \frac{\langle f, v\rangle}{\|v\|_{v}}=\|f\|_{v^{\prime}} \Rightarrow\|L u\|_{v^{\prime}} \geq \alpha\|u\|_{u} \Rightarrow\left\|L^{-1} f\right\| u \leq \alpha^{-1}\|f\|_{v^{\prime}}$, so L^{-1} is continuous on $\operatorname{Im}(L)$. Continuity of L, L^{-1} implies $L(U)$ closed. Condition (iii) ensures only element in polar set is $\{0\}$ so L is surjective (thm).

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\|_{U}\|v\|_{V}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U_{v \in V}} \sup _{v \in V} \frac{a(u, v)}{\|u\|_{U}\|v\|_{V}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^{0} where

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\|_{u}\|v\|_{V}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^{0} where

$$
W=\{v \in V \mid a(u, v)=0, \forall u \in U\}, W^{0} \subset V^{\prime}
$$

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\|_{u}\|v\|_{V}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^{0} where

$$
W=\{v \in V \mid a(u, v)=0, \forall u \in U\}, W^{0} \subset V^{\prime}
$$

This provides ways to describe correspondence for set U, the equivalent functionals in V^{\prime}.

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\|_{u}\|v\|_{V}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^{0} where

$$
W=\{v \in V \mid a(u, v)=0, \forall u \in U\}, W^{0} \subset V^{\prime}
$$

This provides ways to describe correspondence for set U, the equivalent functionals in V^{\prime}.

Remark:

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\|_{u}\|v\|_{V}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^{0} where

$$
W=\{v \in V \mid a(u, v)=0, \forall u \in U\}, W^{0} \subset V^{\prime}
$$

This provides ways to describe correspondence for set U, the equivalent functionals in V^{\prime}.
Remark: Lax-Milgram follows as a special case, since

Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V^{\prime}$ is an isomorphism if and only if the corresponding bilinear form a: $U \times V \rightarrow \mathbb{R}$ satifies the conditions:
(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_{u}\|v\|_{v}$.
(ii) Inf-Sup Condition: There exists $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\|_{u}\|v\|_{V}} \geq \alpha>0
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^{0} where

$$
W=\{v \in V \mid a(u, v)=0, \forall u \in U\}, W^{0} \subset V^{\prime}
$$

This provides ways to describe correspondence for set U, the equivalent functionals in V^{\prime}.
Remark: Lax-Milgram follows as a special case, since

$$
\sup _{v} \frac{a(v, u)}{\|v\|} \geq \frac{a(u, u)}{\|u\|} \geq \alpha\|u\| .
$$

Functional Analysis

Galerkin Method

Functional Analysis

Galerkin Method

Choose approximation spaces $U_{h} \subset U$ and $V_{h} \subset V$ that are finite dimensional.

Functional Analysis

Galerkin Method

Choose approximation spaces $U_{h} \subset U$ and $V_{h} \subset V$ that are finite dimensional. Given $f \in V^{\prime}$, we seek solution $u_{h} \in U_{h}$ so that

Functional Analysis

Galerkin Method

Choose approximation spaces $U_{h} \subset U$ and $V_{h} \subset V$ that are finite dimensional. Given $f \in V^{\prime}$, we seek solution $u_{h} \in U_{h}$ so that

$$
a\left(u_{h}, v\right)=\langle f, v\rangle, \forall v \in V_{h}
$$

Functional Analysis

Galerkin Method

Choose approximation spaces $U_{h} \subset U$ and $V_{h} \subset V$ that are finite dimensional. Given $f \in V^{\prime}$, we seek solution $u_{h} \in U_{h}$ so that

$$
a\left(u_{h}, v\right)=\langle f, v\rangle, \forall v \in V_{h}
$$

Lemma (Convergence)

Functional Analysis

Galerkin Method

Choose approximation spaces $U_{h} \subset U$ and $V_{h} \subset V$ that are finite dimensional. Given $f \in V^{\prime}$, we seek solution $u_{h} \in U_{h}$ so that

$$
a\left(u_{h}, v\right)=\langle f, v\rangle, \forall v \in V_{h} .
$$

Lemma (Convergence)

Consider a : U $\times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions.

Functional Analysis

Galerkin Method

Choose approximation spaces $U_{h} \subset U$ and $V_{h} \subset V$ that are finite dimensional. Given $f \in V^{\prime}$, we seek solution $u_{h} \in U_{h}$ so that

$$
a\left(u_{h}, v\right)=\langle f, v\rangle, \forall v \in V_{h}
$$

Lemma (Convergence)

Consider a : U $\times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds.

Functional Analysis

Galerkin Method

Choose approximation spaces $U_{h} \subset U$ and $V_{h} \subset V$ that are finite dimensional. Given $f \in V^{\prime}$, we seek solution $u_{h} \in U_{h}$ so that

$$
a\left(u_{h}, v\right)=\langle f, v\rangle, \forall v \in V_{h}
$$

Lemma (Convergence)

Consider $a: U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

Functional Analysis

Galerkin Method

Choose approximation spaces $U_{h} \subset U$ and $V_{h} \subset V$ that are finite dimensional. Given $f \in V^{\prime}$, we seek solution $u_{h} \in U_{h}$ so that

$$
a\left(u_{h}, v\right)=\langle f, v\rangle, \forall v \in V_{h}
$$

Lemma (Convergence)

Consider a : U $\times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\|
$$

Functional Analysis

Galerkin Method

Choose approximation spaces $U_{h} \subset U$ and $V_{h} \subset V$ that are finite dimensional. Given $f \in V^{\prime}$, we seek solution $u_{h} \in U_{h}$ so that

$$
a\left(u_{h}, v\right)=\langle f, v\rangle, \forall v \in V_{h}
$$

Lemma (Convergence)

Consider a : U $\times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\|
$$

Remark:

Functional Analysis

Galerkin Method

Choose approximation spaces $U_{h} \subset U$ and $V_{h} \subset V$ that are finite dimensional. Given $f \in V^{\prime}$, we seek solution $u_{h} \in U_{h}$ so that

$$
a\left(u_{h}, v\right)=\langle f, v\rangle, \forall v \in V_{h}
$$

Lemma (Convergence)

Consider a : U $\times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\|
$$

Remark: When this criteria holds for the spaces U_{h}, V_{h}, we say they satisfy the Babuska-Brezzi Condition.

Lemma (Convergence)

Consider bilinear form a: $U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| .
$$

Lemma (Convergence)

Consider bilinear form a: $U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| .
$$

Proof:

Lemma (Convergence)

Consider bilinear form a: $U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| .
$$

Proof:

$$
a\left(u-u_{h}, v\right)=0, \forall v \in V_{h}
$$

Lemma (Convergence)

Consider bilinear form a: $U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| .
$$

Proof:

$$
a\left(u-u_{h}, v\right)=0, \forall v \in V_{h}
$$

For any $w_{h} \in U_{h}$ we have

Lemma (Convergence)

Consider bilinear form a: $U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| .
$$

Proof:

$$
a\left(u-u_{h}, v\right)=0, \forall v \in V_{h}
$$

For any $w_{h} \in U_{h}$ we have

$$
a\left(u_{h}-w_{h}, v\right)=a\left(u-w_{h}, v\right), \forall v \in V_{h}
$$

Lemma (Convergence)

Consider bilinear form a: $U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| .
$$

Proof:

$$
a\left(u-u_{h}, v\right)=0, \forall v \in V_{h}
$$

For any $w_{h} \in U_{h}$ we have

$$
a\left(u_{h}-w_{h}, v\right)=a\left(u-w_{h}, v\right), \forall v \in V_{h}
$$

For $\langle\ell, v\rangle:=a\left(u-w_{h}, v\right)$, we have $\|\ell\| \leq C\left\|u-w_{h}\right\|$.

Lemma (Convergence)

Consider bilinear form a: $U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| .
$$

Proof:

$$
a\left(u-u_{h}, v\right)=0, \forall v \in V_{h}
$$

For any $w_{h} \in U_{h}$ we have

$$
a\left(u_{h}-w_{h}, v\right)=a\left(u-w_{h}, v\right), \forall v \in V_{h}
$$

For $\langle\ell, v\rangle:=a\left(u-w_{h}, v\right)$, we have $\|\ell\| \leq C\left\|u-w_{h}\right\|$. By conditions (i)-(iii), the mapping $L_{h}: U_{h} \rightarrow V_{h}^{\prime}$ obtained from $a\left(u_{h}-w_{h}, \cdot\right)$ satisfies $\left\|L_{h}^{-1}\right\| \leq \alpha^{-1}$.

Lemma (Convergence)

Consider bilinear form a: $U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| .
$$

Proof:

$$
a\left(u-u_{h}, v\right)=0, \forall v \in V_{h}
$$

For any $w_{h} \in U_{h}$ we have

$$
a\left(u_{h}-w_{h}, v\right)=a\left(u-w_{h}, v\right), \forall v \in V_{h}
$$

For $\langle\ell, v\rangle:=a\left(u-w_{h}, v\right)$, we have $\|\ell\| \leq C\left\|u-w_{h}\right\|$. By conditions (i)-(iii), the mapping $L_{h}: U_{h} \rightarrow V_{h}^{\prime}$ obtained from $a\left(u_{h}-w_{h}, \cdot\right)$ satisfies $\left\|L_{h}^{-1}\right\| \leq \alpha^{-1}$. This gives

Lemma (Convergence)

Consider bilinear form a: $U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| .
$$

Proof:

$$
a\left(u-u_{h}, v\right)=0, \forall v \in V_{h}
$$

For any $w_{h} \in U_{h}$ we have

$$
a\left(u_{h}-w_{h}, v\right)=a\left(u-w_{h}, v\right), \forall v \in V_{h}
$$

For $\langle\ell, v\rangle:=a\left(u-w_{h}, v\right)$, we have $\|\ell\| \leq C\left\|u-w_{h}\right\|$. By conditions (i)-(iii), the mapping $L_{h}: U_{h} \rightarrow V_{h}^{\prime}$ obtained from $a\left(u_{h}-w_{h}, \cdot\right)$ satisfies $\left\|L_{h}^{-1}\right\| \leq \alpha^{-1}$. This gives

$$
\left\|u_{h}-w_{h}\right\| \leq \alpha^{-1}\|\ell\| \leq \alpha^{-1} C\left\|u-w_{h}\right\| .
$$

Lemma (Convergence)

Consider bilinear form a: $U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| .
$$

Proof:

$$
a\left(u-u_{h}, v\right)=0, \forall v \in V_{h}
$$

For any $w_{h} \in U_{h}$ we have

$$
a\left(u_{h}-w_{h}, v\right)=a\left(u-w_{h}, v\right), \forall v \in V_{h}
$$

For $\langle\ell, v\rangle:=a\left(u-w_{h}, v\right)$, we have $\|\ell\| \leq C\left\|u-w_{h}\right\|$. By conditions (i)-(iii), the mapping $L_{h}: U_{h} \rightarrow V_{h}^{\prime}$ obtained from $a\left(u_{h}-w_{h}, \cdot\right)$ satisfies $\left\|L_{h}^{-1}\right\| \leq \alpha^{-1}$. This gives

$$
\left\|u_{h}-w_{h}\right\| \leq \alpha^{-1}\|\ell\| \leq \alpha^{-1} C\left\|u-w_{h}\right\| .
$$

From triangle inequality,

Lemma (Convergence)

Consider bilinear form a: $U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| .
$$

Proof:

$$
a\left(u-u_{h}, v\right)=0, \forall v \in V_{h}
$$

For any $w_{h} \in U_{h}$ we have

$$
a\left(u_{h}-w_{h}, v\right)=a\left(u-w_{h}, v\right), \forall v \in V_{h}
$$

For $\langle\ell, v\rangle:=a\left(u-w_{h}, v\right)$, we have $\|\ell\| \leq C\left\|u-w_{h}\right\|$. By conditions (i)-(iii), the mapping $L_{h}: U_{h} \rightarrow V_{h}^{\prime}$ obtained from $a\left(u_{h}-w_{h}, \cdot\right)$ satisfies $\left\|L_{h}^{-1}\right\| \leq \alpha^{-1}$. This gives

$$
\left\|u_{h}-w_{h}\right\| \leq \alpha^{-1}\|\ell\| \leq \alpha^{-1} C\left\|u-w_{h}\right\| .
$$

From triangle inequality,

$$
\left\|u-u_{h}\right\| \leq\left\|u-w_{h}\right\|+\left\|w_{h}-u_{h}\right\| \leq\left(1+\alpha^{-1} C\right)\left\|u-w_{h}\right\|
$$

Lemma (Convergence)

Consider bilinear form a: $U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_{h} \subset V, V_{h} \subset V$ for which the theorem also holds. Then

$$
\left\|u-u_{h}\right\| \leq\left(1+\frac{C}{\alpha}\right) \inf _{w_{h} \in U_{h}}\left\|u-w_{h}\right\| .
$$

Proof:

$$
a\left(u-u_{h}, v\right)=0, \forall v \in V_{h}
$$

For any $w_{h} \in U_{h}$ we have

$$
a\left(u_{h}-w_{h}, v\right)=a\left(u-w_{h}, v\right), \forall v \in V_{h}
$$

For $\langle\ell, v\rangle:=a\left(u-w_{h}, v\right)$, we have $\|\ell\| \leq C\left\|u-w_{h}\right\|$. By conditions (i)-(iii), the mapping $L_{h}: U_{h} \rightarrow V_{h}^{\prime}$ obtained from $a\left(u_{h}-w_{h}, \cdot\right)$ satisfies $\left\|L_{h}^{-1}\right\| \leq \alpha^{-1}$. This gives

$$
\left\|u_{h}-w_{h}\right\| \leq \alpha^{-1}\|\ell\| \leq \alpha^{-1} C\left\|u-w_{h}\right\| .
$$

From triangle inequality,

$$
\left\|u-u_{h}\right\| \leq\left\|u-w_{h}\right\|+\left\|w_{h}-u_{h}\right\| \leq\left(1+\alpha^{-1} C\right)\left\|u-w_{h}\right\|
$$

Saddle Point Problems

Returning to our original motivation.

Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem I

Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X, \\
b(u, \mu) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X, \\
b(u, \mu) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure solution.

Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X \\
b(u, \mu) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure solution.

Consider the overall linear mapping for the above problem

Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X \\
b(u, \mu) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure solution.

Consider the overall linear mapping for the above problem

$$
L: X \times M \rightarrow X^{\prime} \times M^{\prime}, \quad \text { maps } \quad(u, \lambda) \mapsto(f, g)
$$

Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

$$
\begin{aligned}
a(u, v)+b(v, \lambda) & =\langle f, v\rangle, \quad \forall v \in X \\
b(u, \mu) & =\langle g, \mu\rangle, \quad \forall \mu \in M .
\end{aligned}
$$

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure solution.

Consider the overall linear mapping for the above problem

$$
L: X \times M \rightarrow X^{\prime} \times M^{\prime}, \quad \text { maps } \quad(u, \lambda) \mapsto(f, g)
$$

We need to establish conditions for this to be an isomorphism.

