# Mixed Methods

#### Paul J. Atzberger

206D: Finite Element Methods University of California Santa Barbara

 $a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R},$  (continuous bilinear forms)

 $a: X \times X \rightarrow \mathbb{R}, \quad b: X \times M \rightarrow \mathbb{R},$  (continuous bilinear forms)

Saddle Point Problems

 $a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R},$  (continuous bilinear forms)

Saddle Point Problems

Find the minimum  $u \in X$  of

 $a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R},$  (continuous bilinear forms)

### Saddle Point Problems

Find the minimum  $u \in X$  of

$$J[u] = rac{1}{2}a(u,u) - (f,u) ext{ subject to } b(u,\mu) = (g,\mu), \ orall \mu \in M.$$

 $a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R},$  (continuous bilinear forms)

### Saddle Point Problems

Find the minimum  $u \in X$  of

$$J[u]=rac{1}{2}a(u,u)-(f,u) \,\,$$
 subject to  $\,\,b(u,\mu)=(g,\mu),\,orall\mu\in M.$ 

Consider the Lagrangian

 $a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R},$  (continuous bilinear forms)

### Saddle Point Problems

Find the minimum  $u \in X$  of

$$J[u] = rac{1}{2}a(u,u) - (f,u) ext{ subject to } b(u,\mu) = (g,\mu), \ orall \mu \in M.$$

Consider the Lagrangian

$$\mathcal{L}(u,\lambda) := J[u] + [b(u,\lambda) - (g,\lambda)].$$

 $a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R},$  (continuous bilinear forms)

#### Saddle Point Problems

Find the minimum  $u \in X$  of

$$J[u] = rac{1}{2}a(u,u) - (f,u) ext{ subject to } b(u,\mu) = (g,\mu), \ orall \mu \in M.$$

Consider the Lagrangian

$$\mathcal{L}(u,\lambda) := J[u] + [b(u,\lambda) - (g,\lambda)].$$

We seek the minimum of  $\mathcal{L}(\cdot, \lambda)$  with fixed  $\lambda$ .

 $a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R},$  (continuous bilinear forms)

Saddle Point Problems

Find the minimum  $u \in X$  of

$$J[u] = rac{1}{2}a(u,u) - (f,u) ext{ subject to } b(u,\mu) = (g,\mu), \ orall \mu \in M.$$

Consider the Lagrangian

$$\mathcal{L}(u,\lambda) := J[u] + [b(u,\lambda) - (g,\lambda)].$$

We seek the minimum of  $\mathcal{L}(\cdot, \lambda)$  with fixed  $\lambda$ . Can we find  $\lambda_0$  so this minimum satisfies the constraints?

 $a: X \times X \to \mathbb{R}, \quad b: X \times M \to \mathbb{R},$  (continuous bilinear forms)

#### Saddle Point Problems

Find the minimum  $u \in X$  of

$$J[u] = rac{1}{2} a(u,u) - (f,u) ext{ subject to } b(u,\mu) = (g,\mu), \ orall \mu \in M.$$

Consider the Lagrangian

$$\mathcal{L}(u,\lambda) := J[u] + [b(u,\lambda) - (g,\lambda)].$$

We seek the minimum of  $\mathcal{L}(\cdot, \lambda)$  with fixed  $\lambda$ . Can we find  $\lambda_0$  so this minimum satisfies the constraints? When  $\mathcal{L}$  contains only bilinear and quadratic expressions in u and  $\lambda$ , we obtain a saddle point problem.

### Saddle Point Problem I

### Saddle Point Problem I

### Saddle Point Problem I

$$a(u,v) + b(v,\lambda) = \langle f, v \rangle, \quad \forall v \in X,$$

### Saddle Point Problem I

$$egin{aligned} & \mathsf{a}(u,v) + \mathsf{b}(v,\lambda) &= \langle f,v 
angle, & orall v \in X, \ & \mathsf{b}(u,v) &= \langle g,\mu 
angle, & orall \mu \in M. \end{aligned}$$

### Saddle Point Problem I

$$egin{aligned} & \mathsf{a}(u,v) + \mathsf{b}(v,\lambda) &= \langle f,v 
angle, & orall v \in X, \ & \mathsf{b}(u,v) &= \langle g,\mu 
angle, & orall \mu \in M. \end{aligned}$$

### Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} & a(u,v)+b(v,\lambda) &= \langle f,v
angle, & orall v\in X, \ & b(u,v) &= \langle g,\mu
angle, & orall \mu\in M. \end{aligned}$$

When the solution  $(u^*, \lambda^*)$  is solution of the saddle-point conditions, this corresponds to

### Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} & \mathsf{a}(u,v) + \mathsf{b}(v,\lambda) &= \langle f,v 
angle, & orall v \in X, \ & \mathsf{b}(u,v) &= \langle g,\mu 
angle, & orall \mu \in M. \end{aligned}$$

When the solution  $(u^*, \lambda^*)$  is solution of the saddle-point conditions, this corresponds to

 $\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X imes M.$ 

### Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} & a(u,v)+b(v,\lambda) &= \langle f,v
angle, & orall v\in X, \ & b(u,v) &= \langle g,\mu
angle, & orall \mu\in M. \end{aligned}$$

When the solution  $(u^*, \lambda^*)$  is solution of the saddle-point conditions, this corresponds to

 $\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$ 

Assumes that  $a(v, v) \ge 0$ .

### Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} & \mathsf{a}(u,v) + \mathsf{b}(v,\lambda) &= \langle f,v 
angle, & orall v \in X, \ & \mathsf{b}(u,v) &= \langle g,\mu 
angle, & orall \mu \in M. \end{aligned}$$

When the solution  $(u^*, \lambda^*)$  is solution of the saddle-point conditions, this corresponds to

$$\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$$

Assumes that  $a(v, v) \ge 0$ .

**Solution in Infinite-Dimensional Spaces:** we must not only have notion for definiteness of the bilinear form *a*, but also of properties for the constraints *b* beyond simply linear independence.

### Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} & a(u,v)+b(v,\lambda) &= \langle f,v
angle, & orall v\in X, \ & b(u,v) &= \langle g,\mu
angle, & orall \mu\in M. \end{aligned}$$

When the solution  $(u^*, \lambda^*)$  is solution of the saddle-point conditions, this corresponds to

$$\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$$

Assumes that  $a(v, v) \ge 0$ .

**Solution in Infinite-Dimensional Spaces:** we must not only have notion for definiteness of the bilinear form *a*, but also of properties for the constraints *b* beyond simply linear independence.

Consider the overall linear mapping for the above problem

#### Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} & a(u,v)+b(v,\lambda) &= \langle f,v
angle, & orall v\in X, \ & b(u,v) &= \langle g,\mu
angle, & orall \mu\in M. \end{aligned}$$

When the solution  $(u^*, \lambda^*)$  is solution of the saddle-point conditions, this corresponds to

$$\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$$

Assumes that  $a(v, v) \ge 0$ .

**Solution in Infinite-Dimensional Spaces:** we must not only have notion for definiteness of the bilinear form *a*, but also of properties for the constraints *b* beyond simply linear independence.

Consider the overall linear mapping for the above problem

$$L: X \times M \to X' \times M'$$
, maps  $(u, \lambda) \mapsto (f, g)$ .

### Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} & \mathsf{a}(u,v) + \mathsf{b}(v,\lambda) &= \langle f,v 
angle, & orall v \in X, \ & \mathsf{b}(u,v) &= \langle g,\mu 
angle, & orall \mu \in M. \end{aligned}$$

When the solution  $(u^*, \lambda^*)$  is solution of the saddle-point conditions, this corresponds to

$$\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$$

Assumes that  $a(v, v) \ge 0$ .

**Solution in Infinite-Dimensional Spaces:** we must not only have notion for definiteness of the bilinear form *a*, but also of properties for the constraints *b* beyond simply linear independence.

Consider the overall linear mapping for the above problem

$$L: X imes M o X' imes M'$$
, maps  $(u, \lambda) \mapsto (f, g)$ .

Need ways to characterize when L is invertible (solvable) and the inverse is continuous (stable).

### Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} & \mathsf{a}(u,v) + \mathsf{b}(v,\lambda) &= \langle f,v 
angle, & orall v \in X, \ & \mathsf{b}(u,v) &= \langle g,\mu 
angle, & orall \mu \in M. \end{aligned}$$

When the solution  $(u^*, \lambda^*)$  is solution of the saddle-point conditions, this corresponds to

$$\mathcal{L}(u^*,\lambda) \leq \mathcal{L}(u^*,\lambda^*) \leq \mathcal{L}(u,\lambda^*), \quad \forall (u,\lambda) \in X \times M.$$

Assumes that  $a(v, v) \ge 0$ .

**Solution in Infinite-Dimensional Spaces:** we must not only have notion for definiteness of the bilinear form *a*, but also of properties for the constraints *b* beyond simply linear independence.

Consider the overall linear mapping for the above problem

$$L: X imes M o X' imes M'$$
, maps  $(u, \lambda) \mapsto (f, g)$ .

Need ways to characterize when L is invertible (solvable) and the inverse is continuous (stable).

# **Functional Analysis**

### Isomorphism

# **Functional Analysis**

### Isomorphism

A linear mapping  $L: U \rightarrow V$  with U, V normed linear spaces is called an **isomorphism** if

A linear mapping  $L: U \to V$  with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and  $L^{-1}$  are continuous.

A linear mapping  $L: U \to V$  with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and  $L^{-1}$  are continuous.

Consider a linear map associated with a bilinear form *a* by  $\langle Lu, v \rangle := a(u, v), \forall v \in V.$ 

A linear mapping  $L: U \to V$  with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and  $L^{-1}$  are continuous.

Consider a linear map associated with a bilinear form *a* by  $\langle Lu, v \rangle := a(u, v), \forall v \in V$ . **Variational problem:**  $a(u, v) = \langle f, v \rangle, \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$ , formally  $u = L^{-1}f$ .

A linear mapping  $L: U \to V$  with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and  $L^{-1}$  are continuous.

Consider a linear map associated with a bilinear form *a* by  $\langle Lu, v \rangle := a(u, v)$ ,  $\forall v \in V$ . **Variational problem:**  $a(u, v) = \langle f, v \rangle$ ,  $\forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$ , formally  $u = L^{-1}f$ . **Definition:** 

A linear mapping  $L: U \to V$  with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and  $L^{-1}$  are continuous.

Consider a linear map associated with a bilinear form *a* by  $\langle Lu, v \rangle := a(u, v), \forall v \in V$ . Variational problem:  $a(u, v) = \langle f, v \rangle, \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$ , formally  $u = L^{-1}f$ . Definition: For  $V \subset X$  closed, the  $V^0 := \{\ell \in X' : \langle \ell, v \rangle = 0, \forall v \in V\}$  is called the **polar set**.

A linear mapping  $L: U \to V$  with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and  $L^{-1}$  are continuous.

Consider a linear map associated with a bilinear form *a* by  $\langle Lu, v \rangle := a(u, v), \forall v \in V$ . Variational problem:  $a(u, v) = \langle f, v \rangle, \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$ , formally  $u = L^{-1}f$ . Definition: For  $V \subset X$  closed, the  $V^0 := \{\ell \in X' : \langle \ell, v \rangle = 0, \forall v \in V\}$  is called the **polar set**.

Theorem (Inf-Sup Condition)

A linear mapping  $L: U \to V$  with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and  $L^{-1}$  are continuous.

Consider a linear map associated with a bilinear form *a* by  $\langle Lu, v \rangle := a(u, v), \forall v \in V$ . Variational problem:  $a(u, v) = \langle f, v \rangle, \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$ , formally  $u = L^{-1}f$ . Definition: For  $V \subset X$  closed, the  $V^0 := \{\ell \in X' : \langle \ell, v \rangle = 0, \forall v \in V\}$  is called the **polar set**.

### Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping  $L: U \rightarrow V'$  is an isomorphism if and only if

A linear mapping  $L: U \to V$  with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and  $L^{-1}$  are continuous.

Consider a linear map associated with a bilinear form *a* by  $\langle Lu, v \rangle := a(u, v), \forall v \in V$ . Variational problem:  $a(u, v) = \langle f, v \rangle, \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$ , formally  $u = L^{-1}f$ . Definition: For  $V \subset X$  closed, the  $V^0 := \{\ell \in X' : \langle \ell, v \rangle = 0, \forall v \in V\}$  is called the **polar set**.

### Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping  $L : U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a : U \times V \to \mathbb{R}$  satisfies the conditions:

A linear mapping  $L: U \to V$  with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and  $L^{-1}$  are continuous.

Consider a linear map associated with a bilinear form *a* by  $\langle Lu, v \rangle := a(u, v), \forall v \in V$ . Variational problem:  $a(u, v) = \langle f, v \rangle, \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$ , formally  $u = L^{-1}f$ . Definition: For  $V \subset X$  closed, the  $V^0 := \{\ell \in X' : \langle \ell, v \rangle = 0, \forall v \in V\}$  is called the **polar set**.

### Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping  $L : U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a : U \times V \to \mathbb{R}$  satisfies the conditions: (i) Continuity: There exists C > 0 so that  $|a(u, v)| < C ||u||_U ||v||_V$ .

#### Isomorphism

A linear mapping  $L: U \to V$  with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and  $L^{-1}$  are continuous.

Consider a linear map associated with a bilinear form *a* by  $\langle Lu, v \rangle := a(u, v), \forall v \in V$ . Variational problem:  $a(u, v) = \langle f, v \rangle, \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$ , formally  $u = L^{-1}f$ . Definition: For  $V \subset X$  closed, the  $V^0 := \{\ell \in X' : \langle \ell, v \rangle = 0, \forall v \in V\}$  is called the **polar set**.

### Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping  $L : U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a : U \times V \to \mathbb{R}$  satisfies the conditions: (i) *Continuity:* There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ . (ii) *Inf-Sup Condition:* There exists  $\alpha > 0$  such that

#### Isomorphism

A linear mapping  $L: U \to V$  with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and  $L^{-1}$  are continuous.

Consider a linear map associated with a bilinear form *a* by  $\langle Lu, v \rangle := a(u, v), \forall v \in V$ . Variational problem:  $a(u, v) = \langle f, v \rangle, \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$ , formally  $u = L^{-1}f$ . Definition: For  $V \subset X$  closed, the  $V^0 := \{\ell \in X' : \langle \ell, v \rangle = 0, \forall v \in V\}$  is called the **polar set**.

### Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping  $L : U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a : U \times V \to \mathbb{R}$  satisfies the conditions: (i) *Continuity:* There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ . (ii) *Inf-Sup Condition:* There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_{U} \|v\|_{V}} \ge \alpha > 0.$$

#### Isomorphism

A linear mapping  $L: U \to V$  with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and  $L^{-1}$  are continuous.

Consider a linear map associated with a bilinear form *a* by  $\langle Lu, v \rangle := a(u, v), \forall v \in V$ . Variational problem:  $a(u, v) = \langle f, v \rangle, \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$ , formally  $u = L^{-1}f$ . Definition: For  $V \subset X$  closed, the  $V^0 := \{\ell \in X' : \langle \ell, v \rangle = 0, \forall v \in V\}$  is called the **polar set**.

### Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping  $L : U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a : U \times V \to \mathbb{R}$  satisfies the conditions: (i) *Continuity:* There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ . (ii) *Inf-Sup Condition:* There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

For Hilbert spaces U, V, the linear mapping  $L : U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a : U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ . (ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

**Proof (sketch):** 

For Hilbert spaces U, V, the linear mapping  $L : U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a : U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ . (ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### Proof (sketch):

Condition (i) readily implies the continuity of  $L: U \to V'$ .

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satisfies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ . (ii) Inf Sum Condition: There exists  $\alpha \ge 0$  such that

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u\in U}\sup_{v\in V}\frac{a(u,v)}{\|u\|_U\|v\|_V}\geq \alpha>0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \rightarrow V'$ . Condition (ii) gives us invertibility of L,

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satisfies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ . (ii) Let Sum Condition. These suits  $a \ge 0$  such that

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### Proof (sketch):

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v), \forall v \in V$ ,

For Hilbert spaces U, V, the linear mapping  $L : U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a : U \times V \to \mathbb{R}$  satisfies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_{U} ||v||_{V}$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v), \forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ .

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satisfies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ ,

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satisfies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ .

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satisfies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ ,

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satisfies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ , by injectivity, exists unique  $u = L^{-1}f$ .

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satisfies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ , by injectivity, exists unique  $u = L^{-1}f$ . By (ii)  $\Rightarrow \alpha ||u||_U \leq \sup_{v \in V} \frac{a(u,v)}{||v||_V}$ 

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satisfies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ , by injectivity, exists unique  $u = L^{-1}f$ . By (ii)  $\Rightarrow \alpha ||u||_U \leq \sup_{v \in V} \frac{a(u,v)}{||v||_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{||v||_V}$ 

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ , by injectivity, exists unique  $u = L^{-1}f$ . By (ii)  $\Rightarrow \alpha ||u||_U \le \sup_{v \in V} \frac{a(u,v)}{||v||_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{||v||_V} = ||f||_{V'} \Rightarrow ||Lu||_{V'}$ 

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ , by injectivity, exists unique  $u = L^{-1}f$ . By (ii)  $\Rightarrow \alpha ||u||_U \le \sup_{v \in V} \frac{a(u,v)}{||v||_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{||v||_V} = ||f||_{V'} \Rightarrow ||Lu||_{V'} \ge \alpha ||u||_U$ 

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ , by injectivity, exists unique  $u = L^{-1}f$ . By (ii)  $\Rightarrow \alpha ||u||_U \le \sup_{v \in V} \frac{a(u,v)}{||v||_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{||v||_V} = ||f||_{V'} \Rightarrow ||Lu||_{V'} \ge \alpha ||u||_U \Rightarrow ||L^{-1}f||_U$ 

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ , by injectivity, exists unique  $u = L^{-1}f$ . By (ii)  $\Rightarrow \alpha ||u||_U \le \sup_{v \in V} \frac{a(u,v)}{||v||_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{||v||_V} = ||f||_{V'} \Rightarrow ||Lu||_{V'} \ge \alpha ||u||_U \Rightarrow ||L^{-1}f||_U \le \alpha^{-1} ||f||_{V'}$ ,

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ , by injectivity, exists unique  $u = L^{-1}f$ . By (ii)  $\Rightarrow \alpha ||u||_U \leq \sup_{v \in V} \frac{a(u,v)}{||v||_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{||v||_V} = ||f||_{V'} \Rightarrow ||Lu||_{V'} \geq \alpha ||u||_U \Rightarrow ||L^{-1}f||_U \leq \alpha^{-1} ||f||_{V'}$ , so  $L^{-1}$  is continuous on Im(L).

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ , by injectivity, exists unique  $u = L^{-1}f$ . By (ii)  $\Rightarrow \alpha ||u||_U \leq \sup_{v \in V} \frac{a(u,v)}{||v||_V} = \sup_{v \in V} \frac{\langle f,v \rangle}{||v||_V} = ||f||_{V'} \Rightarrow ||Lu||_{V'} \geq \alpha ||u||_U \Rightarrow ||L^{-1}f||_U \leq \alpha^{-1} ||f||_{V'}$ , so  $L^{-1}$  is continuous on Im(L). Continuity of  $L, L^{-1}$  implies L(U) closed.

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### Proof (sketch):

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ , by injectivity, exists unique  $u = L^{-1}f$ . By (ii)  $\Rightarrow \alpha ||u||_U \leq \sup_{v \in V} \frac{a(u,v)}{||v||_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{||v||_V} = ||f||_{V'} \Rightarrow ||Lu||_{V'} \geq \alpha ||u||_U \Rightarrow ||L^{-1}f||_U \leq \alpha^{-1} ||f||_{V'}$ , so  $L^{-1}$  is continuous on Im(L). Continuity of  $L, L^{-1}$  implies L(U) closed. Condition (iii) ensures only element in *polar* set is  $\{0\}$ 

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ , by injectivity, exists unique  $u = L^{-1}f$ . By (ii)  $\Rightarrow \alpha ||u||_U \leq \sup_{v \in V} \frac{a(u,v)}{||v||_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{||v||_V} = ||f||_{V'} \Rightarrow ||Lu||_{V'} \geq \alpha ||u||_U \Rightarrow ||L^{-1}f||_U \leq \alpha^{-1} ||f||_{V'}$ , so  $L^{-1}$  is continuous on Im(L). Continuity of  $L, L^{-1}$  implies L(U) closed. Condition (iii) ensures only element in *polar* set is  $\{0\}$  so L is surjective (thm).

Paul J. Atzberger, UCSB

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

#### **Proof (sketch):**

Condition (i) readily implies the continuity of  $L: U \to V'$ . Condition (ii) gives us invertibility of L, since if  $Lu_1 = Lu_2$  then  $a(u_1, v) = a(u_2, v)$ ,  $\forall v \in V$ , giving  $sup_{v \in V}a(u_1 - u_2, v) = 0$ . By (ii) this only occurs if  $||u_1 - u_2||_U = 0$ , so  $u_1 = u_2$ . For  $f \in L(U)$ , by injectivity, exists unique  $u = L^{-1}f$ . By (ii)  $\Rightarrow \alpha ||u||_U \leq \sup_{v \in V} \frac{a(u,v)}{||v||_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{||v||_V} = ||f||_{V'} \Rightarrow ||Lu||_{V'} \geq \alpha ||u||_U \Rightarrow ||L^{-1}f||_U \leq \alpha^{-1} ||f||_{V'}$ , so  $L^{-1}$  is continuous on Im(L). Continuity of  $L, L^{-1}$  implies L(U) closed. Condition (iii) ensures only element in *polar* set is  $\{0\}$  so L is surjective (thm).

Paul J. Atzberger, UCSB

### Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satisfies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{\boldsymbol{\nu}\in\boldsymbol{U}}\sup_{\boldsymbol{\nu}\in\boldsymbol{V}}\frac{\boldsymbol{a}(\boldsymbol{u},\boldsymbol{\nu})}{\|\boldsymbol{u}\|_{\boldsymbol{\nu}}\|_{\boldsymbol{\nu}}\|}\geq\alpha>0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

### Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping  $L : U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a : U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{\boldsymbol{\nu}\in\boldsymbol{U}}\sup_{\boldsymbol{\nu}\in\boldsymbol{V}}\frac{\boldsymbol{a}(\boldsymbol{u},\boldsymbol{\nu})}{\|\boldsymbol{u}\|_{\boldsymbol{\nu}}\|\boldsymbol{\nu}\|_{\boldsymbol{\nu}}}\geq\alpha>0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

The conditions (i) and (ii) alone imply that L is *isomorphism* on  $W^0$  where

### Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{\boldsymbol{\nu}\in\boldsymbol{U}}\sup_{\boldsymbol{\nu}\in\boldsymbol{V}}\frac{\boldsymbol{a}(\boldsymbol{u},\boldsymbol{\nu})}{\|\boldsymbol{u}\|_{\boldsymbol{\nu}}\|\boldsymbol{\nu}\|_{\boldsymbol{\nu}}}\geq\alpha>0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

The conditions (i) and (ii) alone imply that L is *isomorphism* on  $W^0$  where

$$W = \{ v \in V \mid a(u, v) = 0, \forall u \in U \}, W^0 \subset V'.$$

## Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_V \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

The conditions (i) and (ii) alone imply that L is isomorphism on  $W^0$  where

$$W = \{v \in V \mid a(u, v) = 0, \forall u \in U\}, W^0 \subset V'.$$

This provides ways to describe correspondence for set U, the equivalent functionals in V'.

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_V \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

The conditions (i) and (ii) alone imply that L is isomorphism on  $W^0$  where

$$W = \{v \in V \mid a(u, v) = 0, \forall u \in U\}, W^0 \subset V'.$$

This provides ways to describe correspondence for set U, the equivalent functionals in V'. **Remark:** 

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_V \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

The conditions (i) and (ii) alone imply that L is isomorphism on  $W^0$  where

$$W = \{v \in V \mid a(u, v) = 0, \forall u \in U\}, W^0 \subset V'.$$

This provides ways to describe correspondence for set U, the equivalent functionals in V'. **Remark:** Lax-Milgram follows as a special case, since

For Hilbert spaces U, V, the linear mapping  $L: U \to V'$  is an isomorphism if and only if the corresponding bilinear form  $a: U \times V \to \mathbb{R}$  satifies the conditions: (i) Continuity: There exists  $C \ge 0$  so that  $|a(u, v)| \le C ||u||_U ||v||_V$ .

(ii) Inf-Sup Condition: There exists  $\alpha > 0$  such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_V \|v\|_V} \ge \alpha > 0.$$

(iii) For each  $v \in V$ , there exists  $u \in U$  with  $a(u, v) \neq 0$ .

The conditions (i) and (ii) alone imply that L is isomorphism on  $W^0$  where

$$W = \{v \in V \mid a(u, v) = 0, \forall u \in U\}, W^0 \subset V'.$$

This provides ways to describe correspondence for set U, the equivalent functionals in V'. **Remark:** Lax-Milgram follows as a special case, since

$$\sup_{v} \frac{a(v,u)}{\|v\|} \geq \frac{a(u,u)}{\|u\|} \geq \alpha \|u\|.$$

Choose approximation spaces  $U_h \subset U$  and  $V_h \subset V$  that are finite dimensional.

Choose approximation spaces  $U_h \subset U$  and  $V_h \subset V$  that are finite dimensional. Given  $f \in V'$ , we seek solution  $u_h \in U_h$  so that

Choose approximation spaces  $U_h \subset U$  and  $V_h \subset V$  that are finite dimensional. Given  $f \in V'$ , we seek solution  $u_h \in U_h$  so that

 $a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$ 

Choose approximation spaces  $U_h \subset U$  and  $V_h \subset V$  that are finite dimensional. Given  $f \in V'$ , we seek solution  $u_h \in U_h$  so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

# Lemma (Convergence)

Choose approximation spaces  $U_h \subset U$  and  $V_h \subset V$  that are finite dimensional. Given  $f \in V'$ , we seek solution  $u_h \in U_h$  so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

### Lemma (Convergence)

Consider  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions.

Choose approximation spaces  $U_h \subset U$  and  $V_h \subset V$  that are finite dimensional. Given  $f \in V'$ , we seek solution  $u_h \in U_h$  so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

### Lemma (Convergence)

Consider  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds.

Choose approximation spaces  $U_h \subset U$  and  $V_h \subset V$  that are finite dimensional. Given  $f \in V'$ , we seek solution  $u_h \in U_h$  so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

### Lemma (Convergence)

Consider  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces  $U_h \subset V$ ,  $V_h \subset V$  for which the theorem also holds. Then

Choose approximation spaces  $U_h \subset U$  and  $V_h \subset V$  that are finite dimensional. Given  $f \in V'$ , we seek solution  $u_h \in U_h$  so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

### Lemma (Convergence)

Consider  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\|\leq \left(1+\frac{C}{\alpha}\right)\inf_{w_h\in U_h}\|u-w_h\|.$$

Choose approximation spaces  $U_h \subset U$  and  $V_h \subset V$  that are finite dimensional. Given  $f \in V'$ , we seek solution  $u_h \in U_h$  so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

### Lemma (Convergence)

Consider  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\|\leq \left(1+\frac{C}{\alpha}\right)\inf_{w_h\in U_h}\|u-w_h\|.$$

#### Remark:

Choose approximation spaces  $U_h \subset U$  and  $V_h \subset V$  that are finite dimensional. Given  $f \in V'$ , we seek solution  $u_h \in U_h$  so that

$$a(u_h, v) = \langle f, v \rangle, \ \forall v \in V_h.$$

### Lemma (Convergence)

Consider  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\|\leq \left(1+\frac{C}{\alpha}\right)\inf_{w_h\in U_h}\|u-w_h\|.$$

**Remark:** When this criteria holds for the spaces  $U_h$ ,  $V_h$ , we say they satisfy the Babuska-Brezzi Condition.

Consider bilinear form  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\|\leq \left(1+rac{C}{lpha}
ight)\inf_{w_h\in U_h}\|u-w_h\|.$$

Consider bilinear form  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\|\leq \left(1+rac{C}{lpha}
ight)\inf_{w_h\in U_h}\|u-w_h\|.$$

Proof:

Consider bilinear form  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h\in U_h} \|u-w_h\|.$$

Proof:

$$a(u-u_h,v)=0, \; \forall v\in V_h$$

Consider bilinear form  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h\in U_h} \|u-w_h\|.$$

Proof:

$$\mathsf{a}(u-u_h,v)=0, \; orall v\in V_h$$

For any  $w_h \in U_h$  we have

Consider bilinear form  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h\in U_h} \|u-w_h\|.$$

Proof:

$$\mathsf{a}(u-u_h, \mathbf{v}) = \mathbf{0}, \; \forall \mathbf{v} \in V_h$$

For any  $w_h \in U_h$  we have

$$a(u_h - w_h, v) = a(u - w_h, v), \ \forall v \in V_h$$

Consider bilinear form  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h\in U_h} \|u-w_h\|.$$

Proof:

$$a(u-u_h,v)=0, \ \forall v\in V_h$$

For any  $w_h \in U_h$  we have

$$a(u_h - w_h, v) = a(u - w_h, v), \ \forall v \in V_h$$

For  $\langle \ell, v \rangle := a(u - w_h, v)$ , we have  $\|\ell\| \leq C \|u - w_h\|$ .