Saddle Point Problems

Notation:

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}$,

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$
\begin{aligned}
& A: X \rightarrow X^{\prime} \\
& \langle A u, v\rangle=a(u, v), \quad \forall v \in X
\end{aligned}
$$

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$
\begin{aligned}
& A: X \rightarrow X^{\prime} \\
& \langle A u, v\rangle=a(u, v), \quad \forall v \in X
\end{aligned}
$$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B^{\prime} as

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$
\begin{aligned}
& A: X \rightarrow X^{\prime} \\
& \langle A u, v\rangle=a(u, v), \quad \forall v \in X
\end{aligned}
$$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B^{\prime} as

$$
\begin{array}{ll}
B: X \rightarrow M^{\prime}, & B^{\prime}: M \rightarrow X^{\prime} \\
\langle B u, \mu\rangle=b(u, \mu), \quad \forall \mu \in M, & \left\langle B^{\prime} \lambda, v\right\rangle=b(v, \lambda), \quad \forall v \in X .
\end{array}
$$

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$
\begin{aligned}
& A: X \rightarrow X^{\prime} \\
& \langle A u, v\rangle=a(u, v), \quad \forall v \in X
\end{aligned}
$$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B^{\prime} as

$$
\begin{array}{ll}
B: X \rightarrow M^{\prime}, & B^{\prime}: M \rightarrow X^{\prime} \\
\langle B u, \mu\rangle=b(u, \mu), \quad \forall \mu \in M, & \left\langle B^{\prime} \lambda, v\right\rangle=b(v, \lambda), \quad \forall v \in X .
\end{array}
$$

The Saddle Point Problem I can be expressed as

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
Since b is continuous, V is a closed subspace of X.
Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$
\begin{aligned}
& A: X \rightarrow X^{\prime} \\
& \langle A u, v\rangle=a(u, v), \quad \forall v \in X
\end{aligned}
$$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B^{\prime} as

$$
\begin{array}{ll}
B: X \rightarrow M^{\prime}, & B^{\prime}: M \rightarrow X^{\prime} \\
\langle B u, \mu\rangle=b(u, \mu), \quad \forall \mu \in M, & \left\langle B^{\prime} \lambda, v\right\rangle=b(v, \lambda), \quad \forall v \in X
\end{array}
$$

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
Since b is continuous, V is a closed subspace of X.
Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$
\begin{aligned}
& A: X \rightarrow X^{\prime} \\
& \langle A u, v\rangle=a(u, v), \quad \forall v \in X
\end{aligned}
$$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B^{\prime} as

$$
\begin{array}{ll}
B: X \rightarrow M^{\prime}, & B^{\prime}: M \rightarrow X^{\prime} \\
\langle B u, \mu\rangle=b(u, \mu), \quad \forall \mu \in M, & \left\langle B^{\prime} \lambda, v\right\rangle=b(v, \lambda), \quad \forall v \in X
\end{array}
$$

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Find $(u, \lambda) \in X \times M$ satisfying

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$
\begin{aligned}
& A: X \rightarrow X^{\prime} \\
& \langle A u, v\rangle=a(u, v), \quad \forall v \in X
\end{aligned}
$$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B^{\prime} as

$$
\begin{array}{ll}
B: X \rightarrow M^{\prime}, & B^{\prime}: M \rightarrow X^{\prime} \\
\langle B u, \mu\rangle=b(u, \mu), \quad \forall \mu \in M, & \left\langle B^{\prime} \lambda, v\right\rangle=b(v, \lambda), \quad \forall v \in X
\end{array}
$$

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Find $(u, \lambda) \in X \times M$ satisfying

$$
\begin{aligned}
A u+B^{\prime} \lambda & =f \\
B u & =g
\end{aligned}
$$

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$ Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$
\begin{aligned}
& A: X \rightarrow X^{\prime} \\
& \langle A u, v\rangle=a(u, v), \quad \forall v \in X
\end{aligned}
$$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B^{\prime} as

$$
\begin{array}{ll}
B: X \rightarrow M^{\prime}, & B^{\prime}: M \rightarrow X^{\prime} \\
\langle B u, \mu\rangle=b(u, \mu), \quad \forall \mu \in M, & \left\langle B^{\prime} \lambda, v\right\rangle=b(v, \lambda), \quad \forall v \in X
\end{array}
$$

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Find $(u, \lambda) \in X \times M$ satisfying

$$
\begin{aligned}
A u+B^{\prime} \lambda & =f \\
B u & =g
\end{aligned}
$$

Saddle Point Problems

Inf-Sup Lemma

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \Rightarrow (ii).

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^{0}$ defined by mapping $w \mapsto(v, w)$.

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^{0}$ defined by mapping $w \mapsto(v, w)$. By (iii) B^{\prime} is an isomorphism so there exists $\lambda \in M$ so that

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^{0}$ defined by mapping $w \mapsto(v, w)$. By (iii) B^{\prime} is an isomorphism so there exists $\lambda \in M$ so that

$$
b(w, \lambda)=(v, w), \forall w \in V
$$

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^{0}$ defined by mapping $w \mapsto(v, w)$. By (iii) B^{\prime} is an isomorphism so there exists $\lambda \in M$ so that

$$
b(w, \lambda)=(v, w), \forall w \in V
$$

From the definition of the functional $\|g\|=\|v\|$.

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^{0}$ defined by mapping $w \mapsto(v, w)$. By (iii) B^{\prime} is an isomorphism so there exists $\lambda \in M$ so that

$$
b(w, \lambda)=(v, w), \forall w \in V
$$

From the definition of the functional $\|g\|=\|v\|$. Also, $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|$ so $\|v\|=\|g\|=\left\|B^{\prime} \lambda\right\| \geq \beta\|\lambda\|$.

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^{0}$ defined by mapping $w \mapsto(v, w)$. By (iii) B^{\prime} is an isomorphism so there exists $\lambda \in M$ so that

$$
b(w, \lambda)=(v, w), \forall w \in V
$$

From the definition of the functional $\|g\|=\|v\|$. Also, $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|$ so $\|v\|=\|g\|=\left\|B^{\prime} \lambda\right\| \geq \beta\|\lambda\|$. Substituting into $b(\cdot, \cdot)$ above $w=v$, we have

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^{0}$ defined by mapping $w \mapsto(v, w)$. By (iii) B^{\prime} is an isomorphism so there exists $\lambda \in M$ so that

$$
b(w, \lambda)=(v, w), \forall w \in V
$$

From the definition of the functional $\|g\|=\|v\|$. Also, $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|$ so $\|v\|=\|g\|=\left\|B^{\prime} \lambda\right\| \geq \beta\|\lambda\|$. Substituting into $b(\cdot, \cdot)$ above $w=v$, we have

$$
\sup _{\mu \in M} \frac{b(v, \mu)}{\|\mu\|} \geq \frac{b(v, \mu)}{\|\mu\|}=\frac{(v, v)}{\|\lambda\|} \geq \beta\|v\|
$$

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^{0}$ defined by mapping $w \mapsto(v, w)$. By (iii) B^{\prime} is an isomorphism so there exists $\lambda \in M$ so that

$$
b(w, \lambda)=(v, w), \forall w \in V
$$

From the definition of the functional $\|g\|=\|v\|$. Also, $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|$ so $\|v\|=\|g\|=\left\|B^{\prime} \lambda\right\| \geq \beta\|\lambda\|$. Substituting into $b(\cdot, \cdot)$ above $w=v$, we have

$$
\sup _{\mu \in M} \frac{b(v, \mu)}{\|\mu\|} \geq \frac{b(v, \mu)}{\|\mu\|}=\frac{(v, v)}{\|\lambda\|} \geq \beta\|v\|
$$

The $B: V^{\perp} \rightarrow M^{\prime}$ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \Rightarrow (ii). For $v \in V^{\perp}$ let $g \in V^{0}$ defined by mapping $w \mapsto(v, w)$. By (iii) B^{\prime} is an isomorphism so there exists $\lambda \in M$ so that

$$
b(w, \lambda)=(v, w), \forall w \in V
$$

From the definition of the functional $\|g\|=\|v\|$. Also, $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|$ so $\|v\|=\|g\|=\left\|B^{\prime} \lambda\right\| \geq \beta\|\lambda\|$. Substituting into $b(\cdot, \cdot)$ above $w=v$, we have

$$
\sup _{\mu \in M} \frac{b(v, \mu)}{\|\mu\|} \geq \frac{b(v, \mu)}{\|\mu\|}=\frac{(v, v)}{\|\lambda\|} \geq \beta\|v\|
$$

The $B: V^{\perp} \rightarrow M^{\prime}$ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) \Rightarrow (ii).

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

We show (ii) \Rightarrow (i).

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

We show (ii) \Rightarrow (i). By (ii), $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism.

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

We show (ii) \Rightarrow (i). By (ii), $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism. For $\mu \in M$, we have by duality of the norms

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

We show (ii) \Rightarrow (i). By (ii), $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism. For $\mu \in M$, we have by duality of the norms

$$
\|\mu\|=\sup _{g \in M^{\prime}} \frac{\langle g, \mu\rangle}{\|g\|}
$$

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

We show (ii) \Rightarrow (i). By (ii), $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism. For $\mu \in M$, we have by duality of the norms

$$
\|\mu\|=\sup _{g \in M^{\prime}} \frac{\langle g, \mu\rangle}{\|g\|}=\sup _{v \in V^{\perp}} \frac{\langle B v, \mu\rangle}{\|B v\|}
$$

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

We show (ii) \Rightarrow (i). By (ii), $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism. For $\mu \in M$, we have by duality of the norms

$$
\|\mu\|=\sup _{g \in M^{\prime}} \frac{\langle g, \mu\rangle}{\|g\|}=\sup _{v \in V^{\perp}} \frac{\langle B v, \mu\rangle}{\|B v\|}=\sup _{v \in V^{\perp}} \frac{b(v, \mu)}{\|B v\|}
$$

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

We show (ii) \Rightarrow (i). By (ii), $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism. For $\mu \in M$, we have by duality of the norms

$$
\|\mu\|=\sup _{g \in M^{\prime}} \frac{\langle g, \mu\rangle}{\|g\|}=\sup _{v \in V^{\perp}} \frac{\langle B v, \mu\rangle}{\|B v\|}=\sup _{v \in V^{\perp}} \frac{b(v, \mu)}{\|B v\|} \leq \sup _{v \in V^{\perp}} \frac{b(v, \mu)}{\beta\|v\|} .
$$

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

We show (ii) \Rightarrow (i). By (ii), $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism. For $\mu \in M$, we have by duality of the norms

$$
\|\mu\|=\sup _{g \in M^{\prime}} \frac{\langle g, \mu\rangle}{\|g\|}=\sup _{v \in V^{\perp}} \frac{\langle B v, \mu\rangle}{\|B v\|}=\sup _{v \in V^{\perp}} \frac{b(v, \mu)}{\|B v\|} \leq \sup _{v \in V^{\perp}} \frac{b(v, \mu)}{\beta\|v\|} .
$$

Therefore, $(\mathrm{ii}) \Rightarrow(\mathrm{i})$.

Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) $\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta>0$.
(ii) The operator $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism and $\|B v\| \geq \beta\|v\|, \quad \forall v \in V^{\perp}$.
(iii) The operator $B^{\prime}: M \rightarrow V^{0} \subset X^{\prime}$ is an isomorphism and $\left\|B^{\prime} \mu\right\| \geq \beta\|\mu\|, \quad \forall \mu \in M$.

Proof:

We show (ii) \Rightarrow (i). By (ii), $B: V^{\perp} \rightarrow M^{\prime}$ is an isomorphism. For $\mu \in M$, we have by duality of the norms

$$
\|\mu\|=\sup _{g \in M^{\prime}} \frac{\langle g, \mu\rangle}{\|g\|}=\sup _{v \in V^{\perp}} \frac{\langle B v, \mu\rangle}{\|B v\|}=\sup _{v \in V^{\perp}} \frac{b(v, \mu)}{\|B v\|} \leq \sup _{v \in V^{\perp}} \frac{b(v, \mu)}{\beta\|v\|} .
$$

Therefore, $(\mathrm{ii}) \Rightarrow(\mathrm{i})$.

Saddle Point Problems

Notation:

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}$,

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
A central theorem for saddle point problems.
Brezzi's Splitting Theorem

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \rightarrow X^{\prime} \times M^{\prime}$

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \rightarrow X^{\prime} \times M^{\prime}$ if and only if the following two conditions are satisfied

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \rightarrow X^{\prime} \times M^{\prime}$ if and only if the following two conditions are satisfied
(i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in $V, a(v, v) \geq \alpha\|v\|^{2}, \forall v \in V$ with $\alpha>0, V$ given above.

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \rightarrow X^{\prime} \times M^{\prime}$ if and only if the following two conditions are satisfied
(i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in $V, a(v, v) \geq \alpha\|v\|^{2}, \forall v \in V$ with $\alpha>0, V$ given above.
(ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \rightarrow X^{\prime} \times M^{\prime}$ if and only if the following two conditions are satisfied
(i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in $V, a(v, v) \geq \alpha\|v\|^{2}, \forall v \in V$ with $\alpha>0, V$ given above.
(ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$
\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta
$$

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \rightarrow X^{\prime} \times M^{\prime}$ if and only if the following two conditions are satisfied
(i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in $V, a(v, v) \geq \alpha\|v\|^{2}, \forall v \in V$ with $\alpha>0, V$ given above.
(ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$
\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta
$$

Remark:

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \rightarrow X^{\prime} \times M^{\prime}$ if and only if the following two conditions are satisfied
(i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in $V, a(v, v) \geq \alpha\|v\|^{2}, \forall v \in V$ with $\alpha>0, V$ given above.
(ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$
\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta
$$

Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V).

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \rightarrow X^{\prime} \times M^{\prime}$ if and only if the following two conditions are satisfied
(i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in $V, a(v, v) \geq \alpha\|v\|^{2}, \forall v \in V$ with $\alpha>0, V$ given above.
(ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$
\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta
$$

Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V).

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \rightarrow X^{\prime} \times M^{\prime}$ if and only if the following two conditions are satisfied
(i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in $V, a(v, v) \geq \alpha\|v\|^{2}, \forall v \in V$ with $\alpha>0, V$ given above.
(ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$
\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta
$$

Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V).
Provides conditions directly in terms of the bilinear forms a and b concerning solveability.

Saddle Point Problems

Notation: $V(g):=\{v \in X: b(v, \mu)=\langle g, \mu\rangle, \forall \mu \in M\}, V:=\{v \in X: b(v, \mu)=0, \forall \mu \in M\}$
A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism $L: X \times M \rightarrow X^{\prime} \times M^{\prime}$ if and only if the following two conditions are satisfied
(i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in $V, a(v, v) \geq \alpha\|v\|^{2}, \forall v \in V$ with $\alpha>0, V$ given above.
(ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$
\inf _{\mu \in M} \sup _{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta
$$

Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V).
Provides conditions directly in terms of the bilinear forms a and b concerning solveability.
Referred to as the Brezzi Conditions or Ladyzhenskaya-Babuska-Brezzi (LBB-Conditions).

Mixed Finite Element Methods

Mixed FEM I

Mixed Finite Element Methods

Mixed FEM I

Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times M_{h}$ so that

Mixed Finite Element Methods

Mixed FEM I

Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times M_{h}$ so that

$$
\begin{aligned}
a\left(u_{h}, v\right)+b\left(v, \lambda_{h}\right) & =\langle f, v\rangle, \quad \forall v \in X_{h} \\
b\left(u_{h}, \mu\right) & =\langle g, \mu\rangle, \quad \forall \mu \in M_{h} .
\end{aligned}
$$

Mixed Finite Element Methods

Mixed FEM I

Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times M_{h}$ so that

$$
\begin{aligned}
a\left(u_{h}, v\right)+b\left(v, \lambda_{h}\right) & =\langle f, v\rangle, \quad \forall v \in X_{h} \\
b\left(u_{h}, \mu\right) & =\langle g, \mu\rangle, \quad \forall \mu \in M_{h} .
\end{aligned}
$$

Remark:

Mixed Finite Element Methods

Mixed FEM I

Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times M_{h}$ so that

$$
\begin{aligned}
a\left(u_{h}, v\right)+b\left(v, \lambda_{h}\right) & =\langle f, v\rangle, \quad \forall v \in X_{h} \\
b\left(u_{h}, \mu\right) & =\langle g, \mu\rangle, \quad \forall \mu \in M_{h} .
\end{aligned}
$$

Remark: Need to chose the spaces X_{h} and M_{h} carefully so have compatibility so the inf-sup conditions satisfied.

Mixed Finite Element Methods

Mixed FEM I

Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times M_{h}$ so that

$$
\begin{aligned}
a\left(u_{h}, v\right)+b\left(v, \lambda_{h}\right) & =\langle f, v\rangle, \quad \forall v \in X_{h} \\
b\left(u_{h}, \mu\right) & =\langle g, \mu\rangle, \quad \forall \mu \in M_{h} .
\end{aligned}
$$

Remark: Need to chose the spaces X_{h} and M_{h} carefully so have compatibility so the inf-sup conditions satisfied. Notation:

Mixed Finite Element Methods

Mixed FEM I

Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times M_{h}$ so that

$$
\begin{aligned}
a\left(u_{h}, v\right)+b\left(v, \lambda_{h}\right) & =\langle f, v\rangle, \quad \forall v \in X_{h} \\
b\left(u_{h}, \mu\right) & =\langle g, \mu\rangle, \quad \forall \mu \in M_{h} .
\end{aligned}
$$

Remark: Need to chose the spaces X_{h} and M_{h} carefully so have compatibility so the inf-sup conditions satisfied. Notation: $V_{h}:=\left\{v \in X_{h}: b(v, \mu)=0, \forall \mu \in M_{h}\right\}$.

Definition: Babuska-Brezzi Condition

Mixed Finite Element Methods

Mixed FEM I

Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times M_{h}$ so that

$$
\begin{aligned}
a\left(u_{h}, v\right)+b\left(v, \lambda_{h}\right) & =\langle f, v\rangle, \quad \forall v \in X_{h} \\
b\left(u_{h}, \mu\right) & =\langle g, \mu\rangle, \quad \forall \mu \in M_{h} .
\end{aligned}
$$

Remark: Need to chose the spaces X_{h} and M_{h} carefully so have compatibility so the inf-sup conditions satisfied. Notation: $V_{h}:=\left\{v \in X_{h}: b(v, \mu)=0, \forall \mu \in M_{h}\right\}$.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces X_{h}, M_{h} if there exists $\alpha>0, \beta>0$ independent of h so that

Mixed Finite Element Methods

Mixed FEM I

Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times M_{h}$ so that

$$
\begin{aligned}
a\left(u_{h}, v\right)+b\left(v, \lambda_{h}\right) & =\langle f, v\rangle, \quad \forall v \in X_{h} \\
b\left(u_{h}, \mu\right) & =\langle g, \mu\rangle, \quad \forall \mu \in M_{h} .
\end{aligned}
$$

Remark: Need to chose the spaces X_{h} and M_{h} carefully so have compatibility so the inf-sup conditions satisfied. Notation: $V_{h}:=\left\{v \in X_{h}: b(v, \mu)=0, \forall \mu \in M_{h}\right\}$.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces X_{h}, M_{h} if there exists $\alpha>0, \beta>0$ independent of h so that
(i) Bilinear form $a(\cdot, \cdot)$ is V_{h}-elliptic with constant $\alpha>0$.

Mixed Finite Element Methods

Mixed FEM I

Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times M_{h}$ so that

$$
\begin{aligned}
a\left(u_{h}, v\right)+b\left(v, \lambda_{h}\right) & =\langle f, v\rangle, \quad \forall v \in X_{h} \\
b\left(u_{h}, \mu\right) & =\langle g, \mu\rangle, \quad \forall \mu \in M_{h} .
\end{aligned}
$$

Remark: Need to chose the spaces X_{h} and M_{h} carefully so have compatibility so the inf-sup conditions satisfied. Notation: $V_{h}:=\left\{v \in X_{h}: b(v, \mu)=0, \forall \mu \in M_{h}\right\}$.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces X_{h}, M_{h} if there exists $\alpha>0, \beta>0$ independent of h so that
(i) Bilinear form $a(\cdot, \cdot)$ is V_{h}-elliptic with constant $\alpha>0$.
(ii) The condition holds

Mixed Finite Element Methods

Mixed FEM I

Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times M_{h}$ so that

$$
\begin{aligned}
a\left(u_{h}, v\right)+b\left(v, \lambda_{h}\right) & =\langle f, v\rangle, \quad \forall v \in X_{h} \\
b\left(u_{h}, \mu\right) & =\langle g, \mu\rangle, \quad \forall \mu \in M_{h} .
\end{aligned}
$$

Remark: Need to chose the spaces X_{h} and M_{h} carefully so have compatibility so the inf-sup conditions satisfied. Notation: $V_{h}:=\left\{v \in X_{h}: b(v, \mu)=0, \forall \mu \in M_{h}\right\}$.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces X_{h}, M_{h} if there exists $\alpha>0, \beta>0$ independent of h so that
(i) Bilinear form $a(\cdot, \cdot)$ is V_{h}-elliptic with constant $\alpha>0$.
(ii) The condition holds

$$
\sup _{v \in X_{h}} \frac{b\left(v, \lambda_{h}\right)}{\|v\|} \geq \beta\left\|\lambda_{h}\right\|, \quad \forall \lambda_{h} \in M_{h} .
$$

Mixed Finite Element Methods

Mixed FEM I

Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times M_{h}$ so that

$$
\begin{aligned}
a\left(u_{h}, v\right)+b\left(v, \lambda_{h}\right) & =\langle f, v\rangle, \quad \forall v \in X_{h} \\
b\left(u_{h}, \mu\right) & =\langle g, \mu\rangle, \quad \forall \mu \in M_{h} .
\end{aligned}
$$

Remark: Need to chose the spaces X_{h} and M_{h} carefully so have compatibility so the inf-sup conditions satisfied. Notation: $V_{h}:=\left\{v \in X_{h}: b(v, \mu)=0, \forall \mu \in M_{h}\right\}$.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces X_{h}, M_{h} if there exists $\alpha>0, \beta>0$ independent of h so that
(i) Bilinear form $a(\cdot, \cdot)$ is V_{h}-elliptic with constant $\alpha>0$.
(ii) The condition holds

$$
\sup _{v \in X_{h}} \frac{b\left(v, \lambda_{h}\right)}{\|v\|} \geq \beta\left\|\lambda_{h}\right\|, \quad \forall \lambda_{h} \in M_{h} .
$$

Remark:

Mixed Finite Element Methods

Mixed FEM I

Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times M_{h}$ so that

$$
\begin{aligned}
a\left(u_{h}, v\right)+b\left(v, \lambda_{h}\right) & =\langle f, v\rangle, \quad \forall v \in X_{h} \\
b\left(u_{h}, \mu\right) & =\langle g, \mu\rangle, \quad \forall \mu \in M_{h} .
\end{aligned}
$$

Remark: Need to chose the spaces X_{h} and M_{h} carefully so have compatibility so the inf-sup conditions satisfied. Notation: $V_{h}:=\left\{v \in X_{h}: b(v, \mu)=0, \forall \mu \in M_{h}\right\}$.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces X_{h}, M_{h} if there exists $\alpha>0, \beta>0$ independent of h so that
(i) Bilinear form $a(\cdot, \cdot)$ is V_{h}-elliptic with constant $\alpha>0$.
(ii) The condition holds

$$
\sup _{v \in X_{h}} \frac{b\left(v, \lambda_{h}\right)}{\|v\|} \geq \beta\left\|\lambda_{h}\right\|, \quad \forall \lambda_{h} \in M_{h} .
$$

Remark: Also referred to as the Inf-Sup Conditions.

Mixed Methods

Theorem

Mixed Methods

Theorem

When X_{h} and M_{h} satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

Mixed Methods

Theorem

When X_{h} and M_{h} satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$
\left\|u-u_{h}\right\|+\left\|\lambda-\lambda_{h}\right\| \leq c\left(\inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|+\inf _{\mu_{h} \in M_{h}}\left\|\lambda-\mu_{h}\right\|\right)
$$

Mixed Methods

Theorem

When X_{h} and M_{h} satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$
\left\|u-u_{h}\right\|+\left\|\lambda-\lambda_{h}\right\| \leq c\left(\inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|+\inf _{\mu_{h} \in M_{h}}\left\|\lambda-\mu_{h}\right\|\right)
$$

Remark:

Mixed Methods

Theorem

When X_{h} and M_{h} satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$
\left\|u-u_{h}\right\|+\left\|\lambda-\lambda_{h}\right\| \leq c\left(\inf _{v_{h} \in x_{h}}\left\|u-v_{h}\right\|+\inf _{\mu_{h} \in M_{h}}\left\|\lambda-\mu_{h}\right\|\right)
$$

Remark: Generally, $V_{h} \not \subset V$ (non-conforming). We usually do get better results in conforming case $V_{h} \subset V$.

Definition

Mixed Methods

Theorem

When X_{h} and M_{h} satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$
\left\|u-u_{h}\right\|+\left\|\lambda-\lambda_{h}\right\| \leq c\left(\inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|+\inf _{\mu_{h} \in M_{h}}\left\|\lambda-\mu_{h}\right\|\right)
$$

Remark: Generally, $V_{h} \not \subset V$ (non-conforming). We usually do get better results in conforming case $V_{h} \subset V$.

Definition

The spaces $X_{h} \subset X$ and $M_{h} \subset M$, are said to satisfy condition (C) provided $V_{h} \subset V$.

Mixed Methods

Theorem

When X_{h} and M_{h} satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$
\left\|u-u_{h}\right\|+\left\|\lambda-\lambda_{h}\right\| \leq c\left(\inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|+\inf _{\mu_{h} \in M_{h}}\left\|\lambda-\mu_{h}\right\|\right)
$$

Remark: Generally, $V_{h} \not \subset V$ (non-conforming). We usually do get better results in conforming case $V_{h} \subset V$.

Definition

The spaces $X_{h} \subset X$ and $M_{h} \subset M$, are said to satisfy condition (C) provided $V_{h} \subset V$.

Significance:

Mixed Methods

Theorem

When X_{h} and M_{h} satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$
\left\|u-u_{h}\right\|+\left\|\lambda-\lambda_{h}\right\| \leq c\left(\inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|+\inf _{\mu_{h} \in M_{h}}\left\|\lambda-\mu_{h}\right\|\right)
$$

Remark: Generally, $V_{h} \not \subset V$ (non-conforming). We usually do get better results in conforming case $V_{h} \subset V$.

Definition

The spaces $X_{h} \subset X$ and $M_{h} \subset M$, are said to satisfy condition (C) provided $V_{h} \subset V$.
Significance: Condition (C) $\Rightarrow \forall v_{h} \in X_{h}, b\left(v_{h}, \mu_{h}\right)=0, \forall \mu_{h} \in M_{h} \Rightarrow b\left(v_{h}, \mu\right)=0, \forall \mu \in M$.

Theorem

Mixed Methods

Theorem

When X_{h} and M_{h} satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$
\left\|u-u_{h}\right\|+\left\|\lambda-\lambda_{h}\right\| \leq c\left(\inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|+\inf _{\mu_{h} \in M_{h}}\left\|\lambda-\mu_{h}\right\|\right)
$$

Remark: Generally, $V_{h} \not \subset V$ (non-conforming). We usually do get better results in conforming case $V_{h} \subset V$.

Definition

The spaces $X_{h} \subset X$ and $M_{h} \subset M$, are said to satisfy condition (C) provided $V_{h} \subset V$.
Significance: Condition (C) $\Rightarrow \forall v_{h} \in X_{h}, b\left(v_{h}, \mu_{h}\right)=0, \forall \mu_{h} \in M_{h} \Rightarrow b\left(v_{h}, \mu\right)=0, \forall \mu \in M$.

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

Mixed Methods

Theorem

When X_{h} and M_{h} satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$
\left\|u-u_{h}\right\|+\left\|\lambda-\lambda_{h}\right\| \leq c\left(\inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|+\inf _{\mu_{h} \in M_{h}}\left\|\lambda-\mu_{h}\right\|\right)
$$

Remark: Generally, $V_{h} \not \subset V$ (non-conforming). We usually do get better results in conforming case $V_{h} \subset V$.

Definition

The spaces $X_{h} \subset X$ and $M_{h} \subset M$, are said to satisfy condition (C) provided $V_{h} \subset V$.
Significance: Condition (C) $\Rightarrow \forall v_{h} \in X_{h}, b\left(v_{h}, \mu_{h}\right)=0, \forall \mu_{h} \in M_{h} \Rightarrow b\left(v_{h}, \mu\right)=0, \forall \mu \in M$.

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|
$$

Mixed Methods

Theorem

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\| .
$$

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\| .
$$

Proof:

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\| .
$$

Proof:
Consider $v_{h} \in V_{h}(g)$.

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\| .
$$

Proof:
Consider $v_{h} \in V_{h}(g)$. It follows that

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|
$$

Proof:

Consider $v_{h} \in V_{h}(g)$. It follows that

$$
a\left(u_{h}-v_{h}, v\right)=a\left(u_{h}, v\right)-a(u, v)+a\left(u-v_{h}, v\right)
$$

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\| .
$$

Proof:

Consider $v_{h} \in V_{h}(g)$. It follows that

$$
\begin{aligned}
a\left(u_{h}-v_{h}, v\right) & =a\left(u_{h}, v\right)-a(u, v)+a\left(u-v_{h}, v\right) \\
& =b\left(v, \lambda-\lambda_{h}\right)+a\left(u-v_{h}, v\right)
\end{aligned}
$$

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\| .
$$

Proof:

Consider $v_{h} \in V_{h}(g)$. It follows that

$$
\begin{aligned}
a\left(u_{h}-v_{h}, v\right) & =a\left(u_{h}, v\right)-a(u, v)+a\left(u-v_{h}, v\right) \\
& =b\left(v, \lambda-\lambda_{h}\right)+a\left(u-v_{h}, v\right) \\
& \leq C\left\|u-v_{h}\right\| \cdot\|v\| .
\end{aligned}
$$

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\| .
$$

Proof:
Consider $v_{h} \in V_{h}(g)$. It follows that

$$
\begin{aligned}
a\left(u_{h}-v_{h}, v\right) & =a\left(u_{h}, v\right)-a(u, v)+a\left(u-v_{h}, v\right) \\
& =b\left(v, \lambda-\lambda_{h}\right)+a\left(u-v_{h}, v\right) \\
& \leq C\left\|u-v_{h}\right\| \cdot\|v\| .
\end{aligned}
$$

Holds $\forall v \in V_{h}$ since $b\left(v, \lambda-\lambda_{h}\right)=0$ from Condition (C).