Consider bilinear form  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\|\leq \left(1+rac{C}{lpha}
ight)\inf_{w_h\in U_h}\|u-w_h\|.$$

Proof:

$$\mathsf{a}(u-u_h, \mathbf{v}) = \mathbf{0}, \; \forall \mathbf{v} \in V_h$$

For any  $w_h \in U_h$  we have

$$a(u_h - w_h, v) = a(u - w_h, v), \ \forall v \in V_h$$

For  $\langle \ell, v \rangle := a(u - w_h, v)$ , we have  $\|\ell\| \le C \|u - w_h\|$ . By conditions (i)–(iii), the mapping  $L_h : U_h \to V'_h$  obtained from  $a(u_h - w_h, \cdot)$  satisfies  $\|L_h^{-1}\| \le \alpha^{-1}$ .

Consider bilinear form  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces  $U_h \subset V$ ,  $V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h\in U_h} \|u-w_h\|.$$

Proof:

$$\mathsf{a}(u-u_h, \mathbf{v}) = \mathbf{0}, \; \forall \mathbf{v} \in V_h$$

For any  $w_h \in U_h$  we have

$$a(u_h - w_h, v) = a(u - w_h, v), \ \forall v \in V_h$$

For  $\langle \ell, v \rangle := a(u - w_h, v)$ , we have  $\|\ell\| \le C \|u - w_h\|$ . By conditions (i)–(iii), the mapping  $L_h : U_h \to V'_h$  obtained from  $a(u_h - w_h, \cdot)$  satisfies  $\|L_h^{-1}\| \le \alpha^{-1}$ . This gives

Consider bilinear form  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h\in U_h} \|u-w_h\|.$$

Proof:

$$a(u-u_h,v)=0, \; orall v\in V_h$$

For any  $w_h \in U_h$  we have

$$a(u_h - w_h, v) = a(u - w_h, v), \ \forall v \in V_h$$

For  $\langle \ell, v \rangle := a(u - w_h, v)$ , we have  $\|\ell\| \le C \|u - w_h\|$ . By conditions (i)–(iii), the mapping  $L_h : U_h \to V'_h$  obtained from  $a(u_h - w_h, \cdot)$  satisfies  $\|L_h^{-1}\| \le \alpha^{-1}$ . This gives

$$||u_h - w_h|| \le \alpha^{-1} ||\ell|| \le \alpha^{-1} C ||u - w_h||.$$

Consider bilinear form  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces  $U_h \subset V$ ,  $V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h\in U_h} \|u-w_h\|.$$

Proof:

$$\mathsf{a}(u-u_h, \mathbf{v}) = \mathbf{0}, \; \forall \mathbf{v} \in V_h$$

For any  $w_h \in U_h$  we have

$$a(u_h - w_h, v) = a(u - w_h, v), \ \forall v \in V_h$$

For  $\langle \ell, v \rangle := a(u - w_h, v)$ , we have  $\|\ell\| \le C \|u - w_h\|$ . By conditions (i)-(iii), the mapping  $L_h : U_h \to V'_h$  obtained from  $a(u_h - w_h, \cdot)$  satisfies  $\|L_h^{-1}\| \le \alpha^{-1}$ . This gives

$$||u_h - w_h|| \le \alpha^{-1} ||\ell|| \le \alpha^{-1} C ||u - w_h||.$$

From triangle inequality,

Consider bilinear form  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\|\leq \left(1+rac{C}{lpha}
ight)\inf_{w_h\in U_h}\|u-w_h\|.$$

Proof:

$$\mathsf{a}(u-u_h, \mathbf{v}) = \mathbf{0}, \; \forall \mathbf{v} \in V_h$$

For any  $w_h \in U_h$  we have

$$a(u_h - w_h, v) = a(u - w_h, v), \ \forall v \in V_h$$

For  $\langle \ell, v \rangle := a(u - w_h, v)$ , we have  $\|\ell\| \le C \|u - w_h\|$ . By conditions (i)-(iii), the mapping  $L_h : U_h \to V'_h$  obtained from  $a(u_h - w_h, \cdot)$  satisfies  $\|L_h^{-1}\| \le \alpha^{-1}$ . This gives

$$||u_h - w_h|| \le \alpha^{-1} ||\ell|| \le \alpha^{-1} C ||u - w_h||.$$

From triangle inequality,

$$||u - u_h|| \le ||u - w_h|| + ||w_h - u_h|| \le (1 + \alpha^{-1}C)||u - w_h||.$$

Paul J. Atzberger, UCSB

Consider bilinear form  $a: U \times V \to \mathbb{R}$  that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces  $U_h \subset V, V_h \subset V$  for which the theorem also holds. Then

$$\|u-u_h\| \leq \left(1+\frac{C}{\alpha}\right) \inf_{w_h\in U_h} \|u-w_h\|.$$

Proof:

$$\mathsf{a}(u-u_h, \mathbf{v}) = \mathbf{0}, \; \forall \mathbf{v} \in V_h$$

For any  $w_h \in U_h$  we have

$$a(u_h - w_h, v) = a(u - w_h, v), \ \forall v \in V_h$$

For  $\langle \ell, v \rangle := a(u - w_h, v)$ , we have  $\|\ell\| \le C \|u - w_h\|$ . By conditions (i)-(iii), the mapping  $L_h : U_h \to V'_h$  obtained from  $a(u_h - w_h, \cdot)$  satisfies  $\|L_h^{-1}\| \le \alpha^{-1}$ . This gives

$$||u_h - w_h|| \le \alpha^{-1} ||\ell|| \le \alpha^{-1} C ||u - w_h||.$$

From triangle inequality,

$$||u - u_h|| \le ||u - w_h|| + ||w_h - u_h|| \le (1 + \alpha^{-1}C)||u - w_h||.$$

Paul J. Atzberger, UCSB

Returning to our original motivation.

Returning to our original motivation.

### Saddle Point Problem I

Returning to our original motivation.

Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

Returning to our original motivation.

### Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} egin{aligned} egi$$

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure solution.

Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure solution.

Consider the overall linear mapping for the above problem

Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} egin{aligned} egi$$

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure solution.

Consider the overall linear mapping for the above problem

$$L:X imes M o X' imes M', \quad ext{maps} \quad (u,\lambda)\mapsto (f,g).$$

Saddle Point Problem I

Find  $(u, \lambda) \in X \times M$  with

$$egin{aligned} egin{aligned} egi$$

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure solution.

Consider the overall linear mapping for the above problem

$$L:X imes M o X' imes M', \quad ext{maps} \quad (u,\lambda)\mapsto (f,g).$$

We need to establish conditions for this to be an isomorphism.

Notation:

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \},\$ 

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$ 

**Notation:**  $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M\}, V := \{v \in X : b(v, \mu) = 0, \forall \mu \in M\}$ Since *b* is continuous, *V* is a closed subspace of *X*.

**Notation:**  $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M\}, V := \{v \in X : b(v, \mu) = 0, \forall \mu \in M\}$ Since *b* is continuous, *V* is a closed subspace of *X*.

Reformulation as an operator equation using bilinear form  $a(\cdot, \cdot)$ 

**Notation:**  $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M\}, V := \{v \in X : b(v, \mu) = 0, \forall \mu \in M\}$ Since *b* is continuous, *V* is a closed subspace of *X*.

Reformulation as an operator equation using bilinear form  $a(\cdot, \cdot)$ 

$$egin{aligned} \mathsf{A}: X o X' \ \langle \mathsf{A} u, v 
angle = \mathsf{a}(u, v), \ \forall v \in X. \end{aligned}$$

**Notation:**  $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M\}, V := \{v \in X : b(v, \mu) = 0, \forall \mu \in M\}$ Since *b* is continuous, *V* is a closed subspace of *X*.

Reformulation as an operator equation using bilinear form  $a(\cdot, \cdot)$ 

$$A: X \to X'$$
  
 $\langle Au, v \rangle = a(u, v), \quad \forall v \in X.$ 

Similarly, for  $b(\cdot, \cdot)$  we define B and adjoint B' as

**Notation:**  $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M\}, V := \{v \in X : b(v, \mu) = 0, \forall \mu \in M\}$ Since *b* is continuous, *V* is a closed subspace of *X*.

Reformulation as an operator equation using bilinear form  $a(\cdot, \cdot)$ 

$$A: X \to X'$$
  
 $\langle Au, v \rangle = a(u, v), \quad \forall v \in X.$ 

Similarly, for  $b(\cdot, \cdot)$  we define B and adjoint B' as

$$egin{aligned} B:X o M',&B':M o X'\ \langle Bu,\mu
angle=b(u,\mu),&orall\mu\in M,&\langle B'\lambda,v
angle=b(v,\lambda),&orall v\in X. \end{aligned}$$

**Notation:**  $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M\}, V := \{v \in X : b(v, \mu) = 0, \forall \mu \in M\}$ Since *b* is continuous, *V* is a closed subspace of *X*.

Reformulation as an operator equation using bilinear form  $a(\cdot, \cdot)$ 

$$A: X \to X'$$
  
 $\langle Au, v \rangle = a(u, v), \quad \forall v \in X.$ 

Similarly, for  $b(\cdot, \cdot)$  we define B and adjoint B' as

$$\begin{array}{ll} B:X\to M', & B':M\to X'\\ \langle Bu,\mu\rangle=b(u,\mu), \ \ \forall\mu\in M, & \langle B'\lambda,v\rangle=b(v,\lambda), \ \ \forall v\in X. \end{array}$$

The Saddle Point Problem I can be expressed as

**Notation:**  $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M\}, V := \{v \in X : b(v, \mu) = 0, \forall \mu \in M\}$ Since *b* is continuous, *V* is a closed subspace of *X*.

Reformulation as an operator equation using bilinear form  $a(\cdot, \cdot)$ 

$$A: X \to X'$$
  
 $\langle Au, v \rangle = a(u, v), \quad \forall v \in X.$ 

Similarly, for  $b(\cdot, \cdot)$  we define B and adjoint B' as

$$egin{array}{lll} B:X o M',&B':M o X'\ \langle Bu,\mu
angle=b(u,\mu),&orall\mu\in M,&\langle B'\lambda,v
angle=b(v,\lambda),&orall v\in X. \end{array}$$

The Saddle Point Problem I can be expressed as

### Saddle Point Problem II

**Notation:**  $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M\}, V := \{v \in X : b(v, \mu) = 0, \forall \mu \in M\}$ Since *b* is continuous, *V* is a closed subspace of *X*.

Reformulation as an operator equation using bilinear form  $a(\cdot, \cdot)$ 

$$A: X \to X'$$
  
 $\langle Au, v \rangle = a(u, v), \quad \forall v \in X.$ 

Similarly, for  $b(\cdot, \cdot)$  we define B and adjoint B' as

$$egin{array}{lll} B:X o M',&B':M o X'\ \langle Bu,\mu
angle=b(u,\mu),&orall\mu\in M,&\langle B'\lambda,v
angle=b(v,\lambda),&orall v\in X. \end{array}$$

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Find  $(u, \lambda) \in X \times M$  satisfying

**Notation:**  $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M\}, V := \{v \in X : b(v, \mu) = 0, \forall \mu \in M\}$ Since *b* is continuous, *V* is a closed subspace of *X*.

Reformulation as an operator equation using bilinear form  $a(\cdot, \cdot)$ 

$$A: X \to X'$$
  
 $\langle Au, v \rangle = a(u, v), \quad \forall v \in X.$ 

Similarly, for  $b(\cdot, \cdot)$  we define B and adjoint B' as

$$egin{aligned} B:X o M',&B':M o X'\ \langle Bu,\mu
angle=b(u,\mu),&orall\mu\in M,&\langle B'\lambda,v
angle=b(v,\lambda),&orall v\in X. \end{aligned}$$

The Saddle Point Problem I can be expressed as

### Saddle Point Problem II

Find  $(u, \lambda) \in X \times M$  satisfying

$$\begin{array}{ll} Au + B'\lambda &= f,\\ Bu &= g. \end{array}$$

Paul J. Atzberger, UCSB

**Notation:**  $V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M\}, V := \{v \in X : b(v, \mu) = 0, \forall \mu \in M\}$ Since *b* is continuous, *V* is a closed subspace of *X*.

Reformulation as an operator equation using bilinear form  $a(\cdot, \cdot)$ 

$$A: X \to X'$$
  
 $\langle Au, v \rangle = a(u, v), \quad \forall v \in X.$ 

Similarly, for  $b(\cdot, \cdot)$  we define B and adjoint B' as

$$egin{aligned} B:X o M',&B':M o X'\ \langle Bu,\mu
angle=b(u,\mu),&orall\mu\in M,&\langle B'\lambda,v
angle=b(v,\lambda),&orall v\in X. \end{aligned}$$

The Saddle Point Problem I can be expressed as

### Saddle Point Problem II

Find  $(u, \lambda) \in X \times M$  satisfying

$$\begin{array}{ll} Au + B'\lambda &= f,\\ Bu &= g. \end{array}$$

Paul J. Atzberger, UCSB

## Inf-Sup Lemma

## Inf-Sup Lemma

The following conditions are equivalent

## Inf-Sup Lemma

 $\begin{array}{l} \text{The following conditions are equivalent} \\ \text{(i) } \inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\| \|\mu\|} \geq \beta > 0. \end{array}$ 

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\||v|\| \|\mu\|} \ge \beta > 0.$ (ii) The operator  $B: V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ 

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

Proof:

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii)  $\Rightarrow$  (ii).

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii)  $\Rightarrow$  (ii). For  $v \in V^{\perp}$  let  $g \in V^0$  defined by mapping  $w \mapsto (v, w)$ .