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\| .
$$

Proof:

Consider $v_{h} \in V_{h}(g)$. It follows that

$$
\begin{aligned}
a\left(u_{h}-v_{h}, v\right) & =a\left(u_{h}, v\right)-a(u, v)+a\left(u-v_{h}, v\right) \\
& =b\left(v, \lambda-\lambda_{h}\right)+a\left(u-v_{h}, v\right) \\
& \leq C\left\|u-v_{h}\right\| \cdot\|v\| .
\end{aligned}
$$

Holds $\forall v \in V_{h}$ since $b\left(v, \lambda-\lambda_{h}\right)=0$ from Condition (C).
Let $v:=u_{h}-v_{h}$, then $\left\|u_{h}-v_{h}\right\|^{2} \leq \alpha^{-1} C\left\|u_{h}-v_{h}\right\| \cdot\left\|u-v_{h}\right\|$.

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|
$$

Proof:

Consider $v_{h} \in V_{h}(g)$. It follows that

$$
\begin{aligned}
a\left(u_{h}-v_{h}, v\right) & =a\left(u_{h}, v\right)-a(u, v)+a\left(u-v_{h}, v\right) \\
& =b\left(v, \lambda-\lambda_{h}\right)+a\left(u-v_{h}, v\right) \\
& \leq C\left\|u-v_{h}\right\| \cdot\|v\| .
\end{aligned}
$$

Holds $\forall v \in V_{h}$ since $b\left(v, \lambda-\lambda_{h}\right)=0$ from Condition (C).
Let $v:=u_{h}-v_{h}$, then $\left\|u_{h}-v_{h}\right\|^{2} \leq \alpha^{-1} C\left\|u_{h}-v_{h}\right\| \cdot\left\|u-v_{h}\right\|$. Dividing by $\left\|u_{h}-v_{h}\right\|$, we have $\left\|u_{h}-v_{h}\right\| \leq \alpha^{-1} C\left\|u-v_{h}\right\|$.

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|
$$

Proof:

Consider $v_{h} \in V_{h}(g)$. It follows that

$$
\begin{aligned}
a\left(u_{h}-v_{h}, v\right) & =a\left(u_{h}, v\right)-a(u, v)+a\left(u-v_{h}, v\right) \\
& =b\left(v, \lambda-\lambda_{h}\right)+a\left(u-v_{h}, v\right) \\
& \leq C\left\|u-v_{h}\right\| \cdot\|v\|
\end{aligned}
$$

Holds $\forall v \in V_{h}$ since $b\left(v, \lambda-\lambda_{h}\right)=0$ from Condition (C).
Let $v:=u_{h}-v_{h}$, then $\left\|u_{h}-v_{h}\right\|^{2} \leq \alpha^{-1} C\left\|u_{h}-v_{h}\right\| \cdot\left\|u-v_{h}\right\|$. Dividing by $\left\|u_{h}-v_{h}\right\|$, we have $\left\|u_{h}-v_{h}\right\| \leq \alpha^{-1} C\left\|u-v_{h}\right\|$.

By triangle inequality, $\left\|u-u_{h}\right\| \leq\left\|u-v_{h}\right\|+\left\|v_{h}-u_{h}\right\|$

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|
$$

Proof:

Consider $v_{h} \in V_{h}(g)$. It follows that

$$
\begin{aligned}
a\left(u_{h}-v_{h}, v\right) & =a\left(u_{h}, v\right)-a(u, v)+a\left(u-v_{h}, v\right) \\
& =b\left(v, \lambda-\lambda_{h}\right)+a\left(u-v_{h}, v\right) \\
& \leq C\left\|u-v_{h}\right\| \cdot\|v\| .
\end{aligned}
$$

Holds $\forall v \in V_{h}$ since $b\left(v, \lambda-\lambda_{h}\right)=0$ from Condition (C).
Let $v:=u_{h}-v_{h}$, then $\left\|u_{h}-v_{h}\right\|^{2} \leq \alpha^{-1} C\left\|u_{h}-v_{h}\right\| \cdot\left\|u-v_{h}\right\|$. Dividing by $\left\|u_{h}-v_{h}\right\|$, we have $\left\|u_{h}-v_{h}\right\| \leq \alpha^{-1} C\left\|u-v_{h}\right\|$.

By triangle inequality, $\left\|u-u_{h}\right\| \leq\left\|u-v_{h}\right\|+\left\|v_{h}-u_{h}\right\|$ and the result follows.

Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$
\left\|u-u_{h}\right\| \leq c \inf _{v_{h} \in X_{h}}\left\|u-v_{h}\right\|
$$

Proof:

Consider $v_{h} \in V_{h}(g)$. It follows that

$$
\begin{aligned}
a\left(u_{h}-v_{h}, v\right) & =a\left(u_{h}, v\right)-a(u, v)+a\left(u-v_{h}, v\right) \\
& =b\left(v, \lambda-\lambda_{h}\right)+a\left(u-v_{h}, v\right) \\
& \leq C\left\|u-v_{h}\right\| \cdot\|v\| .
\end{aligned}
$$

Holds $\forall v \in V_{h}$ since $b\left(v, \lambda-\lambda_{h}\right)=0$ from Condition (C).
Let $v:=u_{h}-v_{h}$, then $\left\|u_{h}-v_{h}\right\|^{2} \leq \alpha^{-1} C\left\|u_{h}-v_{h}\right\| \cdot\left\|u-v_{h}\right\|$. Dividing by $\left\|u_{h}-v_{h}\right\|$, we have $\left\|u_{h}-v_{h}\right\| \leq \alpha^{-1} C\left\|u-v_{h}\right\|$.

By triangle inequality, $\left\|u-u_{h}\right\| \leq\left\|u-v_{h}\right\|+\left\|v_{h}-u_{h}\right\|$ and the result follows.

Poisson Problem: Mixed Methods

Poisson Problem:

Poisson Problem: Mixed Methods

Poisson Problem:

$$
\Delta u=-f, x \in \Omega
$$

Poisson Problem: Mixed Methods

Poisson Problem:

$$
\Delta u=-f, x \in \Omega, \quad u=0, x \in \Gamma_{0}
$$

Poisson Problem: Mixed Methods

Poisson Problem:

$$
\Delta u=-f, x \in \Omega, \quad u=0, x \in \Gamma_{0}, \quad \nabla u \cdot \mathbf{n}=0, x \in \Gamma_{1}
$$

Poisson Problem: Mixed Methods

Poisson Problem:

$$
\Delta u=-f, x \in \Omega, \quad u=0, x \in \Gamma_{0}, \quad \nabla u \cdot \mathbf{n}=0, x \in \Gamma_{1} .
$$

We use that $\Delta u=\operatorname{div}$ grad u.

Poisson Problem: Mixed Methods

Poisson Problem:

$$
\Delta u=-f, x \in \Omega, \quad u=0, x \in \Gamma_{0}, \quad \nabla u \cdot \mathbf{n}=0, x \in \Gamma_{1}
$$

We use that $\Delta u=\operatorname{div} \operatorname{grad} u$. Let $\sigma=\operatorname{grad} u$,

Poisson Problem: Mixed Methods

Poisson Problem:

$$
\Delta u=-f, x \in \Omega, \quad u=0, x \in \Gamma_{0}, \quad \nabla u \cdot \mathbf{n}=0, x \in \Gamma_{1}
$$

We use that $\Delta u=\operatorname{div} \operatorname{grad} u$. Let $\sigma=\operatorname{grad} u$, then the Poisson problem becomes

$$
\operatorname{grad} u=\sigma
$$

Poisson Problem: Mixed Methods

Poisson Problem:

$$
\Delta u=-f, x \in \Omega, \quad u=0, x \in \Gamma_{0}, \quad \nabla u \cdot \mathbf{n}=0, x \in \Gamma_{1}
$$

We use that $\Delta u=\operatorname{div} \operatorname{grad} u$. Let $\sigma=\operatorname{grad} u$, then the Poisson problem becomes

$$
\begin{aligned}
\operatorname{grad} u & =\sigma \\
\operatorname{div} \sigma & =-f
\end{aligned}
$$

Poisson Problem: Mixed Methods

Poisson Problem:

$$
\Delta u=-f, x \in \Omega, \quad u=0, x \in \Gamma_{0}, \quad \nabla u \cdot \mathbf{n}=0, x \in \Gamma_{1}
$$

We use that $\Delta u=\operatorname{div} \operatorname{grad} u$. Let $\sigma=\operatorname{grad} u$, then the Poisson problem becomes

$$
\begin{aligned}
\operatorname{grad} u & =\sigma \\
\operatorname{div} \sigma & =-f
\end{aligned}
$$

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

Poisson Problem: Mixed Methods

Poisson Problem:

$$
\Delta u=-f, x \in \Omega, \quad u=0, x \in \Gamma_{0}, \quad \nabla u \cdot \mathbf{n}=0, x \in \Gamma_{1}
$$

We use that $\Delta u=\operatorname{div} \operatorname{grad} u$. Let $\sigma=\operatorname{grad} u$, then the Poisson problem becomes

$$
\begin{aligned}
\operatorname{grad} u & =\sigma \\
\operatorname{div} \sigma & =-f
\end{aligned}
$$

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

$$
(\sigma, \tau)_{0, \Omega}-(\tau, \nabla u)_{0, \Omega}=0, \forall \tau \in L_{2}(\Omega)^{d}
$$

Poisson Problem: Mixed Methods

Poisson Problem:

$$
\Delta u=-f, x \in \Omega, \quad u=0, x \in \Gamma_{0}, \quad \nabla u \cdot \mathbf{n}=0, x \in \Gamma_{1}
$$

We use that $\Delta u=\operatorname{div} \operatorname{grad} u$. Let $\sigma=\operatorname{grad} u$, then the Poisson problem becomes

$$
\begin{aligned}
\operatorname{grad} u & =\sigma \\
\operatorname{div} \sigma & =-f
\end{aligned}
$$

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

$$
\begin{aligned}
(\sigma, \tau)_{0, \Omega}-(\tau, \nabla u)_{0, \Omega} & =0, \forall \tau \in L_{2}(\Omega)^{d} \\
-(\sigma, \nabla v)_{0, \Omega} & =-(f, v)_{0, \Omega}, \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Poisson Problem: Mixed Methods

Poisson Problem:

$$
\Delta u=-f, x \in \Omega, \quad u=0, x \in \Gamma_{0}, \quad \nabla u \cdot \mathbf{n}=0, x \in \Gamma_{1}
$$

We use that $\Delta u=\operatorname{div} \operatorname{grad} u$. Let $\sigma=\operatorname{grad} u$, then the Poisson problem becomes

$$
\begin{aligned}
\operatorname{grad} u & =\sigma \\
\operatorname{div} \sigma & =-f
\end{aligned}
$$

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

$$
\begin{aligned}
(\sigma, \tau)_{0, \Omega}-(\tau, \nabla u)_{0, \Omega} & =0, \forall \tau \in L_{2}(\Omega)^{d} \\
-(\sigma, \nabla v)_{0, \Omega} & =-(f, v)_{0, \Omega}, \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

$$
(\sigma, \tau)_{0, \Omega}-(\tau, \nabla u)_{0, \Omega}=0, \forall \tau \in L_{2}(\Omega)^{d}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

$$
\begin{aligned}
(\sigma, \tau)_{0, \Omega}-(\tau, \nabla u)_{0, \Omega} & =0, \forall \tau \in L_{2}(\Omega)^{d} \\
-(\sigma, \nabla v)_{0, \Omega} & =-(f, v)_{0, \Omega}, \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

$$
\begin{aligned}
(\sigma, \tau)_{0, \Omega}-(\tau, \nabla u)_{0, \Omega} & =0, \forall \tau \in L_{2}(\Omega)^{d} \\
-(\sigma, \nabla v)_{0, \Omega} & =-(f, v)_{0, \Omega}, \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Poisson Problem: Saddle-Point Formulation

Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

$$
\begin{aligned}
(\sigma, \tau)_{0, \Omega}-(\tau, \nabla u)_{0, \Omega} & =0, \forall \tau \in L_{2}(\Omega)^{d} \\
-(\sigma, \nabla v)_{0, \Omega} & =-(f, v)_{0, \Omega}, \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Poisson Problem: Saddle-Point Formulation

Let

Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

$$
\begin{aligned}
(\sigma, \tau)_{0, \Omega}-(\tau, \nabla u)_{0, \Omega} & =0, \forall \tau \in L_{2}(\Omega)^{d} \\
-(\sigma, \nabla v)_{0, \Omega} & =-(f, v)_{0, \Omega}, \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Poisson Problem: Saddle-Point Formulation

Let

$$
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega)
$$

Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

$$
\begin{aligned}
(\sigma, \tau)_{0, \Omega}-(\tau, \nabla u)_{0, \Omega} & =0, \forall \tau \in L_{2}(\Omega)^{d} \\
-(\sigma, \nabla v)_{0, \Omega} & =-(f, v)_{0, \Omega}, \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Poisson Problem: Saddle-Point Formulation

Let

$$
\begin{array}{r}
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega) \\
a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}
\end{array}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

$$
\begin{aligned}
(\sigma, \tau)_{0, \Omega}-(\tau, \nabla u)_{0, \Omega} & =0, \forall \tau \in L_{2}(\Omega)^{d} \\
-(\sigma, \nabla v)_{0, \Omega} & =-(f, v)_{0, \Omega}, \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Poisson Problem: Saddle-Point Formulation

Let

$$
\begin{array}{r}
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega) \\
a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega} .
\end{array}
$$

Saddle-Point Problem:

Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

$$
\begin{aligned}
(\sigma, \tau)_{0, \Omega}-(\tau, \nabla u)_{0, \Omega} & =0, \forall \tau \in L_{2}(\Omega)^{d} \\
-(\sigma, \nabla v)_{0, \Omega} & =-(f, v)_{0, \Omega}, \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Poisson Problem: Saddle-Point Formulation

Let

$$
\begin{array}{r}
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega) \\
a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}
\end{array}
$$

Saddle-Point Problem:

$$
a(\sigma, \tau)-b(\tau, v)=0
$$

Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find $(\sigma, u) \in L_{2}(\Omega)^{d} \times H_{0}^{1}(\Omega)$ so that

$$
\begin{aligned}
(\sigma, \tau)_{0, \Omega}-(\tau, \nabla u)_{0, \Omega} & =0, \forall \tau \in L_{2}(\Omega)^{d} \\
-(\sigma, \nabla v)_{0, \Omega} & =-(f, v)_{0, \Omega}, \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Poisson Problem: Saddle-Point Formulation

Let

$$
\begin{array}{r}
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega) \\
a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}
\end{array}
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega}
\end{aligned}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

Let

$$
\begin{array}{rr}
x & :=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega) \\
a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega .} .
\end{array}
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

Let

$$
\begin{array}{r}
x:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega) \\
a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega .} .
\end{array}
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

The Inf-Sup Condition holds since

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

Let

$$
\begin{array}{r}
x:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega) \\
a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega .} .
\end{array}
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

The Inf-Sup Condition holds since

$$
\frac{b(\tau, v)}{\|\tau\|_{0}}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

Let

$$
\begin{array}{rr}
x & :=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega) \\
a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega .} .
\end{array}
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

The Inf-Sup Condition holds since

$$
\frac{b(\tau, v)}{\|\tau\|_{0}}=\frac{-(\tau, \nabla v)_{0, \Omega}}{\|\tau\|_{0}}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

Let

$$
\begin{array}{rr}
x & :=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega) \\
a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega .} .
\end{array}
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

The Inf-Sup Condition holds since

$$
\frac{b(\tau, v)}{\|\tau\|_{0}}=\frac{-(\tau, \nabla v)_{0, \Omega}}{\|\tau\|_{0}} \rightarrow \frac{(\nabla v, \nabla v)_{0, \Omega}}{\|\nabla v\|_{0}}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

Let

$$
\begin{array}{rr}
x & :=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega) \\
a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega .} .
\end{array}
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

The Inf-Sup Condition holds since

$$
\frac{b(\tau, v)}{\|\tau\|_{0}}=\frac{-(\tau, \nabla v)_{0, \Omega}}{\|\tau\|_{0}} \rightarrow \frac{(\nabla v, \nabla v)_{0, \Omega}}{\|\nabla v\|_{0}}=|v|_{1}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

Let

$$
\begin{array}{r}
x:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega) \\
a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega .} .
\end{array}
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

The Inf-Sup Condition holds since

$$
\frac{b(\tau, v)}{\|\tau\|_{0}}=\frac{-(\tau, \nabla v)_{0, \Omega}}{\|\tau\|_{0}} \rightarrow \frac{(\nabla v, \nabla v)_{0, \Omega}}{\|\nabla v\|_{0}}=|v|_{1} \geq \frac{1}{c}\|v\|_{1} .
$$

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

Let

$$
\begin{array}{rr}
x & :=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega) \\
a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega .} .
\end{array}
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

The Inf-Sup Condition holds since

$$
\frac{b(\tau, v)}{\|\tau\|_{0}}=\frac{-(\tau, \nabla v)_{0, \Omega}}{\|\tau\|_{0}} \rightarrow \frac{(\nabla v, \nabla v)_{0, \Omega}}{\|\nabla v\|_{0}}=|v|_{1} \geq \frac{1}{c}\|v\|_{1} .
$$

This establishes stability of the formulation.

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

$$
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega), \quad a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega} .
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

$$
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega), \quad a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega} .
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega}
\end{aligned}
$$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_{h}.

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

$$
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega), \quad a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega} .
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega}
\end{aligned}
$$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_{h}. For $k \geq 1$, let

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

$$
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega), \quad a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega} .
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_{h}. For $k \geq 1$, let

Poisson Problem: Stable Mixed Finite Element Spaces

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

$$
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega), \quad a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega} .
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_{h}. For $k \geq 1$, let

Poisson Problem: Stable Mixed Finite Element Spaces

$$
X_{h}:=\left(\mathcal{M}^{k-1}\right)^{d}=\left\{\sigma_{h} \in L_{2}(\Omega)^{d} ;\left.\sigma_{h}\right|_{T} \in \mathcal{P}_{k-1}, \forall T \in \mathcal{T}_{h}\right\}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

$$
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega), \quad a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega} .
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_{h}. For $k \geq 1$, let

Poisson Problem: Stable Mixed Finite Element Spaces

$$
\begin{aligned}
X_{h}:= & \left(\mathcal{M}^{k-1}\right)^{d}=\left\{\sigma_{h} \in L_{2}(\Omega)^{d} ;\left.\sigma_{h}\right|_{T} \in \mathcal{P}_{k-1}, \forall T \in \mathcal{T}_{h}\right\} \\
& M_{h}:=\mathcal{M}_{0,0}^{k}=\left\{v_{h} \in H_{0}^{1}(\Omega) ;\left.v_{h}\right|_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

$$
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega), \quad a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega} .
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_{h}. For $k \geq 1$, let

Poisson Problem: Stable Mixed Finite Element Spaces

$$
\begin{aligned}
X_{h}:= & \left(\mathcal{M}^{k-1}\right)^{d}=\left\{\sigma_{h} \in L_{2}(\Omega)^{d} ;\left.\sigma_{h}\right|_{T} \in \mathcal{P}_{k-1}, \forall T \in \mathcal{T}_{h}\right\} \\
& M_{h}:=\mathcal{M}_{0,0}^{k}=\left\{v_{h} \in H_{0}^{1}(\Omega) ;\left.v_{h}\right|_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Note that $\nabla \mathcal{M}_{h} \subset X_{h}$, allow us to verify same as in continuous case.

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

$$
X:=L_{2}(\Omega)^{d}, M:=H_{0}^{1}(\Omega), \quad a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}, \quad b(\tau, v):=-(\tau, \nabla v)_{0, \Omega} .
$$

Saddle-Point Problem:

$$
\begin{aligned}
a(\sigma, \tau)-b(\tau, v) & =0 \\
b(\sigma, \tau) & =-\langle f, v\rangle_{0, \Omega} .
\end{aligned}
$$

We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_{h}. For $k \geq 1$, let

Poisson Problem: Stable Mixed Finite Element Spaces

$$
\begin{aligned}
X_{h}:= & \left(\mathcal{M}^{k-1}\right)^{d}=\left\{\sigma_{h} \in L_{2}(\Omega)^{d} ;\left.\sigma_{h}\right|_{T} \in \mathcal{P}_{k-1}, \forall T \in \mathcal{T}_{h}\right\} \\
& M_{h}:=\mathcal{M}_{0,0}^{k}=\left\{v_{h} \in H_{0}^{1}(\Omega) ;\left.v_{h}\right|_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Note that $\nabla \mathcal{M}_{h} \subset X_{h}$, allow us to verify same as in continuous case.

Poisson Problem: Mixed Methods

Raviart-Thomas Element

Raviart-Thomas Element

Poisson Problem: Mixed Methods

Raviart-Thomas Element

$$
X_{h}:=R T_{k}:=\left\{\tau \in L_{2}(\Omega)^{2} ;\left.\tau\right|_{T}=\binom{a_{T}}{b_{T}}+c_{T}\binom{x}{y}, a_{T}, b_{T}, c_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}, \tau \cdot n \in \tilde{C}(\partial T)\right\}
$$

Raviart-Thomas Element

Poisson Problem: Mixed Methods

Raviart-Thomas Element

$$
\begin{aligned}
& X_{h}:=R T_{k}:=\left\{\tau \in L_{2}(\Omega)^{2} ;\left.\tau\right|_{T}=\binom{a_{T}}{b_{T}}+c_{T}\binom{x}{y}, a_{T}, b_{T}, c_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}, \tau \cdot n \in \tilde{C}(\partial T)\right\} \\
& M_{h}:=\mathcal{M}^{k}\left(\mathcal{T}_{h}\right):=\left\{v \in L_{2}(\Omega) ;\left.v\right|_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Raviart-Thomas Element

Poisson Problem: Mixed Methods

Raviart-Thomas Element

$$
\begin{aligned}
& X_{h}:=R T_{k}:=\left\{\tau \in L_{2}(\Omega)^{2} ;\left.\tau\right|_{T}=\binom{a_{T}}{b_{T}}+c_{T}\binom{x}{y}, a_{T}, b_{T}, c_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}, \tau \cdot n \in \tilde{C}(\partial T)\right\} \\
& M_{h}:=\mathcal{M}^{k}\left(\mathcal{T}_{h}\right):=\left\{v \in L_{2}(\Omega) ;\left.v\right|_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.

Raviart-Thomas Element

Poisson Problem: Mixed Methods

Raviart-Thomas Element

$$
\begin{aligned}
& X_{h}:=R T_{k}:=\left\{\tau \in L_{2}(\Omega)^{2} ;\left.\tau\right|_{T}=\binom{a_{T}}{b_{T}}+c_{T}\binom{x}{y}, a_{T}, b_{T}, c_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}, \tau \cdot n \in \tilde{C}(\partial T)\right\} \\
& M_{h}:=\mathcal{M}^{k}\left(\mathcal{T}_{h}\right):=\left\{v \in L_{2}(\Omega) ;\left.v\right|_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.
These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

Raviart-Thomas Element

Poisson Problem: Mixed Methods

Raviart-Thomas Element

$$
\begin{aligned}
& X_{h}:=R T_{k}:=\left\{\tau \in L_{2}(\Omega)^{2} ;\left.\tau\right|_{T}=\binom{a_{T}}{b_{T}}+c_{T}\binom{x}{y}, a_{T}, b_{T}, c_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}, \tau \cdot n \in \tilde{C}(\partial T)\right\} \\
& M_{h}:=\mathcal{M}^{k}\left(\mathcal{T}_{h}\right):=\left\{v \in L_{2}(\Omega) ;\left.v\right|_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.
These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.
For $k=0, p \in\left(\mathcal{P}_{1}\right)^{2}$ has

Raviart-Thomas Element

Poisson Problem: Mixed Methods

Raviart-Thomas Element

$$
\begin{aligned}
& X_{h}:=R T_{k}:=\left\{\tau \in L_{2}(\Omega)^{2} ;\left.\tau\right|_{T}=\binom{a_{T}}{b_{T}}+c_{T}\binom{x}{y}, a_{T}, b_{T}, c_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}, \tau \cdot n \in \tilde{C}(\partial T)\right\} \\
& M_{h}:=\mathcal{M}^{k}\left(\mathcal{T}_{h}\right):=\left\{v \in L_{2}(\Omega) ;\left.v\right|_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.
These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.
For $k=0, p \in\left(\mathcal{P}_{1}\right)^{2}$ has

$$
p(x, y)=\binom{a}{b}+c\binom{x}{y}
$$

Raviart-Thomas Element
The $n \cdot p$ is constant on $\alpha x+\beta y=c_{0}$ when n orthogonal to the line.

Poisson Problem: Mixed Methods

Raviart-Thomas Element

$$
\begin{aligned}
& X_{h}:=R T_{k}:=\left\{\tau \in L_{2}(\Omega)^{2} ;\left.\tau\right|_{T}=\binom{a_{T}}{b_{T}}+c_{T}\binom{x}{y}, a_{T}, b_{T}, c_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}, \tau \cdot n \in \tilde{C}(\partial T)\right\} \\
& M_{h}:=\mathcal{M}^{k}\left(\mathcal{T}_{h}\right):=\left\{v \in L_{2}(\Omega) ;\left.v\right|_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.
These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.
For $k=0, p \in\left(\mathcal{P}_{1}\right)^{2}$ has

$$
p(x, y)=\binom{a}{b}+c\binom{x}{y}
$$

The $n \cdot p$ is constant on $\alpha x+\beta y=c_{0}$ when n orthogonal to the line. Edge values determine the polynomial p.

Raviart-Thomas Element

Poisson Problem: Mixed Methods

Raviart-Thomas Element

$$
\begin{aligned}
& X_{h}:=R T_{k}:=\left\{\tau \in L_{2}(\Omega)^{2} ;\left.\tau\right|_{T}=\binom{a_{T}}{b_{T}}+c_{T}\binom{x}{y}, a_{T}, b_{T}, c_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}, \tau \cdot n \in \tilde{C}(\partial T)\right\} \\
& M_{h}:=\mathcal{M}^{k}\left(\mathcal{T}_{h}\right):=\left\{v \in L_{2}(\Omega) ;\left.v\right|_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.
These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.
For $k=0, p \in\left(\mathcal{P}_{1}\right)^{2}$ has

$$
p(x, y)=\binom{a}{b}+c\binom{x}{y}
$$

The $n \cdot p$ is constant on $\alpha x+\beta y=c_{0}$ when n orthogonal to the line. Edge values determine the polynomial p. Formally, elements are triple

Poisson Problem: Mixed Methods

Raviart-Thomas Element

$$
\begin{aligned}
& X_{h}:=R T_{k}:=\left\{\tau \in L_{2}(\Omega)^{2} ;\left.\tau\right|_{T}=\binom{a_{T}}{b_{T}}+c_{T}\binom{x}{y}, a_{T}, b_{T}, c_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}, \tau \cdot n \in \tilde{C}(\partial T)\right\} \\
& M_{h}:=\mathcal{M}^{k}\left(\mathcal{T}_{h}\right):=\left\{v \in L_{2}(\Omega) ;\left.v\right|_{T} \in \mathcal{P}_{k}, \forall T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.
These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.
For $k=0, p \in\left(\mathcal{P}_{1}\right)^{2}$ has

$$
p(x, y)=\binom{a}{b}+c\binom{x}{y}
$$

The $n \cdot p$ is constant on $\alpha x+\beta y=c_{0}$ when n orthogonal to the line. Edge values determine the polynomial p. Formally, elements are triple

$$
\left(T,\left(\mathcal{P}_{0}\right)^{2}+\mathbf{x} \cdot \mathcal{P}_{0}, n_{i} \cdot p\left(z_{i}\right), i=1,2,3, z_{i} \text { is edge midpoint. }\right)
$$

Raviart-Thomas Element

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

Raviart-Thomas Element

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

$$
\|\tau\|_{0, h}:=\left(\|\tau\|_{0}^{2}+h \sum_{e \subset\left\ulcorner_{h}\right.}\|\tau n\|_{0, e}^{2}\right)^{1 / 2}
$$

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

$$
\|\tau\|_{0, h}:=\left(\|\tau\|_{0}^{2}+h \sum_{e \subset \Gamma_{h}}\|\tau n\|_{0, e}^{2}\right)^{1 / 2}|v|_{1, h}:=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{1, T}^{2}+h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}\right)^{1 / 2} .
$$

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

$$
\|\tau\|_{0, h}:=\left(\|\tau\|_{0}^{2}+h \sum_{e \subset \Gamma_{h}}\|\tau n\|_{0, e}^{2}\right)^{1 / 2}|v|_{1, h}:=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{1, T}^{2}+h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}\right)^{1 / 2} .
$$

The $a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}$ and $b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}$ defined for $\tau, \sigma \in L_{2}(\Omega)^{d}$.

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

$$
\|\tau\|_{0, h}:=\left(\|\tau\|_{0}^{2}+h \sum_{e \subset \Gamma_{h}}\|\tau n\|_{0, e}^{2}\right)^{1 / 2}|v|_{1, h}:=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{1, T}^{2}+h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}\right)^{1 / 2} .
$$

The $a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}$ and $b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}$ defined for $\tau, \sigma \in L_{2}(\Omega)^{d}$.
Properties of a :

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

$$
\|\tau\|_{0, h}:=\left(\|\tau\|_{0}^{2}+h \sum_{e \subset \Gamma_{h}}\|\tau n\|_{0, e}^{2}\right)^{1 / 2}|v|_{1, h}:=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{1, T}^{2}+h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}\right)^{1 / 2} .
$$

The $a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}$ and $b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}$ defined for $\tau, \sigma \in L_{2}(\Omega)^{d}$.
Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

$$
\|\tau\|_{0, h}:=\left(\|\tau\|_{0}^{2}+h \sum_{e \subset \Gamma_{h}}\|\tau n\|_{0, e}^{2}\right)^{1 / 2}|v|_{1, h}:=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{1, T}^{2}+h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}\right)^{1 / 2} .
$$

The $a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}$ and $b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}$ defined for $\tau, \sigma \in L_{2}(\Omega)^{d}$.
Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from
$\|\tau\|_{0, h} \leq C\|\tau\|_{0}, \forall \tau \in R T_{k} \Rightarrow a(\tau, \tau)=\|\tau\|_{0, \Omega}^{2} \geq C^{-2}\|\tau\|_{0, h}^{2}$.