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii)  $\Rightarrow$  (ii). For  $v \in V^{\perp}$  let  $g \in V^0$  defined by mapping  $w \mapsto (v, w)$ . By (iii) B' is an isomorphism so there exists  $\lambda \in M$  so that

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii)  $\Rightarrow$  (ii). For  $v \in V^{\perp}$  let  $g \in V^0$  defined by mapping  $w \mapsto (v, w)$ . By (iii) B' is an isomorphism so there exists  $\lambda \in M$  so that

 $b(w,\lambda) = (v,w), \forall w \in V.$ 

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii)  $\Rightarrow$  (ii). For  $v \in V^{\perp}$  let  $g \in V^0$  defined by mapping  $w \mapsto (v, w)$ . By (iii) B' is an isomorphism so there exists  $\lambda \in M$  so that

$$b(w,\lambda) = (v,w), \ \forall w \in V.$$

From the definition of the functional ||g|| = ||v||.

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii)  $\Rightarrow$  (ii). For  $v \in V^{\perp}$  let  $g \in V^0$  defined by mapping  $w \mapsto (v, w)$ . By (iii) B' is an isomorphism so there exists  $\lambda \in M$  so that

 $b(w, \lambda) = (v, w), \ \forall w \in V.$ 

From the definition of the functional  $\|g\| = \|v\|$ . Also,  $\|B'\mu\| \ge \beta \|\mu\|$  so  $\|v\| = \|g\| = \|B'\lambda\| \ge \beta \|\lambda\|$ .

#### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii)  $\Rightarrow$  (ii). For  $v \in V^{\perp}$  let  $g \in V^0$  defined by mapping  $w \mapsto (v, w)$ . By (iii) B' is an isomorphism so there exists  $\lambda \in M$  so that

 $b(w, \lambda) = (v, w), \ \forall w \in V.$ 

From the definition of the functional ||g|| = ||v||. Also,  $||B'\mu|| \ge \beta ||\mu||$  so  $||v|| = ||g|| = ||B'\lambda|| \ge \beta ||\lambda||$ . Substituting into  $b(\cdot, \cdot)$  above w = v, we have

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii)  $\Rightarrow$  (ii). For  $v \in V^{\perp}$  let  $g \in V^0$  defined by mapping  $w \mapsto (v, w)$ . By (iii) B' is an isomorphism so there exists  $\lambda \in M$  so that

$$b(w,\lambda) = (v,w), \ \forall w \in V.$$

From the definition of the functional ||g|| = ||v||. Also,  $||B'\mu|| \ge \beta ||\mu||$  so  $||v|| = ||g|| = ||B'\lambda|| \ge \beta ||\lambda||$ . Substituting into  $b(\cdot, \cdot)$  above w = v, we have

$$\sup_{\mu\in M}\frac{b(\boldsymbol{v},\mu)}{\|\mu\|}\geq \frac{b(\boldsymbol{v},\mu)}{\|\mu\|}=\frac{(\boldsymbol{v},\boldsymbol{v})}{\|\lambda\|}\geq \beta\|\boldsymbol{v}\|.$$

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii)  $\Rightarrow$  (ii). For  $v \in V^{\perp}$  let  $g \in V^0$  defined by mapping  $w \mapsto (v, w)$ . By (iii) B' is an isomorphism so there exists  $\lambda \in M$  so that

$$b(w,\lambda) = (v,w), \ \forall w \in V.$$

From the definition of the functional ||g|| = ||v||. Also,  $||B'\mu|| \ge \beta ||\mu||$  so  $||v|| = ||g|| = ||B'\lambda|| \ge \beta ||\lambda||$ . Substituting into  $b(\cdot, \cdot)$  above w = v, we have

$$\sup_{\mu\in M}\frac{b(v,\mu)}{\|\mu\|}\geq \frac{b(v,\mu)}{\|\mu\|}=\frac{(v,v)}{\|\lambda\|}\geq \beta\|v\|.$$

The  $B: V^{\perp} \to M'$  satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.

### Inf-Sup Lemma

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii)  $\Rightarrow$  (ii). For  $v \in V^{\perp}$  let  $g \in V^0$  defined by mapping  $w \mapsto (v, w)$ . By (iii) B' is an isomorphism so there exists  $\lambda \in M$  so that

$$b(w,\lambda) = (v,w), \ \forall w \in V.$$

From the definition of the functional ||g|| = ||v||. Also,  $||B'\mu|| \ge \beta ||\mu||$  so  $||v|| = ||g|| = ||B'\lambda|| \ge \beta ||\lambda||$ . Substituting into  $b(\cdot, \cdot)$  above w = v, we have

$$\sup_{\mu\in M}\frac{b(v,\mu)}{\|\mu\|}\geq \frac{b(v,\mu)}{\|\mu\|}=\frac{(v,v)}{\|\lambda\|}\geq \beta\|v\|.$$

The  $B: V^{\perp} \to M'$  satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism. Therefore, (iii)  $\Rightarrow$  (ii).

Paul J. Atzberger, UCSB

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

We show (ii)  $\Rightarrow$  (i).

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B: V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B': M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

We show (ii)  $\Rightarrow$  (i). By (ii),  $B: V^{\perp} \rightarrow M'$  is an isomorphism.

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

$$\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|}$$

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

$$\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^{\perp}} \frac{\langle Bv, \mu \rangle}{\|Bv\|}$$

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

$$\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^{\perp}} \frac{\langle Bv, \mu \rangle}{\|Bv\|} = \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\|Bv\|}$$

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B : V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B' : M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

$$\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^{\perp}} \frac{\langle Bv, \mu \rangle}{\|Bv\|} = \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\|Bv\|} \le \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\beta \|v\|}$$

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B: V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B': M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

We show (ii)  $\Rightarrow$  (i). By (ii),  $B: V^{\perp} \rightarrow M'$  is an isomorphism. For  $\mu \in M$ , we have by duality of the norms

$$\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^{\perp}} \frac{\langle Bv, \mu \rangle}{\|Bv\|} = \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\|Bv\|} \le \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\beta \|v\|}$$

Therefore, (ii)  $\Rightarrow$  (i).

The following conditions are equivalent (i)  $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v,\mu)}{\|v\|\|\|\mu\|} \ge \beta > 0.$ (ii) The operator  $B: V^{\perp} \to M'$  is an isomorphism and  $\|Bv\| \ge \beta \|v\|, \ \forall v \in V^{\perp}.$ (iii) The operator  $B': M \to V^0 \subset X'$  is an isomorphism and  $\|B'\mu\| \ge \beta \|\mu\|, \ \forall \mu \in M.$ 

#### Proof:

We show (ii)  $\Rightarrow$  (i). By (ii),  $B: V^{\perp} \rightarrow M'$  is an isomorphism. For  $\mu \in M$ , we have by duality of the norms

$$\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^{\perp}} \frac{\langle Bv, \mu \rangle}{\|Bv\|} = \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\|Bv\|} \le \sup_{v \in V^{\perp}} \frac{b(v, \mu)}{\beta\|v\|}$$

Therefore, (ii)  $\Rightarrow$  (i).

Notation:

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \},\$ 

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$ 

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$ 

A central theorem for saddle point problems.

### Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism  $L: X \times M \to X' \times M'$ 

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$ 

A central theorem for saddle point problems.

### Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism  $L: X \times M \to X' \times M'$  if and only if the following two conditions are satisfied

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$ 

A central theorem for saddle point problems.

## Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism  $L: X \times M \to X' \times M'$  if and only if the following two conditions are satisfied (i) The bilinear form  $a(\cdot, \cdot)$  is elliptic (coercive) in V,  $a(v, v) \ge \alpha ||v||^2$ ,  $\forall v \in V$  with  $\alpha > 0$ , V given above.

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$ 

A central theorem for saddle point problems.

### Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism  $L: X \times M \to X' \times M'$  if and only if the following two conditions are satisfied (i) The bilinear form  $a(\cdot, \cdot)$  is elliptic (coercive) in V,  $a(v, v) \ge \alpha ||v||^2$ ,  $\forall v \in V$  with  $\alpha > 0$ , V given above. (ii) The bilinear form  $b(\cdot, \cdot)$  satisfies the inf-sup condition

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$ 

A central theorem for saddle point problems.

### Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism  $L : X \times M \to X' \times M'$  if and only if the following two conditions are satisfied (i) The bilinear form  $a(\cdot, \cdot)$  is elliptic (coercive) in V,  $a(v, v) \ge \alpha ||v||^2$ ,  $\forall v \in V$  with  $\alpha > 0$ , V given above. (ii) The bilinear form  $b(\cdot, \cdot)$  satisfies the inf-sup condition

$$\inf_{\iota \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta.$$

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$ 

A central theorem for saddle point problems.

## Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism  $L: X \times M \to X' \times M'$  if and only if the following two conditions are satisfied (i) The bilinear form  $a(\cdot, \cdot)$  is elliptic (coercive) in V,  $a(v, v) \ge \alpha ||v||^2$ ,  $\forall v \in V$  with  $\alpha > 0$ , V given above. (ii) The bilinear form  $b(\cdot, \cdot)$  satisfies the inf-sup condition

$$\inf_{\iota \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta.$$

Remark:

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$ 

A central theorem for saddle point problems.

## Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism  $L: X \times M \to X' \times M'$  if and only if the following two conditions are satisfied (i) The bilinear form  $a(\cdot, \cdot)$  is elliptic (coercive) in V,  $a(v, v) \ge \alpha ||v||^2$ ,  $\forall v \in V$  with  $\alpha > 0$ , V given above. (ii) The bilinear form  $b(\cdot, \cdot)$  satisfies the inf-sup condition

$$\inf_{\iota \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta.$$

**Remark:** Note the coercivity is assumed only for v in kernel of B (see def. of V).

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$ 

A central theorem for saddle point problems.

## Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism  $L: X \times M \to X' \times M'$  if and only if the following two conditions are satisfied (i) The bilinear form  $a(\cdot, \cdot)$  is elliptic (coercive) in V,  $a(v, v) \ge \alpha ||v||^2$ ,  $\forall v \in V$  with  $\alpha > 0$ , V given above. (ii) The bilinear form  $b(\cdot, \cdot)$  satisfies the inf-sup condition

$$\inf_{\iota \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta.$$

**Remark:** Note the coercivity is assumed only for v in kernel of B (see def. of V).

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$ 

A central theorem for saddle point problems.

## Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism  $L: X \times M \to X' \times M'$  if and only if the following two conditions are satisfied (i) The bilinear form  $a(\cdot, \cdot)$  is elliptic (coercive) in V,  $a(v, v) \ge \alpha ||v||^2$ ,  $\forall v \in V$  with  $\alpha > 0$ , V given above. (ii) The bilinear form  $b(\cdot, \cdot)$  satisfies the inf-sup condition

$$\inf_{\iota \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta.$$

**Remark:** Note the coercivity is assumed only for v in kernel of B (see def. of V).

Provides conditions directly in terms of the bilinear forms *a* and *b* concerning solveability.

Notation:  $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$ 

A central theorem for saddle point problems.

## Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism  $L: X \times M \to X' \times M'$  if and only if the following two conditions are satisfied (i) The bilinear form  $a(\cdot, \cdot)$  is elliptic (coercive) in V,  $a(v, v) \ge \alpha ||v||^2$ ,  $\forall v \in V$  with  $\alpha > 0$ , V given above. (ii) The bilinear form  $b(\cdot, \cdot)$  satisfies the inf-sup condition

$$\inf_{\iota \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta.$$

**Remark:** Note the coercivity is assumed only for v in kernel of B (see def. of V).

Provides conditions directly in terms of the bilinear forms a and b concerning solveability.

Referred to as the Brezzi Conditions or Ladyzhenskaya-Babuska-Brezzi (LBB-Conditions).

## Mixed FEM I

## Mixed FEM I

Find  $(u_h, \lambda_h) \in X_h \times M_h$  so that

## Mixed FEM I

Find  $(u_h, \lambda_h) \in X_h \times M_h$  so that

$$egin{aligned} & \mathsf{a}(u_h, \mathbf{v}) + \mathsf{b}(\mathbf{v}, \lambda_h) &= \langle f, \mathbf{v} 
angle, & orall \mathbf{v} \in X_h \ & \mathsf{b}(u_h, \mu) &= \langle g, \mu 
angle, & orall \mu \in M_h. \end{aligned}$$

## Mixed FEM I

Find  $(u_h, \lambda_h) \in X_h \times M_h$  so that

$$\begin{array}{ll} \mathsf{a}(u_h,v) + \mathsf{b}(v,\lambda_h) &= \langle f,v\rangle, & \forall v \in X_h \\ \mathsf{b}(u_h,\mu) &= \langle g,\mu\rangle, & \forall \mu \in M_h. \end{array}$$

Remark:

### Mixed FEM I

Find  $(u_h, \lambda_h) \in X_h \times M_h$  so that

$$egin{aligned} & \mathsf{a}(u_h, \mathbf{v}) + \mathsf{b}(\mathbf{v}, \lambda_h) &= \langle f, \mathbf{v} 
angle, & orall \mathbf{v} \in X_h \ & \mathsf{b}(u_h, \mu) &= \langle g, \mu 
angle, & orall \mu \in M_h. \end{aligned}$$

**Remark:** Need to chose the spaces  $X_h$  and  $M_h$  carefully so have compatibility so the inf-sup conditions satisfied.

### Mixed FEM I

Find  $(u_h, \lambda_h) \in X_h \times M_h$  so that

$$egin{aligned} & \mathsf{a}(u_h, \mathbf{v}) + \mathsf{b}(\mathbf{v}, \lambda_h) &= \langle f, \mathbf{v} 
angle, & orall \mathbf{v} \in X_h \ & \mathsf{b}(u_h, \mu) &= \langle g, \mu 
angle, & orall \mu \in M_h. \end{aligned}$$

**Remark:** Need to chose the spaces  $X_h$  and  $M_h$  carefully so have compatibility so the inf-sup conditions satisfied. **Notation:** 

### Mixed FEM I

Find  $(u_h, \lambda_h) \in X_h \times M_h$  so that

$$\begin{array}{ll} \mathsf{a}(u_h,v) + \mathsf{b}(v,\lambda_h) &= \langle f,v\rangle, & \forall v \in X_h \\ \mathsf{b}(u_h,\mu) &= \langle g,\mu\rangle, & \forall \mu \in M_h. \end{array}$$

**Remark:** Need to chose the spaces  $X_h$  and  $M_h$  carefully so have compatibility so the inf-sup conditions satisfied. **Notation:**  $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.$ 

Definition: Babuska-Brezzi Condition

### Mixed FEM I

Find  $(u_h, \lambda_h) \in X_h \times M_h$  so that

$$\begin{array}{ll} \mathsf{a}(u_h,v) + \mathsf{b}(v,\lambda_h) &= \langle f,v\rangle, & \forall v \in X_h \\ \mathsf{b}(u_h,\mu) &= \langle g,\mu\rangle, & \forall \mu \in M_h. \end{array}$$

**Remark:** Need to chose the spaces  $X_h$  and  $M_h$  carefully so have compatibility so the inf-sup conditions satisfied. **Notation:**  $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.$ 

#### Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces  $X_h$ ,  $M_h$  if there exists  $\alpha > 0$ ,  $\beta > 0$  independent of h so that

### Mixed FEM I

Find  $(u_h, \lambda_h) \in X_h \times M_h$  so that

$$\begin{array}{ll} \mathsf{a}(u_h,v) + \mathsf{b}(v,\lambda_h) &= \langle f,v\rangle, & \forall v \in X_h \\ \mathsf{b}(u_h,\mu) &= \langle g,\mu\rangle, & \forall \mu \in M_h. \end{array}$$

**Remark:** Need to chose the spaces  $X_h$  and  $M_h$  carefully so have compatibility so the inf-sup conditions satisfied. **Notation:**  $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.$ 

### Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces  $X_h$ ,  $M_h$  if there exists  $\alpha > 0$ ,  $\beta > 0$  independent of h so that (i) Bilinear form  $a(\cdot, \cdot)$  is  $V_h$ -elliptic with constant  $\alpha > 0$ .

### Mixed FEM I

Find  $(u_h, \lambda_h) \in X_h \times M_h$  so that

$$\begin{array}{ll} \mathsf{a}(u_h,v) + \mathsf{b}(v,\lambda_h) &= \langle f,v\rangle, & \forall v \in X_h \\ \mathsf{b}(u_h,\mu) &= \langle g,\mu\rangle, & \forall \mu \in M_h. \end{array}$$

**Remark:** Need to chose the spaces  $X_h$  and  $M_h$  carefully so have compatibility so the inf-sup conditions satisfied. **Notation:**  $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.$ 

### Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces  $X_h$ ,  $M_h$  if there exists  $\alpha > 0, \beta > 0$  independent of h so that (i) Bilinear form  $a(\cdot, \cdot)$  is  $V_h$ -elliptic with constant  $\alpha > 0$ . (ii) The condition holds

### Mixed FEM I

Find  $(u_h, \lambda_h) \in X_h \times M_h$  so that

$$\begin{array}{ll} \mathsf{a}(u_h,v) + \mathsf{b}(v,\lambda_h) &= \langle f,v\rangle, & \forall v \in X_h \\ \mathsf{b}(u_h,\mu) &= \langle g,\mu\rangle, & \forall \mu \in M_h. \end{array}$$

**Remark:** Need to chose the spaces  $X_h$  and  $M_h$  carefully so have compatibility so the inf-sup conditions satisfied. **Notation:**  $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.$ 

#### Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces  $X_h$ ,  $M_h$  if there exists  $\alpha > 0$ ,  $\beta > 0$  independent of h so that (i) Bilinear form  $a(\cdot, \cdot)$  is  $V_h$ -elliptic with constant  $\alpha > 0$ . (ii) The condition holds

$$\sup_{\mathbf{v}\in X_h}\frac{b(\mathbf{v},\lambda_h)}{\|\mathbf{v}\|}\geq \beta\|\lambda_h\|, \ \forall \lambda_h\in M_h.$$

## Mixed FEM I

Find  $(u_h, \lambda_h) \in X_h \times M_h$  so that

$$\begin{array}{ll} \mathsf{a}(u_h,v) + \mathsf{b}(v,\lambda_h) &= \langle f,v\rangle, & \forall v \in X_h \\ \mathsf{b}(u_h,\mu) &= \langle g,\mu\rangle, & \forall \mu \in M_h. \end{array}$$

**Remark:** Need to chose the spaces  $X_h$  and  $M_h$  carefully so have compatibility so the inf-sup conditions satisfied. **Notation:**  $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.$ 

### Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces  $X_h$ ,  $M_h$  if there exists  $\alpha > 0, \beta > 0$  independent of h so that (i) Bilinear form  $a(\cdot, \cdot)$  is  $V_h$ -elliptic with constant  $\alpha > 0$ . (ii) The condition holds

$$\sup_{v\in X_h}\frac{b(v,\lambda_h)}{\|v\|}\geq \beta\|\lambda_h\|, \ \forall \lambda_h\in M_h.$$

#### Remark:

### Mixed FEM I

Find  $(u_h, \lambda_h) \in X_h \times M_h$  so that

$$\begin{array}{ll} \mathsf{a}(u_h,v) + \mathsf{b}(v,\lambda_h) &= \langle f,v\rangle, & \forall v \in X_h \\ \mathsf{b}(u_h,\mu) &= \langle g,\mu\rangle, & \forall \mu \in M_h. \end{array}$$

**Remark:** Need to chose the spaces  $X_h$  and  $M_h$  carefully so have compatibility so the inf-sup conditions satisfied. **Notation:**  $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.$ 

### Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces  $X_h$ ,  $M_h$  if there exists  $\alpha > 0$ ,  $\beta > 0$  independent of h so that (i) Bilinear form  $a(\cdot, \cdot)$  is  $V_h$ -elliptic with constant  $\alpha > 0$ . (ii) The condition holds

$$\sup_{\mathbf{v}\in X_h}\frac{b(\mathbf{v},\lambda_h)}{\|\mathbf{v}\|}\geq \beta\|\lambda_h\|, \ \forall \lambda_h\in M_h.$$

Remark: Also referred to as the Inf-Sup Conditions.

# Mixed Methods

### Theorem

When  $X_h$  and  $M_h$  satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

When  $X_h$  and  $M_h$  satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\|u - u_h\| + \|\lambda - \lambda_h\| \le c \left(\inf_{v_h \in X_h} \|u - v_h\| + \inf_{\mu_h \in M_h} \|\lambda - \mu_h\|\right)$$

When  $X_h$  and  $M_h$  satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\|u - u_h\| + \|\lambda - \lambda_h\| \le c \left(\inf_{v_h \in X_h} \|u - v_h\| + \inf_{\mu_h \in M_h} \|\lambda - \mu_h\|\right)$$

Remark:

When  $X_h$  and  $M_h$  satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\|u - u_h\| + \|\lambda - \lambda_h\| \le c \left(\inf_{v_h \in X_h} \|u - v_h\| + \inf_{\mu_h \in M_h} \|\lambda - \mu_h\|\right)$$

**Remark:** Generally,  $V_h \not\subset V$  (non-conforming). We usually do get better results in conforming case  $V_h \subset V$ .

## Definition

When  $X_h$  and  $M_h$  satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\|u-u_h\|+\|\lambda-\lambda_h\|\leq c\left(\inf_{v_h\in X_h}\|u-v_h\|+\inf_{\mu_h\in M_h}\|\lambda-\mu_h\|\right)$$

**Remark:** Generally,  $V_h \not\subset V$  (non-conforming). We usually do get better results in conforming case  $V_h \subset V$ .

## Definition

The spaces  $X_h \subset X$  and  $M_h \subset M$ , are said to satisfy **condition (C)** provided  $V_h \subset V$ .

When  $X_h$  and  $M_h$  satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\|u-u_h\|+\|\lambda-\lambda_h\|\leq c\left(\inf_{v_h\in X_h}\|u-v_h\|+\inf_{\mu_h\in M_h}\|\lambda-\mu_h\|\right)$$

**Remark:** Generally,  $V_h \not\subset V$  (non-conforming). We usually do get better results in conforming case  $V_h \subset V$ .

## Definition

The spaces  $X_h \subset X$  and  $M_h \subset M$ , are said to satisfy **condition (C)** provided  $V_h \subset V$ .

#### Significance:

When  $X_h$  and  $M_h$  satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\|u - u_h\| + \|\lambda - \lambda_h\| \le c \left(\inf_{v_h \in X_h} \|u - v_h\| + \inf_{\mu_h \in M_h} \|\lambda - \mu_h\|\right)$$

**Remark:** Generally,  $V_h \not\subset V$  (non-conforming). We usually do get better results in conforming case  $V_h \subset V$ .

### Definition

The spaces  $X_h \subset X$  and  $M_h \subset M$ , are said to satisfy **condition (C)** provided  $V_h \subset V$ .

**Significance:** Condition (C)  $\Rightarrow \forall v_h \in X_h$ ,  $b(v_h, \mu_h) = 0$ ,  $\forall \mu_h \in M_h \Rightarrow b(v_h, \mu) = 0$ ,  $\forall \mu \in M$ .

#### Theorem

When  $X_h$  and  $M_h$  satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\|u - u_h\| + \|\lambda - \lambda_h\| \le c \left(\inf_{v_h \in X_h} \|u - v_h\| + \inf_{\mu_h \in M_h} \|\lambda - \mu_h\|\right)$$

**Remark:** Generally,  $V_h \not\subset V$  (non-conforming). We usually do get better results in conforming case  $V_h \subset V$ .

## Definition

The spaces  $X_h \subset X$  and  $M_h \subset M$ , are said to satisfy **condition (C)** provided  $V_h \subset V$ .

**Significance:** Condition (C)  $\Rightarrow \forall v_h \in X_h$ ,  $b(v_h, \mu_h) = 0$ ,  $\forall \mu_h \in M_h \Rightarrow b(v_h, \mu) = 0$ ,  $\forall \mu \in M$ .

#### Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

When  $X_h$  and  $M_h$  satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\|u - u_h\| + \|\lambda - \lambda_h\| \le c \left(\inf_{v_h \in X_h} \|u - v_h\| + \inf_{\mu_h \in M_h} \|\lambda - \mu_h\|\right)$$

**Remark:** Generally,  $V_h \not\subset V$  (non-conforming). We usually do get better results in conforming case  $V_h \subset V$ .

## Definition

The spaces  $X_h \subset X$  and  $M_h \subset M$ , are said to satisfy **condition (C)** provided  $V_h \subset V$ .

**Significance:** Condition (C)  $\Rightarrow \forall v_h \in X_h$ ,  $b(v_h, \mu_h) = 0$ ,  $\forall \mu_h \in M_h \Rightarrow b(v_h, \mu) = 0$ ,  $\forall \mu \in M$ .

#### Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u - u_h|| \le c \inf_{v_h \in X_h} ||u - v_h||.$$

Paul J. Atzberger, UCSB

Finite Element Methods

# Mixed Methods

## Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\|u-u_h\|\leq c\inf_{v_h\in X_h}\|u-v_h\|.$$

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\|u-u_h\|\leq c\inf_{v_h\in X_h}\|u-v_h\|.$$

Proof:

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\|u-u_h\|\leq c\inf_{v_h\in X_h}\|u-v_h\|.$$

#### Proof:

Consider  $v_h \in V_h(g)$ .

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u - u_h|| \le c \inf_{v_h \in X_h} ||u - v_h||.$$

#### Proof:

Consider  $v_h \in V_h(g)$ . It follows that

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$||u - u_h|| \le c \inf_{v_h \in X_h} ||u - v_h||.$$

#### Proof:

Consider  $v_h \in V_h(g)$ . It follows that

$$a(u_h - v_h, v) = a(u_h, v) - a(u, v) + a(u - v_h, v)$$

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\|u-u_h\|\leq c\inf_{v_h\in X_h}\|u-v_h\|.$$

#### Proof:

Consider  $v_h \in V_h(g)$ . It follows that

$$\begin{aligned} \mathsf{a}(u_h - \mathsf{v}_h, \mathsf{v}) &= \mathsf{a}(u_h, \mathsf{v}) - \mathsf{a}(u, \mathsf{v}) + \mathsf{a}(u - \mathsf{v}_h, \mathsf{v}) \\ &= \mathsf{b}(\mathsf{v}, \lambda - \lambda_h) + \mathsf{a}(u - \mathsf{v}_h, \mathsf{v}) \end{aligned}$$

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\|u-u_h\|\leq c\inf_{v_h\in X_h}\|u-v_h\|.$$

#### Proof:

Consider  $v_h \in V_h(g)$ . It follows that

$$\begin{aligned} \mathsf{a}(u_h - \mathsf{v}_h, \mathsf{v}) &= \mathsf{a}(u_h, \mathsf{v}) - \mathsf{a}(u, \mathsf{v}) + \mathsf{a}(u - \mathsf{v}_h, \mathsf{v}) \\ &= \mathsf{b}(\mathsf{v}, \lambda - \lambda_h) + \mathsf{a}(u - \mathsf{v}_h, \mathsf{v}) \\ &\leq C \|u - \mathsf{v}_h\| \cdot \|\mathsf{v}\|. \end{aligned}$$

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\|u-u_h\|\leq c\inf_{v_h\in X_h}\|u-v_h\|.$$

#### Proof:

Consider  $v_h \in V_h(g)$ . It follows that

$$\begin{aligned} \mathsf{a}(u_h - v_h, v) &= \mathsf{a}(u_h, v) - \mathsf{a}(u, v) + \mathsf{a}(u - v_h, v) \\ &= \mathsf{b}(v, \lambda - \lambda_h) + \mathsf{a}(u - v_h, v) \\ &\leq C \|u - v_h\| \cdot \|v\|. \end{aligned}$$

Holds  $\forall v \in V_h$  since  $b(v, \lambda - \lambda_h) = 0$  from Condition (C).

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\|u-u_h\|\leq c\inf_{v_h\in X_h}\|u-v_h\|.$$

#### Proof:

Consider  $v_h \in V_h(g)$ . It follows that

$$\begin{aligned} \mathsf{a}(u_h - v_h, v) &= \mathsf{a}(u_h, v) - \mathsf{a}(u, v) + \mathsf{a}(u - v_h, v) \\ &= \mathsf{b}(v, \lambda - \lambda_h) + \mathsf{a}(u - v_h, v) \\ &\leq C \|u - v_h\| \cdot \|v\|. \end{aligned}$$

Holds  $\forall v \in V_h$  since  $b(v, \lambda - \lambda_h) = 0$  from Condition (C).

Let  $v := u_h - v_h$ , then  $||u_h - v_h||^2 \le \alpha^{-1} C ||u_h - v_h|| \cdot ||u - v_h||$ .

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\|u-u_h\|\leq c\inf_{v_h\in X_h}\|u-v_h\|.$$

#### Proof:

Consider  $v_h \in V_h(g)$ . It follows that

$$\begin{aligned} \mathsf{a}(u_h - v_h, v) &= \mathsf{a}(u_h, v) - \mathsf{a}(u, v) + \mathsf{a}(u - v_h, v) \\ &= \mathsf{b}(v, \lambda - \lambda_h) + \mathsf{a}(u - v_h, v) \\ &\leq C \|u - v_h\| \cdot \|v\|. \end{aligned}$$

Holds  $\forall v \in V_h$  since  $b(v, \lambda - \lambda_h) = 0$  from Condition (C).