Raviart-Thomas Element

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

$$
\|\tau\|_{0, h}:=\left(\|\tau\|_{0}^{2}+h \sum_{e \subset \Gamma_{h}}\|\tau n\|_{0, e}^{2}\right)^{1 / 2}|v|_{1, h}:=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{1, T}^{2}+h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}\right)^{1 / 2} .
$$

The $a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}$ and $b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}$ defined for $\tau, \sigma \in L_{2}(\Omega)^{d}$.
Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from
$\|\tau\|_{0, h} \leq C\|\tau\|_{0}, \forall \tau \in R T_{k} \Rightarrow a(\tau, \tau)=\|\tau\|_{0, \Omega}^{2} \geq C^{-2}\|\tau\|_{0, h}^{2}$.

Properties of b :

Raviart-Thomas Element

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

$$
\|\tau\|_{0, h}:=\left(\|\tau\|_{0}^{2}+h \sum_{e \subset \Gamma_{h}}\|\tau n\|_{0, e}^{2}\right)^{1 / 2}|v|_{1, h}:=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{1, T}^{2}+h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}\right)^{1 / 2} .
$$

The $a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}$ and $b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}$ defined for $\tau, \sigma \in L_{2}(\Omega)^{d}$.
Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from
$\|\tau\|_{0, h} \leq C\|\tau\|_{0}, \forall \tau \in R T_{k} \Rightarrow a(\tau, \tau)=\|\tau\|_{0, \Omega}^{2} \geq C^{-2}\|\tau\|_{0, h}^{2}$.
Properties of b : Use Green's Identity to rewrite as

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

$$
\|\tau\|_{0, h}:=\left(\|\tau\|_{0}^{2}+h \sum_{e \subset \Gamma_{h}}\|\tau n\|_{0, e}^{2}\right)^{1 / 2}|v|_{1, h}:=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{1, T}^{2}+h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}\right)^{1 / 2} .
$$

The $a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}$ and $b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}$ defined for $\tau, \sigma \in L_{2}(\Omega)^{d}$.
Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from
$\|\tau\|_{0, h} \leq C\|\tau\|_{0}, \forall \tau \in R T_{k} \Rightarrow a(\tau, \tau)=\|\tau\|_{0, \Omega}^{2} \geq C^{-2}\|\tau\|_{0, h}^{2}$.
Properties of b : Use Green's Identity to rewrite as

$$
b(\tau, v)=-\sum_{T \in \mathcal{T}} \int_{T} \tau \cdot \operatorname{grad} v d x+\int_{\Gamma_{h}} J(v) \tau n d s .
$$

Raviart-Thomas Element

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

$$
\|\tau\|_{0, h}:=\left(\|\tau\|_{0}^{2}+h \sum_{e \subset \Gamma_{h}}\|\tau n\|_{0, e}^{2}\right)^{1 / 2}|v|_{1, h}:=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{1, T}^{2}+h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}\right)^{1 / 2}
$$

The $a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}$ and $b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}$ defined for $\tau, \sigma \in L_{2}(\Omega)^{d}$.
Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from
$\|\tau\|_{0, h} \leq C\|\tau\|_{0}, \forall \tau \in R T_{k} \Rightarrow a(\tau, \tau)=\|\tau\|_{0, \Omega}^{2} \geq C^{-2}\|\tau\|_{0, h}^{2}$.
Properties of b : Use Green's Identity to rewrite as

$$
b(\tau, v)=-\sum_{T \in \mathcal{T}} \int_{T} \tau \cdot \operatorname{grad} v d x+\int_{\Gamma_{h}} J(v) \tau n d s
$$

$J(v)$ is jump of v in normal direction $n . \Gamma_{h}:=\bigcup_{T}(\partial T \bigcap \Omega)$ interior bnds.

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

$$
\|\tau\|_{0, h}:=\left(\|\tau\|_{0}^{2}+h \sum_{e \subset \Gamma_{h}}\|\tau n\|_{0, e}^{2}\right)^{1 / 2}|v|_{1, h}:=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{1, T}^{2}+h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}\right)^{1 / 2} .
$$

The $a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}$ and $b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}$ defined for $\tau, \sigma \in L_{2}(\Omega)^{d}$.
Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from
$\|\tau\|_{0, h} \leq C\|\tau\|_{0}, \forall \tau \in R T_{k} \Rightarrow a(\tau, \tau)=\|\tau\|_{0, \Omega}^{2} \geq C^{-2}\|\tau\|_{0, h}^{2}$.
Properties of b : Use Green's Identity to rewrite as

$$
b(\tau, v)=-\sum_{T \in \mathcal{T}} \int_{T} \tau \cdot \operatorname{grad} v d x+\int_{\Gamma_{h}} J(v) \tau n d s
$$

$J(v)$ is jump of v in normal direction $n . \Gamma_{h}:=\bigcup_{T}(\partial T \bigcap \Omega)$ interior bnds. The b continuity with Mesh-Norms follows readily.

Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

$$
\|\tau\|_{0, h}:=\left(\|\tau\|_{0}^{2}+h \sum_{e \subset \Gamma_{h}}\|\tau n\|_{0, e}^{2}\right)^{1 / 2}|v|_{1, h}:=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{1, T}^{2}+h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}\right)^{1 / 2} .
$$

The $a(\sigma, \tau):=(\sigma, \tau)_{0, \Omega}$ and $b(\tau, v):=-(\tau, \nabla v)_{0, \Omega}$ defined for $\tau, \sigma \in L_{2}(\Omega)^{d}$.
Properties of a: Ellipticity of $a(\cdot, \cdot)$ follows from
$\|\tau\|_{0, h} \leq C\|\tau\|_{0}, \forall \tau \in R T_{k} \Rightarrow a(\tau, \tau)=\|\tau\|_{0, \Omega}^{2} \geq C^{-2}\|\tau\|_{0, h}^{2}$.
Properties of b : Use Green's Identity to rewrite as

$$
b(\tau, v)=-\sum_{T \in \mathcal{T}} \int_{T} \tau \cdot \operatorname{grad} v d x+\int_{\Gamma_{h}} J(v) \tau n d s
$$

$J(v)$ is jump of v in normal direction $n . \Gamma_{h}:=\bigcup_{T}(\partial T \bigcap \Omega)$ interior bnds. The b continuity with Mesh-Norms follows readily.

Inf-Sup Condition must be established.

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.
Proof (sketch):

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.
Proof (sketch):
Consider case $k=0$, then $J(v)$ is constant along each edge $e \subset \Gamma_{h}$.

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.
Proof (sketch):
Consider case $k=0$, then $J(v)$ is constant along each edge $e \subset \Gamma_{h}$.
This implies there exists $\tau \in R T_{0}$ so that

$$
\tau n=h^{-1} J(v)
$$

on each edge $e \subset \Gamma_{h}$.

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.
Proof (sketch):
Consider case $k=0$, then $J(v)$ is constant along each edge $e \subset \Gamma_{h}$.
This implies there exists $\tau \in R T_{0}$ so that

$$
\tau n=h^{-1} J(v)
$$

on each edge $e \subset \Gamma_{h}$. Since in this case the area term in Green's Identity

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.

Proof (sketch):

Consider case $k=0$, then $J(v)$ is constant along each edge $e \subset \Gamma_{h}$.
This implies there exists $\tau \in R T_{0}$ so that

$$
\tau n=h^{-1} J(v)
$$

on each edge $e \subset \Gamma_{h}$. Since in this case the area term in Green's Identity for b vanishes, we have

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.

Proof (sketch):

Consider case $k=0$, then $J(v)$ is constant along each edge $e \subset \Gamma_{h}$.
This implies there exists $\tau \in R T_{0}$ so that

$$
\tau n=h^{-1} J(v)
$$

on each edge $e \subset \Gamma_{h}$. Since in this case the area term in Green's Identity for b vanishes, we have

$$
b(\tau, v)=h^{-1} \int_{\Gamma_{h}}|J(v)|^{2} d s
$$

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.

Proof (sketch):

Consider case $k=0$, then $J(v)$ is constant along each edge $e \subset \Gamma_{h}$.
This implies there exists $\tau \in R T_{0}$ so that

$$
\tau n=h^{-1} J(v)
$$

on each edge $e \subset \Gamma_{h}$. Since in this case the area term in Green's Identity for b vanishes, we have

$$
b(\tau, v)=h^{-1} \int_{\Gamma_{h}}|J(v)|^{2} d s=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}
$$

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.

Proof (sketch):

Consider case $k=0$, then $J(v)$ is constant along each edge $e \subset \Gamma_{h}$.
This implies there exists $\tau \in R T_{0}$ so that

$$
\tau n=h^{-1} J(v)
$$

on each edge $e \subset \Gamma_{h}$. Since in this case the area term in Green's Identity for b vanishes, we have

$$
b(\tau, v)=h^{-1} \int_{\Gamma_{h}}|J(v)|^{2} d s=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=|v|_{1, h}^{2} .
$$

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.
Proof (sketch) (continued):

$$
b(\tau, v)=h^{-1} \int_{\Gamma_{h}}|J(v)|^{2} d s=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=|v|_{1, h}^{2}
$$

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.
Proof (sketch) (continued):

$$
b(\tau, v)=h^{-1} \int_{\Gamma_{h}}|J(v)|^{2} d s=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=|v|_{1, h}^{2}
$$

We also have

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.

Proof (sketch) (continued):

$$
b(\tau, v)=h^{-1} \int_{\Gamma_{h}}|J(v)|^{2} d s=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=|v|_{1, h}^{2}
$$

We also have

$$
\|\tau\|_{0, h}^{2} \leq c h \sum_{e \subset \Gamma_{h}}\|\tau\|_{0, e}^{2}=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=c|v|_{1, h}^{2} .
$$

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.

Proof (sketch) (continued):

$$
b(\tau, v)=h^{-1} \int_{\Gamma_{h}}|J(v)|^{2} d s=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=|v|_{1, h}^{2}
$$

We also have

$$
\|\tau\|_{0, h}^{2} \leq c h \sum_{e \subset \Gamma_{h}}\|\tau\|_{0, e}^{2}=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=c|v|_{1, h}^{2} .
$$

By taking $|v|_{1, h}^{2}=|v|_{1, h} c^{-1 / 2}\|\tau\|_{0, h}$,

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.

Proof (sketch) (continued):

$$
b(\tau, v)=h^{-1} \int_{\Gamma_{h}}|J(v)|^{2} d s=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=|v|_{1, h}^{2}
$$

We also have

$$
\|\tau\|_{0, h}^{2} \leq c h \sum_{e \subset \Gamma_{h}}\|\tau\|_{0, e}^{2}=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=c|v|_{1, h}^{2} .
$$

By taking $|v|_{1, h}^{2}=|v|_{1, h} c^{-1 / 2}\|\tau\|_{0, h}$, we have $b(\tau, v) \geq c^{-1 / 2}|v|_{1, h}\|\tau\|_{0, h}$.

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.

Proof (sketch) (continued):

$$
b(\tau, v)=h^{-1} \int_{\Gamma_{h}}|J(v)|^{2} d s=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=|v|_{1, h}^{2}
$$

We also have

$$
\|\tau\|_{0, h}^{2} \leq c h \sum_{e \subset \Gamma_{h}}\|\tau\|_{0, e}^{2}=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=c|v|_{1, h}^{2} .
$$

By taking $|v|_{1, h}^{2}=|v|_{1, h} c^{-1 / 2}\|\tau\|_{0, h}$, we have $b(\tau, v) \geq c^{-1 / 2}|v|_{1, h}\|\tau\|_{0, h}$. Establishes the Inf-Sup Condition.

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup _{\tau \in R T_{k}} \frac{b(\tau, v)}{\|\tau\|_{0, h}} \geq \beta|v|_{1, h}, \forall v \in \mathcal{M}^{k}
$$

where $\beta>0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_{h}.

Proof (sketch) (continued):

$$
b(\tau, v)=h^{-1} \int_{\Gamma_{h}}|J(v)|^{2} d s=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=|v|_{1, h}^{2}
$$

We also have

$$
\|\tau\|_{0, h}^{2} \leq c h \sum_{e \subset \Gamma_{h}}\|\tau\|_{0, e}^{2}=c h^{-1} \sum_{e \subset \Gamma_{h}}\|J(v)\|_{0, e}^{2}=c|v|_{1, h}^{2} .
$$

By taking $|v|_{1, h}^{2}=|v|_{1, h} c^{-1 / 2}\|\tau\|_{0, h}$, we have $b(\tau, v) \geq c^{-1 / 2}|v|_{1, h}\|\tau\|_{0, h}$. Establishes the Inf-Sup Condition.

Stokes Hydrodynamic Equations

Stokes Flow

Stokes Hydrodynamic Equations

Stokes Flow

$$
\Delta u+\operatorname{grad} p=-f, x \in \Omega
$$

Stokes Hydrodynamic Equations

Stokes Flow

$$
\begin{aligned}
\Delta u+\operatorname{grad} p & =-f, x \in \Omega \\
\operatorname{div} u & =0, x \in \Omega
\end{aligned}
$$

Stokes Hydrodynamic Equations

Stokes Flow

$$
\begin{aligned}
\Delta u+\operatorname{grad} p & =-f, x \in \Omega \\
\operatorname{div} u & =0, x \in \Omega \\
u & =u_{0}, x \in \partial \Omega .
\end{aligned}
$$

Stokes Hydrodynamic Equations

Stokes Flow

$$
\begin{aligned}
\Delta u+\operatorname{grad} p & =-f, x \in \Omega \\
\operatorname{div} u & =0, x \in \Omega \\
u & =u_{0}, x \in \partial \Omega .
\end{aligned}
$$

The $u: \Omega \rightarrow \mathbb{R}^{n}$ is fluid velocity and $p: \Omega \rightarrow \mathbb{R}$ is pressure.

Stokes Hydrodynamic Equations

Stokes Flow

$$
\begin{aligned}
\Delta u+\operatorname{grad} p & =-f, x \in \Omega \\
\operatorname{div} u & =0, x \in \Omega \\
u & =u_{0}, x \in \partial \Omega .
\end{aligned}
$$

The $u: \Omega \rightarrow \mathbb{R}^{n}$ is fluid velocity and $p: \Omega \rightarrow \mathbb{R}$ is pressure.
The $\operatorname{div} u=0$ is constraint for fluid to be incompressible.

Stokes Hydrodynamic Equations

Stokes Flow

$$
\begin{aligned}
\Delta u+\operatorname{grad} p & =-f, x \in \Omega \\
\operatorname{div} u & =0, x \in \Omega \\
u & =u_{0}, x \in \partial \Omega .
\end{aligned}
$$

The $u: \Omega \rightarrow \mathbb{R}^{n}$ is fluid velocity and $p: \Omega \rightarrow \mathbb{R}$ is pressure.
The $\operatorname{div} u=0$ is constraint for fluid to be incompressible.
Only imposes p up to constant, usually use condition $\int p d x=0$.

Stokes Hydrodynamic Equations

Stokes Flow

$$
\begin{aligned}
\Delta u+\operatorname{grad} p & =-f, x \in \Omega \\
\operatorname{div} u & =0, x \in \Omega \\
u & =u_{0}, x \in \partial \Omega .
\end{aligned}
$$

The $u: \Omega \rightarrow \mathbb{R}^{n}$ is fluid velocity and $p: \Omega \rightarrow \mathbb{R}$ is pressure.
The $\operatorname{div} u=0$ is constraint for fluid to be incompressible.
Only imposes p up to constant, usually use condition $\int p d x=0$.
Variational Formulation: $X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\}$.