Let  $v := u_h - v_h$ , then  $||u_h - v_h||^2 \le \alpha^{-1} C ||u_h - v_h|| \cdot ||u - v_h||$ . Dividing by  $||u_h - v_h||$ , we have  $||u_h - v_h|| \le \alpha^{-1} C ||u - v_h||$ .

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\|u-u_h\|\leq c\inf_{v_h\in X_h}\|u-v_h\|.$$

#### Proof:

Consider  $v_h \in V_h(g)$ . It follows that

$$\begin{aligned} \mathsf{a}(u_h - v_h, v) &= \mathsf{a}(u_h, v) - \mathsf{a}(u, v) + \mathsf{a}(u - v_h, v) \\ &= \mathsf{b}(v, \lambda - \lambda_h) + \mathsf{a}(u - v_h, v) \\ &\leq C \|u - v_h\| \cdot \|v\|. \end{aligned}$$

Holds  $\forall v \in V_h$  since  $b(v, \lambda - \lambda_h) = 0$  from Condition (C).

Let  $v := u_h - v_h$ , then  $||u_h - v_h||^2 \le \alpha^{-1} C ||u_h - v_h|| \cdot ||u - v_h||$ . Dividing by  $||u_h - v_h||$ , we have  $||u_h - v_h|| \le \alpha^{-1} C ||u - v_h||$ .

By triangle inequality,  $||u - u_h|| \le ||u - v_h|| + ||v_h - u_h||$ 

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\|u-u_h\|\leq c\inf_{v_h\in X_h}\|u-v_h\|.$$

#### Proof:

Consider  $v_h \in V_h(g)$ . It follows that

$$\begin{aligned} \mathsf{a}(u_h - v_h, v) &= \mathsf{a}(u_h, v) - \mathsf{a}(u, v) + \mathsf{a}(u - v_h, v) \\ &= \mathsf{b}(v, \lambda - \lambda_h) + \mathsf{a}(u - v_h, v) \\ &\leq C \|u - v_h\| \cdot \|v\|. \end{aligned}$$

Holds  $\forall v \in V_h$  since  $b(v, \lambda - \lambda_h) = 0$  from Condition (C).

Let  $v := u_h - v_h$ , then  $||u_h - v_h||^2 \le \alpha^{-1} C ||u_h - v_h|| \cdot ||u - v_h||$ . Dividing by  $||u_h - v_h||$ , we have  $||u_h - v_h|| \le \alpha^{-1} C ||u - v_h||$ .

By triangle inequality,  $||u - u_h|| \le ||u - v_h|| + ||v_h - u_h||$  and the result follows.

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\|u-u_h\|\leq c\inf_{v_h\in X_h}\|u-v_h\|.$$

#### Proof:

Consider  $v_h \in V_h(g)$ . It follows that

$$\begin{aligned} \mathsf{a}(u_h - v_h, v) &= \mathsf{a}(u_h, v) - \mathsf{a}(u, v) + \mathsf{a}(u - v_h, v) \\ &= \mathsf{b}(v, \lambda - \lambda_h) + \mathsf{a}(u - v_h, v) \\ &\leq C \|u - v_h\| \cdot \|v\|. \end{aligned}$$

Holds  $\forall v \in V_h$  since  $b(v, \lambda - \lambda_h) = 0$  from Condition (C).

Let  $v := u_h - v_h$ , then  $||u_h - v_h||^2 \le \alpha^{-1} C ||u_h - v_h|| \cdot ||u - v_h||$ . Dividing by  $||u_h - v_h||$ , we have  $||u_h - v_h|| \le \alpha^{-1} C ||u - v_h||$ .

By triangle inequality,  $||u - u_h|| \le ||u - v_h|| + ||v_h - u_h||$  and the result follows.

$$\Delta u=-f, \ x\in\Omega,$$

$$\Delta u = -f, x \in \Omega, u = 0, x \in \Gamma_0,$$

$$\Delta u = -f, x \in \Omega, \quad u = 0, x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, x \in \Gamma_1.$$

**Poisson Problem:** 

$$\Delta u = -f, x \in \Omega, u = 0, x \in \Gamma_0, \nabla u \cdot \mathbf{n} = 0, x \in \Gamma_1.$$

We use that  $\Delta u = \operatorname{div} \operatorname{grad} u$ .

**Poisson Problem:** 

$$\Delta u = -f, x \in \Omega, u = 0, x \in \Gamma_0, \nabla u \cdot \mathbf{n} = 0, x \in \Gamma_1.$$

We use that  $\Delta u = \operatorname{div} \operatorname{grad} u$ . Let  $\sigma = \operatorname{grad} u$ ,

**Poisson Problem:** 

$$\Delta u = -f, x \in \Omega, u = 0, x \in \Gamma_0, \nabla u \cdot \mathbf{n} = 0, x \in \Gamma_1.$$

We use that  $\Delta u = \operatorname{div} \operatorname{grad} u$ . Let  $\sigma = \operatorname{grad} u$ , then the Poisson problem becomes

grad  $u = \sigma$ 

**Poisson Problem:** 

$$\Delta u = -f, x \in \Omega, u = 0, x \in \Gamma_0, \nabla u \cdot \mathbf{n} = 0, x \in \Gamma_1.$$

We use that  $\Delta u = \operatorname{div} \operatorname{grad} u$ . Let  $\sigma = \operatorname{grad} u$ , then the Poisson problem becomes

 $\begin{array}{rcl} \operatorname{grad} u & = & \sigma \\ \operatorname{div} \sigma & = & -f \end{array}$ 

**Poisson Problem:** 

$$\Delta u = -f, x \in \Omega, \quad u = 0, x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, x \in \Gamma_1.$$

We use that  $\Delta u = \operatorname{div} \operatorname{grad} u$ . Let  $\sigma = \operatorname{grad} u$ , then the Poisson problem becomes

 $\begin{array}{rcl} \operatorname{grad} u & = & \sigma \\ \operatorname{div} \sigma & = & -f \end{array}$ 

### Poisson Problem: Mixed Formulation

**Poisson Problem:** 

$$\Delta u = -f, x \in \Omega, \quad u = 0, x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, x \in \Gamma_1.$$

We use that  $\Delta u = \operatorname{div} \operatorname{grad} u$ . Let  $\sigma = \operatorname{grad} u$ , then the Poisson problem becomes

 $\begin{array}{rcl} \operatorname{grad} u & = & \sigma \\ \operatorname{div} \sigma & = & -f \end{array}$ 

### Poisson Problem: Mixed Formulation

$$(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} = 0, \ \forall \tau \in L_2(\Omega)^d$$

**Poisson Problem:** 

$$\Delta u = -f, x \in \Omega, \quad u = 0, x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, x \in \Gamma_1.$$

We use that  $\Delta u = \operatorname{div} \operatorname{grad} u$ . Let  $\sigma = \operatorname{grad} u$ , then the Poisson problem becomes

 $\begin{array}{rcl} \operatorname{grad} u & = & \sigma \\ \operatorname{div} \sigma & = & -f \end{array}$ 

### Poisson Problem: Mixed Formulation

$$egin{array}{rcl} (\sigma, au)_{0,\Omega}-( au,
abla u)_{0,\Omega}&=&0,\ orall au\in L_2(\Omega)^d\ -(\sigma,
abla v)_{0,\Omega}&=&-(f,v)_{0,\Omega},\ orall au\in H^1_0(\Omega). \end{array}$$

**Poisson Problem:** 

$$\Delta u = -f, x \in \Omega, \quad u = 0, x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, x \in \Gamma_1.$$

We use that  $\Delta u = \operatorname{div} \operatorname{grad} u$ . Let  $\sigma = \operatorname{grad} u$ , then the Poisson problem becomes

 $\begin{array}{rcl} \operatorname{grad} u & = & \sigma \\ \operatorname{div} \sigma & = & -f \end{array}$ 

### Poisson Problem: Mixed Formulation

$$egin{array}{rcl} (\sigma, au)_{0,\Omega}-( au,
abla u)_{0,\Omega}&=&0,\ orall au\in L_2(\Omega)^d\ -(\sigma,
abla v)_{0,\Omega}&=&-(f,v)_{0,\Omega},\ orall au\in H^1_0(\Omega). \end{array}$$

Poisson Problem: Mixed Formulation

$$(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} = 0, \ \forall \tau \in L_2(\Omega)^d$$

$$egin{array}{rll} (\sigma, au)_{0,\Omega}-( au,
abla u)_{0,\Omega}&=&0,\ orall au\in L_2(\Omega)^d\ &-(\sigma,
abla v)_{0,\Omega}&=&-(f,v)_{0,\Omega},\ orall au\in H^1_0(\Omega). \end{array}$$

Find  $(\sigma, u) \in L_2(\Omega)^d imes H^1_0(\Omega)$  so that

$$egin{array}{rcl} (\sigma, au)_{0,\Omega}-( au,
abla u)_{0,\Omega}&=&0,\ orall t\in L_2(\Omega)^d\ -(\sigma,
abla v)_{0,\Omega}&=&-(f,v)_{0,\Omega},\ orall t\in H^1_0(\Omega). \end{array}$$

# Poisson Problem: Saddle-Point Formulation

Find  $(\sigma, u) \in L_2(\Omega)^d imes H^1_0(\Omega)$  so that

$$egin{array}{rcl} (\sigma, au)_{0,\Omega}-( au,
abla u)_{0,\Omega}&=&0,\ orall t\in L_2(\Omega)^d\ -(\sigma,
abla v)_{0,\Omega}&=&-(f,v)_{0,\Omega},\ orall t\in H^1_0(\Omega). \end{array}$$

# Poisson Problem: Saddle-Point Formulation

Let

Find  $(\sigma, u) \in L_2(\Omega)^d imes H^1_0(\Omega)$  so that

$$egin{array}{rcl} (\sigma, au)_{0,\Omega}-( au,
abla u)_{0,\Omega}&=&0,\ orall t\in L_2(\Omega)^d\ &-(\sigma,
abla v)_{0,\Omega}&=&-(f,v)_{0,\Omega},\ orall t\in H^1_0(\Omega). \end{array}$$

# Poisson Problem: Saddle-Point Formulation

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$

Find  $(\sigma, u) \in L_2(\Omega)^d imes H^1_0(\Omega)$  so that

$$egin{array}{rcl} (\sigma, au)_{0,\Omega}-( au,
abla u)_{0,\Omega}&=&0,\ orall au\in L_2(\Omega)^d\ &-(\sigma,
abla v)_{0,\Omega}&=&-(f,v)_{0,\Omega},\ orall au\in H^1_0(\Omega). \end{array}$$

# Poisson Problem: Saddle-Point Formulation

Let

$$egin{aligned} X &:= L_2(\Omega)^d, M &:= H_0^1(\Omega) \ \mathbf{a}(\sigma, au) &:= (\sigma, au)_{0,\Omega}, \ \ \mathbf{b}( au, au) &:= -( au, 
abla au)_{0,\Omega}. \end{aligned}$$

Find  $(\sigma, u) \in L_2(\Omega)^d imes H^1_0(\Omega)$  so that

$$egin{array}{rll} (\sigma, au)_{0,\Omega}-( au,
abla u)_{0,\Omega}&=&0,\ orall au\in L_2(\Omega)^d\ -(\sigma,
abla v)_{0,\Omega}&=&-(f,v)_{0,\Omega},\ orall au\in H^1_0(\Omega). \end{array}$$

# Poisson Problem: Saddle-Point Formulation

Let

$$egin{aligned} X &:= L_2(\Omega)^d, M &:= H_0^1(\Omega) \ \mathbf{a}(\sigma, au) &:= (\sigma, au)_{0,\Omega}, \ \ \mathbf{b}( au, au) &:= -( au, 
abla 
u)_{0,\Omega}. \end{aligned}$$

Saddle-Point Problem:

Find  $(\sigma, u) \in L_2(\Omega)^d imes H^1_0(\Omega)$  so that

$$egin{array}{rll} (\sigma, au)_{0,\Omega}-( au,
abla u)_{0,\Omega}&=&0,\ orall au\in L_2(\Omega)^d\ -(\sigma,
abla v)_{0,\Omega}&=&-(f,v)_{0,\Omega},\ orall au\in H^1_0(\Omega). \end{array}$$

# Poisson Problem: Saddle-Point Formulation

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$
  
 $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$ 

Saddle-Point Problem:

$$a(\sigma, \tau) - b(\tau, v) = 0$$

Find  $(\sigma, u) \in L_2(\Omega)^d imes H^1_0(\Omega)$  so that

$$egin{array}{rll} (\sigma, au)_{0,\Omega}-( au,
abla u)_{0,\Omega}&=&0,\ orall au\in L_2(\Omega)^d\ -(\sigma,
abla v)_{0,\Omega}&=&-(f,v)_{0,\Omega},\ orall au\in H^1_0(\Omega). \end{array}$$

# Poisson Problem: Saddle-Point Formulation

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$
  
 $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$ 

Saddle-Point Problem:

$$egin{aligned} & a(\sigma, au) - b( au, au) &= 0 \ & b(\sigma, au) &= -\langle f, extbf{v} 
angle_{0,\Omega} \end{aligned}$$

Paul J. Atzberger, UCSB

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$
  
 $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$ 

Saddle-Point Problem:

$$egin{aligned} m{a}(\sigma, au) &- m{b}( au,m{v}) &= & 0 \ & m{b}(\sigma, au) &= & -\langle f,m{v}
angle_{0,\Omega}. \end{aligned}$$

Paul J. Atzberger, UCSB

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$
  
 $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$ 

Saddle-Point Problem:

$$egin{aligned} m{a}(\sigma, au) &- m{b}( au,m{v}) &= & 0 \ m{b}(\sigma, au) &= & -\langle f,m{v}
angle_{0,\Omega}. \end{aligned}$$

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$
  
 $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$ 

Saddle-Point Problem:

$$egin{array}{rcl} m{a}(\sigma, au) &- m{b}( au,m{v}) &= & 0 \ & m{b}(\sigma, au) &= & -\langle f,m{v}
angle_{0,\Omega}. \end{array}$$

$$\frac{b(\tau, \mathbf{v})}{\|\tau\|_0}$$

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$
  
 $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$ 

Saddle-Point Problem:

$$egin{aligned} m{a}(\sigma, au) &- m{b}( au,m{v}) &= & 0 \ m{b}(\sigma, au) &= & -\langle f,m{v}
angle_{0,\Omega}. \end{aligned}$$

$$\frac{b(\tau, \boldsymbol{v})}{\|\tau\|_0} = \frac{-(\tau, \nabla \boldsymbol{v})_{0,\Omega}}{\|\tau\|_0}$$

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$
  
 $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$ 

Saddle-Point Problem:

$$egin{array}{rcl} m{a}(\sigma, au) &- m{b}( au,m{v}) &= & 0 \ & m{b}(\sigma, au) &= & -\langle f,m{v}
angle_{0,\Omega}. \end{array}$$

$$rac{b( au, oldsymbol{v})}{\| au\|_0} = rac{-( au, 
abla oldsymbol{v})_{0,\Omega}}{\| au\|_0} o rac{(
abla oldsymbol{v}, 
abla oldsymbol{v})_{0,\Omega}}{\|
abla oldsymbol{v}\|_0}$$

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$
  
 $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$ 

Saddle-Point Problem:

$$egin{array}{rcl} m{a}(\sigma, au) &- m{b}( au,m{v}) &= & 0 \ & m{b}(\sigma, au) &= & -\langle f,m{v}
angle_{0,\Omega}. \end{array}$$

$$\frac{b(\tau, \boldsymbol{v})}{\|\tau\|_0} = \frac{-(\tau, \nabla \boldsymbol{v})_{0,\Omega}}{\|\tau\|_0} \rightarrow \frac{(\nabla \boldsymbol{v}, \nabla \boldsymbol{v})_{0,\Omega}}{\|\nabla \boldsymbol{v}\|_0} = |\boldsymbol{v}|_1$$

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$
  
 $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$ 

Saddle-Point Problem:

$$egin{array}{rcl} m{a}(\sigma, au) &- m{b}( au,m{v}) &= & 0 \ & m{b}(\sigma, au) &= & -\langle f,m{v}
angle_{0,\Omega}. \end{array}$$

The Inf-Sup Condition holds since

$$rac{b( au, oldsymbol{v})}{\| au\|_0} = rac{-( au, 
abla oldsymbol{v})_{0,\Omega}}{\| au\|_0} o rac{(
abla oldsymbol{v}, 
abla oldsymbol{v})_{0,\Omega}}{\|
abla oldsymbol{v}\|_0} = |oldsymbol{v}|_1 \geq rac{1}{c} \|oldsymbol{v}\|_1$$

Let

$$X := L_2(\Omega)^d, M := H_0^1(\Omega)$$
  
 $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.$ 

Saddle-Point Problem:

$$egin{aligned} m{a}(\sigma, au) &- m{b}( au,m{v}) &= & 0 \ & m{b}(\sigma, au) &= & -\langle f,m{v}
angle_{0,\Omega}. \end{aligned}$$

The Inf-Sup Condition holds since

$$\frac{b(\tau, \boldsymbol{v})}{\|\tau\|_0} = \frac{-(\tau, \nabla \boldsymbol{v})_{0,\Omega}}{\|\tau\|_0} \rightarrow \frac{(\nabla \boldsymbol{v}, \nabla \boldsymbol{v})_{0,\Omega}}{\|\nabla \boldsymbol{v}\|_0} = |\boldsymbol{v}|_1 \geq \frac{1}{c} \|\boldsymbol{v}\|_1.$$

This establishes stability of the formulation.

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega), \ a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ b(\tau,\nu):=-(\tau,\nabla\nu)_{0,\Omega}.$$

Saddle-Point Problem:

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega), \ a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ b(\tau,\nu):=-(\tau,\nabla\nu)_{0,\Omega}.$$

Saddle-Point Problem:

$$egin{array}{rcl} \mathsf{a}(\sigma, au) &- \mathsf{b}( au, \mathbf{v}) &= & 0 \ & b(\sigma, au) &= & -\langle f, \mathbf{v} 
angle_{0,\Omega}. \end{array}$$

We can obtain stable Finite Element discretizations for triangulations  $\mathcal{T}_h$ .

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega), \ a(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ b(\tau,\nu):=-(\tau,\nabla\nu)_{0,\Omega}.$$

Saddle-Point Problem:

$$egin{array}{rcl} m{a}(\sigma, au) &- m{b}( au,m{v}) &=& 0 \ m{b}(\sigma, au) &=& -\langle f,m{v}
angle_{0,\Omega}. \end{array}$$

We can obtain stable Finite Element discretizations for triangulations  $\mathcal{T}_{h}$ . For  $k \geq 1$ , let

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega), \ \ \mathsf{a}(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ \ \mathsf{b}(\tau,\nu):=-(\tau,\nabla\nu)_{0,\Omega}.$$

Saddle-Point Problem:

We can obtain stable Finite Element discretizations for triangulations  $\mathcal{T}_h$ . For  $k \geq 1$ , let

Poisson Problem: Stable Mixed Finite Element Spaces

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega), \ \ \mathsf{a}(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ \ \mathsf{b}(\tau,\nu):=-(\tau,\nabla\nu)_{0,\Omega}.$$

Saddle-Point Problem:

$$egin{aligned} m{a}(\sigma, au) &- m{b}( au,m{v}) &= & 0 \ & m{b}(\sigma, au) &= & -\langle f,m{v}
angle_{0,\Omega}. \end{aligned}$$

We can obtain stable Finite Element discretizations for triangulations  $\mathcal{T}_h$ . For  $k \geq 1$ , let

#### Poisson Problem: Stable Mixed Finite Element Spaces

$$X_h := \left(\mathcal{M}^{k-1}
ight)^d = \{\sigma_h \in L_2(\Omega)^d; \sigma_h|_{\mathcal{T}} \in \mathcal{P}_{k-1}, \ orall \mathcal{T} \in \mathcal{T}_h\}$$

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega), \ \ \mathsf{a}(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ \ \mathsf{b}(\tau,\nu):=-(\tau,\nabla\nu)_{0,\Omega}.$$

Saddle-Point Problem:

$$egin{aligned} egin{aligned} egi$$

We can obtain stable Finite Element discretizations for triangulations  $\mathcal{T}_h$ . For  $k \geq 1$ , let

#### Poisson Problem: Stable Mixed Finite Element Spaces

$$\begin{split} X_h &:= \left(\mathcal{M}^{k-1}\right)^d = \{\sigma_h \in L_2(\Omega)^d; \sigma_h|_T \in \mathcal{P}_{k-1}, \ \forall T \in \mathcal{T}_h\} \\ M_h &:= \mathcal{M}_{0,0}^k = \{v_h \in H_0^1(\Omega); \ v_h|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h\} \end{split}$$

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega), \ \ \mathsf{a}(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ \ \mathsf{b}(\tau,\nu):=-(\tau,\nabla\nu)_{0,\Omega}.$$

Saddle-Point Problem:

$$egin{aligned} egin{aligned} egi$$

We can obtain stable Finite Element discretizations for triangulations  $\mathcal{T}_h$ . For  $k \geq 1$ , let

#### Poisson Problem: Stable Mixed Finite Element Spaces

$$\begin{split} X_h &:= \left(\mathcal{M}^{k-1}\right)^d = \{\sigma_h \in L_2(\Omega)^d; \sigma_h|_T \in \mathcal{P}_{k-1}, \ \forall T \in \mathcal{T}_h\} \\ M_h &:= \mathcal{M}_{0,0}^k = \{v_h \in H_0^1(\Omega); \ v_h|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h\} \end{split}$$

Note that  $\nabla \mathcal{M}_h \subset X_h$ , allow us to verify same as in continuous case.

Paul J. Atzberger, UCSB

$$X:=L_2(\Omega)^d, M:=H^1_0(\Omega), \ \ \mathsf{a}(\sigma,\tau):=(\sigma,\tau)_{0,\Omega}, \ \ \mathsf{b}(\tau,\nu):=-(\tau,\nabla\nu)_{0,\Omega}.$$

Saddle-Point Problem:

$$egin{aligned} egin{aligned} egi$$

We can obtain stable Finite Element discretizations for triangulations  $\mathcal{T}_h$ . For  $k \geq 1$ , let

#### Poisson Problem: Stable Mixed Finite Element Spaces

$$\begin{split} X_h &:= \left(\mathcal{M}^{k-1}\right)^d = \{\sigma_h \in L_2(\Omega)^d; \sigma_h|_T \in \mathcal{P}_{k-1}, \ \forall T \in \mathcal{T}_h\} \\ M_h &:= \mathcal{M}_{0,0}^k = \{v_h \in H_0^1(\Omega); \ v_h|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h\} \end{split}$$

Note that  $\nabla \mathcal{M}_h \subset X_h$ , allow us to verify same as in continuous case.

Paul J. Atzberger, UCSB



Paul J. Atzberger, UCSB

# Poisson Problem: Mixed Methods

### Raviart-Thomas Element

$$X_h := RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \ a_T, b_T, c_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\}$$



$$\begin{aligned} X_h &:= RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \ a_T, b_T, c_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{\mathcal{C}}(\partial T) \right\} \\ M_h &:= \mathcal{M}^k(\mathcal{T}_h) := \{ v \in L_2(\Omega); \ v|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h \} \end{aligned}$$



$$\begin{aligned} X_h &:= RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \ a_T, b_T, c_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\} \\ M_h &:= \mathcal{M}^k(\mathcal{T}_h) := \{ v \in L_2(\Omega); \ v|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h \} \end{aligned}$$

The  $\tau \cdot n \in \tilde{C}(\partial T)$  denotes that  $\tau \cdot n$  is continuous on the inter-element boundaries.



$$\begin{split} X_h &:= RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau |_{\mathcal{T}} = \begin{pmatrix} \mathsf{a}_{\mathcal{T}} \\ \mathsf{b}_{\mathcal{T}} \end{pmatrix} + \mathsf{c}_{\mathcal{T}} \begin{pmatrix} \mathsf{x} \\ \mathsf{y} \end{pmatrix}, \ \mathsf{a}_{\mathcal{T}}, \mathsf{b}_{\mathcal{T}}, \mathsf{c}_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h, \tau \cdot \mathsf{n} \in \tilde{C}(\partial \mathcal{T}) \right\} \\ M_h &:= \mathcal{M}^k(\mathcal{T}_h) := \{ \mathsf{v} \in L_2(\Omega); \ \mathsf{v} |_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h \} \end{split}$$

The  $\tau \cdot n \in \tilde{C}(\partial T)$  denotes that  $\tau \cdot n$  is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.



$$\begin{aligned} X_h &:= RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau |_{\mathcal{T}} = \begin{pmatrix} \mathsf{a}_{\mathcal{T}} \\ \mathsf{b}_{\mathcal{T}} \end{pmatrix} + c_{\mathcal{T}} \begin{pmatrix} x \\ y \end{pmatrix}, \ \mathsf{a}_{\mathcal{T}}, \mathsf{b}_{\mathcal{T}}, \mathsf{c}_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h, \tau \cdot \mathsf{n} \in \tilde{C}(\partial \mathcal{T}) \right\} \\ M_h &:= \mathcal{M}^k(\mathcal{T}_h) := \{ \mathsf{v} \in L_2(\Omega); \ \mathsf{v} |_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h \} \end{aligned}$$

The  $\tau \cdot n \in \tilde{C}(\partial T)$  denotes that  $\tau \cdot n$  is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation. For  $k = 0, p \in (\mathcal{P}_1)^2$  has



$$\begin{aligned} X_h &:= RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau |_{\mathcal{T}} = \begin{pmatrix} \mathsf{a}_{\mathcal{T}} \\ b_{\mathcal{T}} \end{pmatrix} + c_{\mathcal{T}} \begin{pmatrix} x \\ y \end{pmatrix}, \ \mathsf{a}_{\mathcal{T}}, \mathsf{b}_{\mathcal{T}}, \mathsf{c}_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h, \tau \cdot \mathsf{n} \in \tilde{C}(\partial \mathcal{T}) \right\} \\ M_h &:= \mathcal{M}^k(\mathcal{T}_h) := \{ \mathsf{v} \in L_2(\Omega); \ \mathsf{v} |_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h \} \end{aligned}$$

The  $\tau \cdot n \in \tilde{C}(\partial T)$  denotes that  $\tau \cdot n$  is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation. For k = 0,  $p \in (\mathcal{P}_1)^2$  has

$$p(x,y) = \begin{pmatrix} a \\ b \end{pmatrix} + c \begin{pmatrix} x \\ y \end{pmatrix}$$

.