Stokes Hydrodynamic Equations

Stokes Flow

$$
\begin{aligned}
\Delta u+\operatorname{grad} p & =-f, x \in \Omega \\
\operatorname{div} u & =0, x \in \Omega \\
u & =u_{0}, x \in \partial \Omega .
\end{aligned}
$$

The $u: \Omega \rightarrow \mathbb{R}^{n}$ is fluid velocity and $p: \Omega \rightarrow \mathbb{R}$ is pressure.
The $\operatorname{div} u=0$ is constraint for fluid to be incompressible.
Only imposes p up to constant, usually use condition $\int p d x=0$.
Variational Formulation: $X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\}$.

$$
a(u, v)=\int_{\Omega} \operatorname{grad} u: \operatorname{grad} v d x
$$

Stokes Hydrodynamic Equations

Stokes Flow

$$
\begin{aligned}
\Delta u+\operatorname{grad} p & =-f, x \in \Omega \\
\operatorname{div} u & =0, x \in \Omega \\
u & =u_{0}, x \in \partial \Omega .
\end{aligned}
$$

The $u: \Omega \rightarrow \mathbb{R}^{n}$ is fluid velocity and $p: \Omega \rightarrow \mathbb{R}$ is pressure.
The $\operatorname{div} u=0$ is constraint for fluid to be incompressible.
Only imposes p up to constant, usually use condition $\int p d x=0$.
Variational Formulation: $X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\}$.

$$
a(u, v)=\int_{\Omega} \operatorname{grad} u: \operatorname{grad} v d x, \quad b(v, q)=\int_{\Omega} \operatorname{div}(v) q d x
$$

Stokes Hydrodynamic Equations

Variational Formulation: $X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\}$.

$$
a(u, v)=\int_{\Omega} \operatorname{grad} u: \operatorname{grad} v d x, \quad b(v, q)=\int_{\Omega} \operatorname{div}(v) q d x
$$

Stokes Hydrodynamic Equations

Variational Formulation: $X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\}$.

$$
a(u, v)=\int_{\Omega} \operatorname{grad} u: \operatorname{grad} v d x, \quad b(v, q)=\int_{\Omega} \operatorname{div}(v) q d x
$$

Saddle-Point Problem (Stokes)

Stokes Hydrodynamic Equations

Variational Formulation: $X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\}$.

$$
a(u, v)=\int_{\Omega} \operatorname{grad} u: \operatorname{grad} v d x, \quad b(v, q)=\int_{\Omega} \operatorname{div}(v) q d x
$$

Saddle-Point Problem (Stokes)

$$
X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\}
$$

Stokes Hydrodynamic Equations

Variational Formulation: $X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\}$.

$$
a(u, v)=\int_{\Omega} \operatorname{grad} u: \operatorname{grad} v d x, \quad b(v, q)=\int_{\Omega} \operatorname{div}(v) q d x
$$

Saddle-Point Problem (Stokes)

$$
X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\}
$$

$$
a(u, v)+b(v, p)=(f, v)_{0}, \quad \forall v \in X
$$

Stokes Hydrodynamic Equations

Variational Formulation: $X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\}$.

$$
a(u, v)=\int_{\Omega} \operatorname{grad} u: \operatorname{grad} v d x, \quad b(v, q)=\int_{\Omega} \operatorname{div}(v) q d x
$$

Saddle-Point Problem (Stokes)

$$
\begin{aligned}
& X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\} \\
& a(u, v)+b(v, p)=(f, v)_{0}, \forall v \in X \\
& b(u, q)=0, \forall q \in M .
\end{aligned}
$$

Stokes Hydrodynamic Equations

Variational Formulation: $X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\}$.

$$
a(u, v)=\int_{\Omega} \operatorname{grad} u: \operatorname{grad} v d x, \quad b(v, q)=\int_{\Omega} \operatorname{div}(v) q d x
$$

Saddle-Point Problem (Stokes)

$$
\begin{aligned}
X=H_{0}^{1}(\Omega)^{n}, M=L_{2,0}(\Omega):=\left\{q \in L_{2}(\Omega) ; \int q d x=0\right\} . & \\
a(u, v)+b(v, p) & =(f, v)_{0}, \forall v \in X \\
b(u, q) & =0, \forall q \in M .
\end{aligned}
$$

Need to establish the Inf-Sup Conditions.

Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$
V:=\left\{v \in X ;(\operatorname{div} v, q)_{0, \Omega}=0, \forall q \in L_{2}(\Omega)\right\}, \quad V^{\perp}:=\left\{u \in X ;(\operatorname{grad} u, \operatorname{grad} v)_{0, \Omega}=0, \forall v \in V\right\}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$
V:=\left\{v \in X ;(\operatorname{div} v, q)_{0, \Omega}=0, \forall q \in L_{2}(\Omega)\right\}, \quad V^{\perp}:=\left\{u \in X ;(\operatorname{grad} u, \operatorname{grad} v)_{0, \Omega}=0, \forall v \in V\right\}
$$

The V^{\perp} is H^{1}-orthogonal complement of V.

Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$
V:=\left\{v \in X ;(\operatorname{div} v, q)_{0, \Omega}=0, \forall q \in L_{2}(\Omega)\right\}, \quad V^{\perp}:=\left\{u \in X ;(\operatorname{grad} u, \operatorname{grad} v)_{0, \Omega}=0, \forall v \in V\right\}
$$

The V^{\perp} is H^{1}-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$
V:=\left\{v \in X ;(\operatorname{div} v, q)_{0, \Omega}=0, \forall q \in L_{2}(\Omega)\right\}, \quad V^{\perp}:=\left\{u \in X ;(\operatorname{grad} u, \operatorname{grad} v)_{0, \Omega}=0, \forall v \in V\right\}
$$

The V^{\perp} is H^{1}-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary.

Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$
V:=\left\{v \in X ;(\operatorname{div} v, q)_{0, \Omega}=0, \forall q \in L_{2}(\Omega)\right\}, \quad V^{\perp}:=\left\{u \in X ;(\operatorname{grad} u, \operatorname{grad} v)_{0, \Omega}=0, \forall v \in V\right\}
$$

The V^{\perp} is H^{1}-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$
V:=\left\{v \in X ;(\operatorname{div} v, q)_{0, \Omega}=0, \forall q \in L_{2}(\Omega)\right\}, \quad V^{\perp}:=\left\{u \in X ;(\operatorname{grad} u, \operatorname{grad} v)_{0, \Omega}=0, \forall v \in V\right\}
$$

The V^{\perp} is H^{1}-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$
\text { div: } V^{\perp} \rightarrow L_{2,0}(\Omega)
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$
V:=\left\{v \in X ;(\operatorname{div} v, q)_{0, \Omega}=0, \forall q \in L_{2}(\Omega)\right\}, \quad V^{\perp}:=\left\{u \in X ;(\operatorname{grad} u, \operatorname{grad} v)_{0, \Omega}=0, \forall v \in V\right\}
$$

The V^{\perp} is H^{1}-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$
\begin{aligned}
\operatorname{div}: V^{\perp} & \rightarrow L_{2,0}(\Omega) \\
v & \mapsto \operatorname{div} v .
\end{aligned}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$
V:=\left\{v \in X ;(\operatorname{div} v, q)_{0, \Omega}=0, \forall q \in L_{2}(\Omega)\right\}, \quad V^{\perp}:=\left\{u \in X ;(\operatorname{grad} u, \operatorname{grad} v)_{0, \Omega}=0, \forall v \in V\right\}
$$

The V^{\perp} is H^{1}-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$
\begin{aligned}
\operatorname{div}: V^{\perp} & \rightarrow L_{2,0}(\Omega) \\
v & \mapsto \operatorname{div} v .
\end{aligned}
$$

For any $q \in L_{2}(\Omega)$ with $\int q d x=0$,

Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$
V:=\left\{v \in X ;(\operatorname{div} v, q)_{0, \Omega}=0, \forall q \in L_{2}(\Omega)\right\}, \quad V^{\perp}:=\left\{u \in X ;(\operatorname{grad} u, \operatorname{grad} v)_{0, \Omega}=0, \forall v \in V\right\}
$$

The V^{\perp} is H^{1}-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$
\begin{aligned}
\operatorname{div}: V^{\perp} & \rightarrow L_{2,0}(\Omega) \\
v & \mapsto \operatorname{div} v .
\end{aligned}
$$

For any $q \in L_{2}(\Omega)$ with $\int q d x=0$, there exists $v \in V^{\perp} \subset H_{0}^{1}(\Omega)^{n}$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$
V:=\left\{v \in X ;(\operatorname{div} v, q)_{0, \Omega}=0, \forall q \in L_{2}(\Omega)\right\}, \quad V^{\perp}:=\left\{u \in X ;(\operatorname{grad} u, \operatorname{grad} v)_{0, \Omega}=0, \forall v \in V\right\}
$$

The V^{\perp} is H^{1}-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$
\begin{aligned}
\operatorname{div}: V^{\perp} & \rightarrow L_{2,0}(\Omega) \\
v & \mapsto \operatorname{div} v .
\end{aligned}
$$

For any $q \in L_{2}(\Omega)$ with $\int q d x=0$, there exists $v \in V^{\perp} \subset H_{0}^{1}(\Omega)^{n}$ with

$$
\operatorname{div} v=q \text { and }\|v\|_{1, \Omega} \leq c\|q\|_{0, \Omega}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$
V:=\left\{v \in X ;(\operatorname{div} v, q)_{0, \Omega}=0, \forall q \in L_{2}(\Omega)\right\}, \quad V^{\perp}:=\left\{u \in X ;(\operatorname{grad} u, \operatorname{grad} v)_{0, \Omega}=0, \forall v \in V\right\}
$$

The V^{\perp} is H^{1}-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$
\begin{aligned}
\operatorname{div}: V^{\perp} & \rightarrow L_{2,0}(\Omega) \\
v & \mapsto \operatorname{div} v .
\end{aligned}
$$

For any $q \in L_{2}(\Omega)$ with $\int q d x=0$, there exists $v \in V^{\perp} \subset H_{0}^{1}(\Omega)^{n}$ with

$$
\operatorname{div} v=q \text { and }\|v\|_{1, \Omega} \leq c\|q\|_{0, \Omega}
$$

where $c=c(\Omega)$ constant.

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary.

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary.
(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^{n}$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary.
(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^{n}$

$$
\operatorname{grad}: L_{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary.
(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^{n}$

$$
\operatorname{grad}: L_{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}
$$

(2) For $f \in H^{-1}(\Omega)^{n}$, if

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary.
(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^{n}$

$$
\operatorname{grad}: L_{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}
$$

(2) For $f \in H^{-1}(\Omega)^{n}$, if

$$
\langle f, v\rangle=0, \forall v \in V
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary.
(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^{n}$

$$
\operatorname{grad}: L_{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}
$$

(2) For $f \in H^{-1}(\Omega)^{n}$, if

$$
\langle f, v\rangle=0, \forall v \in V
$$

(3) There is constant $c=c(\Omega)$ so that

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary.
(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^{n}$

$$
\operatorname{grad}: L_{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}
$$

(2) For $f \in H^{-1}(\Omega)^{n}$, if

$$
\langle f, v\rangle=0, \forall v \in V
$$

(3) There is constant $c=c(\Omega)$ so that

$$
\|q\|_{0, \Omega} \leq c\left(\|\operatorname{grad} q\|_{-1, \Omega}+\|q\|_{-1, \Omega}\right) \quad \forall q \in L_{2}(\Omega)
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded connected domain with Lipschitz continuous boundary.
(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^{n}$

$$
\operatorname{grad}: L_{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}
$$

(2) For $f \in H^{-1}(\Omega)^{n}$, if

$$
\langle f, v\rangle=0, \forall v \in V
$$

(3) There is constant $c=c(\Omega)$ so that

$$
\begin{aligned}
& \|q\|_{0, \Omega} \leq c\left(\|\operatorname{grad} q\|_{-1, \Omega}+\|q\|_{-1, \Omega}\right) \quad \forall q \in L_{2}(\Omega) \\
& \|q\|_{0, \Omega} \leq c\|\operatorname{grad} q\|_{-1, \Omega} \quad \forall q \in L_{2,0}(\Omega) .
\end{aligned}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch): (By Theorem I):

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):
(By Theorem I): For a $q \in L_{2,0}$, exists $v \in H_{0}^{1}(\Omega)^{n}$ satisfying $\operatorname{div} v=q$ and $\|v\|_{1, \Omega} \leq c\|q\|_{0, \Omega}$ (from previous thm.)

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):
(By Theorem I): For a $q \in L_{2,0}$, exists $v \in H_{0}^{1}(\Omega)^{n}$ satisfying $\operatorname{div} v=q$ and $\|v\|_{1, \Omega} \leq c\|q\|_{0, \Omega}$ (from previous thm.) This implies

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):

(By Theorem I): For a $q \in L_{2,0}$, exists $v \in H_{0}^{1}(\Omega)^{n}$ satisfying $\operatorname{div} v=q$ and $\|v\|_{1, \Omega} \leq c\|q\|_{0, \Omega}$ (from previous thm.) This implies

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):

(By Theorem I): For a $q \in L_{2,0}$, exists $v \in H_{0}^{1}(\Omega)^{n}$ satisfying $\operatorname{div} v=q$ and $\|v\|_{1, \Omega} \leq c\|q\|_{0, \Omega}$ (from previous thm.) This implies

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}}=\frac{(\operatorname{div} v, q)}{\|v\|_{1}}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):

(By Theorem I): For a $q \in L_{2,0}$, exists $v \in H_{0}^{1}(\Omega)^{n}$ satisfying $\operatorname{div} v=q$ and $\|v\|_{1, \Omega} \leq c\|q\|_{0, \Omega}$ (from previous thm.) This implies

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}}=\frac{(\operatorname{div} v, q)}{\|v\|_{1}}=\frac{\|q\|_{0}^{2}}{\|v\|_{1}}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):

(By Theorem I): For a $q \in L_{2,0}$, exists $v \in H_{0}^{1}(\Omega)^{n}$ satisfying $\operatorname{div} v=q$ and $\|v\|_{1, \Omega} \leq c\|q\|_{0, \Omega}$ (from previous thm.) This implies

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}}=\frac{(\operatorname{div} v, q)}{\|v\|_{1}}=\frac{\|q\|_{0}^{2}}{\|v\|_{1}} \geq \frac{\|q\|_{0}^{2}}{c\|q\|_{0}}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):

(By Theorem I): For a $q \in L_{2,0}$, exists $v \in H_{0}^{1}(\Omega)^{n}$ satisfying $\operatorname{div} v=q$ and $\|v\|_{1, \Omega} \leq c\|q\|_{0, \Omega}$ (from previous thm.) This implies

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}}=\frac{(\operatorname{div} v, q)}{\|v\|_{1}}=\frac{\|q\|_{0}^{2}}{\|v\|_{1}} \geq \frac{\|q\|_{0}^{2}}{c\|q\|_{0}}=\frac{1}{c}\|q\|_{0} .
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):

(By Theorem I): For a $q \in L_{2,0}$, exists $v \in H_{0}^{1}(\Omega)^{n}$ satisfying $\operatorname{div} v=q$ and $\|v\|_{1, \Omega} \leq c\|q\|_{0, \Omega}$ (from previous thm.) This implies

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}}=\frac{(\operatorname{div} v, q)}{\|v\|_{1}}=\frac{\|q\|_{0}^{2}}{\|v\|_{1}} \geq \frac{\|q\|_{0}^{2}}{c\|q\|_{0}}=\frac{1}{c}\|q\|_{0} .
$$

This gives the Brezzi Condition for b.

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch): (By Theorem II):

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):
(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_{0}$.

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):
(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_{0}$. From def. of negative norm, there exists $v \in H_{0}^{1}(\Omega)^{n}$ with $\|v\|_{1}=1$ and

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_{0}$. From def. of negative norm, there exists $v \in H_{0}^{1}(\Omega)^{n}$ with $\|v\|_{1}=1$ and

$$
(v, \operatorname{grad} q)_{0, \Omega}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_{0}$. From def. of negative norm, there exists $v \in H_{0}^{1}(\Omega)^{n}$ with $\|v\|_{1}=1$ and

$$
(v, \operatorname{grad} q)_{0, \Omega} \geq \frac{1}{2}\|v\|_{1}\|\operatorname{grad} q\|_{-1}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0} .
$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_{0}$. From def. of negative norm, there exists $v \in H_{0}^{1}(\Omega)^{n}$ with $\|v\|_{1}=1$ and

$$
(v, \operatorname{grad} q)_{0, \Omega} \geq \frac{1}{2}\|v\|_{1}\|\operatorname{grad} q\|_{-1} \geq \frac{1}{2 c}\|q\|_{0}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0}
$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_{0}$. From def. of negative norm, there exists $v \in H_{0}^{1}(\Omega)^{n}$ with $\|v\|_{1}=1$ and

$$
(v, \operatorname{grad} q)_{0, \Omega} \geq \frac{1}{2}\|v\|_{1}\|\operatorname{grad} q\|_{-1} \geq \frac{1}{2 c}\|q\|_{0}
$$

By Greens Identity $b(v, q)=-\int v \cdot \operatorname{grad} q d x$ we have

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0}
$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_{0}$. From def. of negative norm, there exists $v \in H_{0}^{1}(\Omega)^{n}$ with $\|v\|_{1}=1$ and

$$
(v, \operatorname{grad} q)_{0, \Omega} \geq \frac{1}{2}\|v\|_{1}\|\operatorname{grad} q\|_{-1} \geq \frac{1}{2 c}\|q\|_{0}
$$

By Greens Identity $b(v, q)=-\int v \cdot \operatorname{grad} q d x$ we have

$$
\frac{b(-v, q)}{\|v\|_{1}}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0}
$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_{0}$. From def. of negative norm, there exists $v \in H_{0}^{1}(\Omega)^{n}$ with $\|v\|_{1}=1$ and

$$
(v, \operatorname{grad} q)_{0, \Omega} \geq \frac{1}{2}\|v\|_{1}\|\operatorname{grad} q\|_{-1} \geq \frac{1}{2 c}\|q\|_{0}
$$

By Greens Identity $b(v, q)=-\int v \cdot \operatorname{grad} q d x$ we have

$$
\frac{b(-v, q)}{\|v\|_{1}}=(v, \operatorname{grad} q)_{0, \Omega}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0}
$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_{0}$. From def. of negative norm, there exists $v \in H_{0}^{1}(\Omega)^{n}$ with $\|v\|_{1}=1$ and

$$
(v, \operatorname{grad} q)_{0, \Omega} \geq \frac{1}{2}\|v\|_{1}\|\operatorname{grad} q\|_{-1} \geq \frac{1}{2 c}\|q\|_{0}
$$

By Greens Identity $b(v, q)=-\int v \cdot \operatorname{grad} q d x$ we have

$$
\frac{b(-v, q)}{\|v\|_{1}}=(v, \operatorname{grad} q)_{0, \Omega} \geq \frac{1}{2 c}\|q\|_{0}
$$

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0}
$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_{0}$. From def. of negative norm, there exists $v \in H_{0}^{1}(\Omega)^{n}$ with $\|v\|_{1}=1$ and

$$
(v, \operatorname{grad} q)_{0, \Omega} \geq \frac{1}{2}\|v\|_{1}\|\operatorname{grad} q\|_{-1} \geq \frac{1}{2 c}\|q\|_{0}
$$

By Greens Identity $b(v, q)=-\int v \cdot \operatorname{grad} q d x$ we have

$$
\frac{b(-v, q)}{\|v\|_{1}}=(v, \operatorname{grad} q)_{0, \Omega} \geq \frac{1}{2 c}\|q\|_{0}
$$

This gives the Brezzi Condition for b.

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

$$
\sup _{v \in X} \frac{b(v, q)}{\|v\|_{1}} \geq \beta\|q\|_{0}
$$

Proof (sketch):

(By Theorem II): For $q \in L_{2,0}$, and second inequality of II, that $\|\operatorname{grad} q\|_{-1} \geq c^{-1}\|q\|_{0}$. From def. of negative norm, there exists $v \in H_{0}^{1}(\Omega)^{n}$ with $\|v\|_{1}=1$ and

$$
(v, \operatorname{grad} q)_{0, \Omega} \geq \frac{1}{2}\|v\|_{1}\|\operatorname{grad} q\|_{-1} \geq \frac{1}{2 c}\|q\|_{0}
$$

By Greens Identity $b(v, q)=-\int v \cdot \operatorname{grad} q d x$ we have

$$
\frac{b(-v, q)}{\|v\|_{1}}=(v, \operatorname{grad} q)_{0, \Omega} \geq \frac{1}{2 c}\|q\|_{0}
$$

This gives the Brezzi Condition for b.

Stokes Hydrodynamic Equations: Taylor-Hood Element

Taylor-Hood Element
Consider triangulation \mathcal{T}_{h} and polymomial shape spaces \mathcal{P}_{j}.

Stokes Hydrodynamic Equations: Taylor-Hood Element

Taylor-Hood Element
Consider triangulation \mathcal{T}_{h} and polymomial shape spaces \mathcal{P}_{j}. Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.

Stokes Hydrodynamic Equations: Taylor-Hood Element

Taylor-Hood Element
Consider triangulation \mathcal{T}_{h} and polymomial shape spaces \mathcal{P}_{j}.
Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.

$$
X_{h}:=\left(\mathcal{M}_{0,0}^{2}\right)^{d}=\left\{v_{h} \in C(\bar{\Omega})^{d} \bigcap H_{0}^{1}(\Omega)^{d} ;\left.v_{h}\right|_{T} \in \mathcal{P}_{2}, \forall T \in \mathcal{T}_{h}\right\}
$$

Stokes Hydrodynamic Equations: Taylor-Hood Element

Taylor-Hood Element
Consider triangulation \mathcal{T}_{h} and polymomial shape spaces \mathcal{P}_{j}.
Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.

$$
\begin{aligned}
X_{h} & :=\left(\mathcal{M}_{0,0}^{2}\right)^{d}=\left\{v_{h} \in C(\bar{\Omega})^{d} \bigcap H_{0}^{1}(\Omega)^{d} ;\left.v_{h}\right|_{T} \in \mathcal{P}_{2}, \forall T \in \mathcal{T}_{h}\right\} \\
M_{h} & :=\mathcal{M}_{0}^{1} \bigcap L_{2,0}=\left\{q_{h} \in C(\Omega) \bigcap L_{2,0}(\Omega) ;\left.q_{h}\right|_{T} \in \mathcal{P}_{1}, T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Stokes Hydrodynamic Equations: Taylor-Hood Element

Taylor-Hood Element

$$
\begin{aligned}
X_{h} & :=\left(\mathcal{M}_{0,0}^{2}\right)^{d}=\left\{v_{h} \in C(\bar{\Omega})^{d} \bigcap H_{0}^{1}(\Omega)^{d} ;\left.v_{h}\right|_{T} \in \mathcal{P}_{2}, \forall T \in \mathcal{T}_{h}\right\} \\
M_{h} & :=\mathcal{M}_{0}^{1} \bigcap L_{2,0}=\left\{q_{h} \in C(\Omega) \bigcap L_{2,0}(\Omega) ;\left.q_{h}\right|_{T} \in \mathcal{P}_{1}, T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Stokes Hydrodynamic Equations: Taylor-Hood Element

Taylor-Hood Element

$$
\begin{aligned}
X_{h} & :=\left(\mathcal{M}_{0,0}^{2}\right)^{d}=\left\{v_{h} \in C(\bar{\Omega})^{d} \bigcap H_{0}^{1}(\Omega)^{d} ;\left.v_{h}\right|_{T} \in \mathcal{P}_{2}, \forall T \in \mathcal{T}_{h}\right\} \\
M_{h} & :=\mathcal{M}_{0}^{1} \bigcap L_{2,0}=\left\{q_{h} \in C(\Omega) \bigcap L_{2,0}(\Omega) ;\left.q_{h}\right|_{T} \in \mathcal{P}_{1}, T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

$$
X_{h}:=\mathcal{M}_{0,0}^{1}\left(\mathcal{T}_{h / 2}\right)^{2}=\left\{v_{h} \in C(\bar{\Omega})^{d} \bigcap H_{0}^{1}(\Omega)^{d} ;\left.v_{h}\right|_{T} \in \mathcal{P}_{2}, \forall T \in \mathcal{T}_{h / 2}\right\}
$$

Stokes Hydrodynamic Equations: Taylor-Hood Element

Taylor-Hood Element

$$
\begin{aligned}
X_{h} & :=\left(\mathcal{M}_{0,0}^{2}\right)^{d}=\left\{v_{h} \in C(\bar{\Omega})^{d} \bigcap H_{0}^{1}(\Omega)^{d} ;\left.v_{h}\right|_{T} \in \mathcal{P}_{2}, \forall T \in \mathcal{T}_{h}\right\} \\
M_{h} & :=\mathcal{M}_{0}^{1} \bigcap L_{2,0}=\left\{q_{h} \in C(\Omega) \bigcap L_{2,0}(\Omega) ;\left.q_{h}\right|_{T} \in \mathcal{P}_{1}, T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

$$
\begin{aligned}
X_{h} & :=\mathcal{M}_{0,0}^{1}\left(\mathcal{T}_{h / 2}\right)^{2}=\left\{v_{h} \in C(\bar{\Omega})^{d} \bigcap H_{0}^{1}(\Omega)^{d} ;\left.v_{h}\right|_{T} \in \mathcal{P}_{2}, \forall T \in \mathcal{T}_{h / 2}\right\} \\
M_{h} & :=\mathcal{M}_{0}^{1} \bigcap L_{2,0}=\left\{q_{h} \in C(\Omega) \bigcap L_{2,0}(\Omega) ;\left.q_{h}\right|_{T} \in \mathcal{P}_{1}, T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation \mathcal{T}_{h} and polymomial shape spaces \mathcal{P}_{j}.
Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.

$$
\begin{aligned}
X_{h} & :=\left(\mathcal{M}_{0,0}^{2}\right)^{d}=\left\{v_{h} \in C(\bar{\Omega})^{d} \bigcap H_{0}^{1}(\Omega)^{d} ;\left.v_{h}\right|_{T} \in \mathcal{P}_{2}, \forall T \in \mathcal{T}_{h}\right\} \\
M_{h} & :=\mathcal{M}_{0}^{1} \bigcap L_{2,0}=\left\{q_{h} \in C(\Omega) \bigcap L_{2,0}(\Omega) ;\left.q_{h}\right|_{T} \in \mathcal{P}_{1}, T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

$$
\begin{aligned}
X_{h} & :=\mathcal{M}_{0,0}^{1}\left(\mathcal{T}_{h / 2}\right)^{2}=\left\{v_{h} \in C(\bar{\Omega})^{d} \bigcap H_{0}^{1}(\Omega)^{d} ;\left.v_{h}\right|_{T} \in \mathcal{P}_{2}, \forall T \in \mathcal{T}_{h / 2}\right\} \\
M_{h} & :=\mathcal{M}_{0}^{1} \bigcap L_{2,0}=\left\{q_{h} \in C(\Omega) \bigcap L_{2,0}(\Omega) ;\left.q_{h}\right|_{T} \in \mathcal{P}_{1}, T \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Figure: \times denotes pressure values, • denotes velocity values.

Stokes Hydrodynamic Equations: MINI Element

MINI Element

MINI Elements: Achieves stability by using interior "bubble" elements.

Stokes Hydrodynamic Equations: MINI Element

MINI Elements: Achieves stability by using interior "bubble" elements.
For triangle, let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ denotes the barycentric coordinates of a points \mathbf{x}.

Stokes Hydrodynamic Equations: MINI Element

MINI Elements: Achieves stability by using interior "bubble" elements.
For triangle, let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ denotes the barycentric coordinates of a points \mathbf{x}.
Add to the shape space the "bubble" function

$$
b(\mathbf{x})=\lambda_{1} \lambda_{2} \lambda_{3} .
$$

Note, b vanishes on boundary of T.

Stokes Hydrodynamic Equations: MINI Element

MINI Elements: Achieves stability by using interior "bubble" elements.
For triangle, let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ denotes the barycentric coordinates of a points \mathbf{x}.
Add to the shape space the "bubble" function

$$
b(\mathbf{x})=\lambda_{1} \lambda_{2} \lambda_{3} .
$$

Note, b vanishes on boundary of T.
The finite element spaces are

$$
X_{h}:=\left[\mathcal{M}_{0,0}^{1} \oplus B_{3}\right]^{2}, \quad M_{h}:=\mathcal{M}_{0}^{1} \bigcap L_{2,0}(\Omega),
$$

Stokes Hydrodynamic Equations: MINI Element

MINI Elements: Achieves stability by using interior "bubble" elements.
For triangle, let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ denotes the barycentric coordinates of a points \mathbf{x}.
Add to the shape space the "bubble" function

$$
b(\mathbf{x})=\lambda_{1} \lambda_{2} \lambda_{3} .
$$

Note, b vanishes on boundary of T.
The finite element spaces are

$$
X_{h}:=\left[\mathcal{M}_{0,0}^{1} \oplus B_{3}\right]^{2}, \quad M_{h}:=\mathcal{M}_{0}^{1} \bigcap L_{2,0}(\Omega)
$$

where $B_{3}:=\left\{v \in C^{0}(\bar{\Omega}) ;\left.v\right|_{T} \in \operatorname{span}\left[\lambda_{1} \lambda_{2} \lambda_{3}\right], \forall T \in \mathcal{T}_{h}\right\}$.

Stokes Hydrodynamic Equations: MINI Element

MINI Elements: Achieves stability by using interior "bubble" elements.
For triangle, let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ denotes the barycentric coordinates of a points \mathbf{x}.
Add to the shape space the "bubble" function

$$
b(\mathbf{x})=\lambda_{1} \lambda_{2} \lambda_{3} .
$$

Note, b vanishes on boundary of T.
The finite element spaces are

$$
X_{h}:=\left[\mathcal{M}_{0,0}^{1} \oplus B_{3}\right]^{2}, \quad M_{h}:=\mathcal{M}_{0}^{1} \bigcap L_{2,0}(\Omega)
$$

where $B_{3}:=\left\{v \in C^{0}(\bar{\Omega}) ;\left.v\right|_{T} \in \operatorname{span}\left[\lambda_{1} \lambda_{2} \lambda_{3}\right], \forall T \in \mathcal{T}_{h}\right\}$.
Figure: \times denotes pressure values, \cdot denotes velocity values.