**Raviart-Thomas Element** 

The  $n \cdot p$  is constant on  $\alpha x + \beta y = c_0$  when *n* orthogonal to the line.



$$\begin{aligned} X_h &:= RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau |_{\mathcal{T}} = \begin{pmatrix} \mathsf{a}_{\mathcal{T}} \\ b_{\mathcal{T}} \end{pmatrix} + c_{\mathcal{T}} \begin{pmatrix} x \\ y \end{pmatrix}, \ \mathsf{a}_{\mathcal{T}}, \mathsf{b}_{\mathcal{T}}, \mathsf{c}_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h, \tau \cdot \mathsf{n} \in \tilde{C}(\partial \mathcal{T}) \right\} \\ M_h &:= \mathcal{M}^k(\mathcal{T}_h) := \{ \mathsf{v} \in L_2(\Omega); \ \mathsf{v} |_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h \} \end{aligned}$$

The  $\tau \cdot n \in \tilde{C}(\partial T)$  denotes that  $\tau \cdot n$  is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation. For k = 0,  $p \in (\mathcal{P}_1)^2$  has

$$p(x,y) = \begin{pmatrix} a \\ b \end{pmatrix} + c \begin{pmatrix} x \\ y \end{pmatrix}.$$

**Raviart-Thomas Element** 

The  $n \cdot p$  is constant on  $\alpha x + \beta y = c_0$  when *n* orthogonal to the line. Edge values determine the polynomial p.



$$\begin{aligned} X_h &:= RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau |_{\mathcal{T}} = \begin{pmatrix} \mathsf{a}_{\mathcal{T}} \\ b_{\mathcal{T}} \end{pmatrix} + c_{\mathcal{T}} \begin{pmatrix} x \\ y \end{pmatrix}, \ \mathsf{a}_{\mathcal{T}}, \mathsf{b}_{\mathcal{T}}, \mathsf{c}_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h, \tau \cdot \mathsf{n} \in \tilde{C}(\partial \mathcal{T}) \right\} \\ M_h &:= \mathcal{M}^k(\mathcal{T}_h) := \{ \mathsf{v} \in L_2(\Omega); \ \mathsf{v} |_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h \} \end{aligned}$$

The  $\tau \cdot n \in \tilde{C}(\partial T)$  denotes that  $\tau \cdot n$  is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation. For k = 0,  $p \in (\mathcal{P}_1)^2$  has

$$p(x,y) = \begin{pmatrix} a \\ b \end{pmatrix} + c \begin{pmatrix} x \\ y \end{pmatrix}.$$

**Raviart-Thomas Element** 

The  $n \cdot p$  is constant on  $\alpha x + \beta y = c_0$  when *n* orthogonal to the line. Edge values determine the polynomial p. Formally, elements are triple



$$\begin{aligned} X_h &:= RT_k := \left\{ \tau \in L_2(\Omega)^2; \ \tau |_{\mathcal{T}} = \begin{pmatrix} \mathsf{a}_{\mathcal{T}} \\ b_{\mathcal{T}} \end{pmatrix} + c_{\mathcal{T}} \begin{pmatrix} x \\ y \end{pmatrix}, \ \mathsf{a}_{\mathcal{T}}, \mathsf{b}_{\mathcal{T}}, \mathsf{c}_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h, \tau \cdot \mathsf{n} \in \tilde{C}(\partial \mathcal{T}) \right\} \\ M_h &:= \mathcal{M}^k(\mathcal{T}_h) := \{ \mathsf{v} \in L_2(\Omega); \ \mathsf{v} |_{\mathcal{T}} \in \mathcal{P}_k, \ \forall \mathcal{T} \in \mathcal{T}_h \} \end{aligned}$$

The  $\tau \cdot n \in \tilde{C}(\partial T)$  denotes that  $\tau \cdot n$  is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation. For k = 0,  $p \in (\mathcal{P}_1)^2$  has

$$p(x,y) = \begin{pmatrix} a \\ b \end{pmatrix} + c \begin{pmatrix} x \\ y \end{pmatrix}.$$

Raviart-Thomas Element  $R_{T_0}$   $M^0$ 

The  $n \cdot p$  is constant on  $\alpha x + \beta y = c_0$  when *n* orthogonal to the line. Edge values determine the polynomial p. Formally, elements are triple

$$(\mathcal{T}, (\mathcal{P}_0)^2 + \mathbf{x} \cdot \mathcal{P}_0, \ n_i \cdot p(z_i), i = 1, 2, 3, \ z_i \text{ is edge midpoint.})$$

Mesh-Dependent Norms:



Paul J. Atzberger, UCSB

Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2}$$



Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h\sum_{e \in \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{\tau \in \mathcal{T}_h} |v|_{1,\tau}^2 + h^{-1}\sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$



Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h\sum_{e \in \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{\tau \in \mathcal{T}_h} |v|_{1,\tau}^2 + h^{-1}\sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

The  $a(\sigma,\tau) := (\sigma,\tau)_{0,\Omega}$  and  $b(\tau,\nu) := -(\tau,\nabla\nu)_{0,\Omega}$  defined for  $\tau,\sigma\in L_2(\Omega)^d$ .



Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h\sum_{e \in \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{\tau \in \mathcal{T}_h} |v|_{1,\tau}^2 + h^{-1}\sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

The  $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}$  and  $b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}$  defined for  $\tau, \sigma \in L_2(\Omega)^d$ . Properties of *a*:



Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h\sum_{e \in \Gamma_h} \|\tau n\|_{0,e}^2\right)^{1/2} |v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1}\sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2\right)^{1/2}.$$

The  $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}$  and  $b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}$  defined for  $\tau, \sigma \in L_2(\Omega)^d$ . **Properties of** *a*: Ellipticity of  $a(\cdot, \cdot)$  follows from



Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left( \|\tau\|_0^2 + h \sum_{e \in \Gamma_h} \|\tau n\|_{0,e}^2 \right)^{1/2} |v|_{1,h} := \left( \sum_{\tau \in \mathcal{T}_h} |v|_{1,\tau}^2 + h^{-1} \sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2 \right)^{1/2}.$$

The  $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}$  and  $b(\tau, \nu) := -(\tau, \nabla \nu)_{0,\Omega}$  defined for  $\tau, \sigma \in L_2(\Omega)^d$ . **Properties of** *a*: Ellipticity of  $a(\cdot, \cdot)$  follows from

$$\| au\|_{0,h}\leq C\| au\|_0,\ orall au\in RT_k\Rightarrow \mathsf{a}( au, au)=\| au\|_{0,\Omega}^2\geq C^{-2}\| au\|_{0,h}^2.$$



Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left( \|\tau\|_0^2 + h \sum_{e \in \Gamma_h} \|\tau n\|_{0,e}^2 \right)^{1/2} |v|_{1,h} := \left( \sum_{\tau \in \mathcal{T}_h} |v|_{1,\tau}^2 + h^{-1} \sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2 \right)^{1/2}.$$

The  $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}$  and  $b(\tau, \nu) := -(\tau, \nabla \nu)_{0,\Omega}$  defined for  $\tau, \sigma \in L_2(\Omega)^d$ . **Properties of** *a*: Ellipticity of  $a(\cdot, \cdot)$  follows from

$$\|\tau\|_{0,h} \leq C \|\tau\|_0, \ \forall \tau \in RT_k \Rightarrow \mathsf{a}(\tau,\tau) = \|\tau\|_{0,\Omega}^2 \geq C^{-2} \|\tau\|_{0,h}^2.$$

**Properties of** *b*:



Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left( \|\tau\|_0^2 + h \sum_{e \in \Gamma_h} \|\tau n\|_{0,e}^2 \right)^{1/2} |v|_{1,h} := \left( \sum_{\tau \in \mathcal{T}_h} |v|_{1,\tau}^2 + h^{-1} \sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2 \right)^{1/2}.$$

The  $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}$  and  $b(\tau, \nu) := -(\tau, \nabla \nu)_{0,\Omega}$  defined for  $\tau, \sigma \in L_2(\Omega)^d$ . **Properties of** *a*: Ellipticity of  $a(\cdot, \cdot)$  follows from

$$\|\tau\|_{0,h} \leq C \|\tau\|_0, \ \forall \tau \in RT_k \Rightarrow \mathsf{a}(\tau,\tau) = \|\tau\|_{0,\Omega}^2 \geq C^{-2} \|\tau\|_{0,h}^2.$$

Properties of b: Use Green's Identity to rewrite as



Mesh-Dependent Norms:

$$\|\tau\|_{0,h} := \left( \|\tau\|_0^2 + h \sum_{e \in \Gamma_h} \|\tau n\|_{0,e}^2 \right)^{1/2} |v|_{1,h} := \left( \sum_{\tau \in \mathcal{T}_h} |v|_{1,\tau}^2 + h^{-1} \sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2 \right)^{1/2}.$$

The  $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}$  and  $b(\tau, \nu) := -(\tau, \nabla \nu)_{0,\Omega}$  defined for  $\tau, \sigma \in L_2(\Omega)^d$ . **Properties of** *a*: Ellipticity of  $a(\cdot, \cdot)$  follows from

$$\| au\|_{0,h}\leq C\| au\|_0,\ orall au\in RT_k\Rightarrow \mathsf{a}( au, au)=\| au\|_{0,\Omega}^2\geq C^{-2}\| au\|_{0,h}^2.$$

Properties of b: Use Green's Identity to rewrite as

$$b( au, extbf{v}) = -\sum_{ au \in \mathcal{T}} \int_{ au} au \cdot extbf{grad} \ extbf{v} \ d extbf{x} + \int_{ extsf{\Gamma}_h} J( extbf{v}) au extsf{nds}.$$



**Mesh-Dependent Norms:** 

$$\|\tau\|_{0,h} := \left( \|\tau\|_0^2 + h \sum_{e \in \Gamma_h} \|\tau n\|_{0,e}^2 \right)^{1/2} |v|_{1,h} := \left( \sum_{\tau \in \mathcal{T}_h} |v|_{1,\tau}^2 + h^{-1} \sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2 \right)^{1/2}.$$

The  $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}$  and  $b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}$  defined for  $\tau, \sigma \in L_2(\Omega)^d$ . **Properties of** *a*: Ellipticity of  $a(\cdot, \cdot)$  follows from

$$\|\tau\|_{0,h} \leq C \|\tau\|_0, \ \forall \tau \in RT_k \Rightarrow \mathsf{a}(\tau,\tau) = \|\tau\|_{0,\Omega}^2 \geq C^{-2} \|\tau\|_{0,h}^2.$$

Properties of b: Use Green's Identity to rewrite as

$$b(\tau, \mathbf{v}) = -\sum_{\tau \in \mathcal{T}} \int_{\mathcal{T}} \tau \cdot \operatorname{grad} \mathbf{v} \, d\mathbf{x} + \int_{\Gamma_h} J(\mathbf{v}) \tau \, n ds$$

J(v) is jump of v in normal direction n.  $\Gamma_h := \bigcup_T (\partial T \cap \Omega)$  interior bnds.



**Mesh-Dependent Norms:** 

$$\|\tau\|_{0,h} := \left( \|\tau\|_0^2 + h \sum_{e \in \Gamma_h} \|\tau n\|_{0,e}^2 \right)^{1/2} |v|_{1,h} := \left( \sum_{\tau \in \mathcal{T}_h} |v|_{1,\tau}^2 + h^{-1} \sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2 \right)^{1/2}.$$

The  $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}$  and  $b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}$  defined for  $\tau, \sigma \in L_2(\Omega)^d$ . **Properties of** *a*: Ellipticity of  $a(\cdot, \cdot)$  follows from

$$\|\tau\|_{0,h} \leq C \|\tau\|_0, \ \forall \tau \in RT_k \Rightarrow \mathsf{a}(\tau,\tau) = \|\tau\|_{0,\Omega}^2 \geq C^{-2} \|\tau\|_{0,h}^2.$$

Properties of b: Use Green's Identity to rewrite as

$$b(\tau, \mathbf{v}) = -\sum_{\tau \in \mathcal{T}} \int_{\mathcal{T}} \tau \cdot \operatorname{grad} \mathbf{v} \, d\mathbf{x} + \int_{\Gamma_h} J(\mathbf{v}) \tau \, n ds$$

J(v) is jump of v in normal direction n.  $\Gamma_h := \bigcup_T (\partial T \cap \Omega)$  interior bnds. The *b* continuity with Mesh-Norms follows readily.



**Mesh-Dependent Norms:** 

$$\|\tau\|_{0,h} := \left( \|\tau\|_0^2 + h \sum_{e \in \Gamma_h} \|\tau n\|_{0,e}^2 \right)^{1/2} |v|_{1,h} := \left( \sum_{\tau \in \mathcal{T}_h} |v|_{1,\tau}^2 + h^{-1} \sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2 \right)^{1/2}.$$

The  $a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}$  and  $b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}$  defined for  $\tau, \sigma \in L_2(\Omega)^d$ . **Properties of** *a*: Ellipticity of  $a(\cdot, \cdot)$  follows from

$$\|\tau\|_{0,h} \leq C \|\tau\|_0, \ \forall \tau \in RT_k \Rightarrow \mathsf{a}(\tau,\tau) = \|\tau\|_{0,\Omega}^2 \geq C^{-2} \|\tau\|_{0,h}^2.$$

Properties of b: Use Green's Identity to rewrite as

$$b( au, \mathbf{v}) = -\sum_{ au \in au} \int_{ au} au \cdot \operatorname{grad} \mathbf{v} \, d\mathbf{x} + \int_{\Gamma_h} J(\mathbf{v}) au \, nds$$

J(v) is jump of v in normal direction n.  $\Gamma_h := \bigcup_T (\partial T \cap \Omega)$  interior bnds.

The *b* continuity with Mesh-Norms follows readily.

Inf-Sup Condition must be established.

### Lemma: The Inf-Sup Condition

#### Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

### Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\boldsymbol{\tau}\in \mathcal{RT}_k}\frac{b(\boldsymbol{\tau},\boldsymbol{v})}{\|\boldsymbol{\tau}\|_{0,h}}\geq \beta|\boldsymbol{v}|_{1,h}, \ \forall \boldsymbol{v}\in \mathcal{M}^k,$$

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau\in \mathcal{R}\mathcal{T}_k}\frac{b(\tau,\boldsymbol{v})}{\|\tau\|_{0,h}}\geq \beta|\boldsymbol{v}|_{1,h}, \ \forall \boldsymbol{v}\in \mathcal{M}^k,$$

where  $\beta > 0$  and depends on k

The bilinear form b with the RT-elements satisfies

$$\sup_{\boldsymbol{\tau}\in\mathcal{RT}_k}\frac{b(\boldsymbol{\tau},\boldsymbol{v})}{\|\boldsymbol{\tau}\|_{0,h}}\geq\beta|\boldsymbol{v}|_{1,h},\ \forall\boldsymbol{v}\in\mathcal{M}^k,$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

The bilinear form b with the RT-elements satisfies

$$\sup_{\boldsymbol{\tau}\in\mathcal{RT}_k}\frac{b(\boldsymbol{\tau},\boldsymbol{v})}{\|\boldsymbol{\tau}\|_{0,h}}\geq\beta|\boldsymbol{v}|_{1,h},\ \forall\boldsymbol{v}\in\mathcal{M}^k,$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

Proof (sketch):

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in \mathcal{RT}_k} \frac{b(\tau, \boldsymbol{v})}{\|\tau\|_{0,h}} \geq \beta |\boldsymbol{v}|_{1,h}, \ \forall \boldsymbol{v} \in \mathcal{M}^k,$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

#### **Proof (sketch):** Consider case k = 0, then J(v) is constant along each edge $e \subset \Gamma_h$ .

The bilinear form b with the RT-elements satisfies

$$\sup_{\boldsymbol{r}\in\mathcal{RT}_{k}}\frac{\boldsymbol{b}(\boldsymbol{\tau},\boldsymbol{v})}{\|\boldsymbol{\tau}\|_{0,h}}\geq\beta|\boldsymbol{v}|_{1,h},\ \forall\boldsymbol{v}\in\mathcal{M}^{k},$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

#### **Proof (sketch):** Consider case k = 0, then J(v) is constant along each edge $e \subset \Gamma_h$ . This implies there exists $\tau \in RT_0$ so that

$$\tau n = h^{-1} J(v)$$

on each edge  $e \subset \Gamma_h$ .

The bilinear form b with the RT-elements satisfies

$$\sup_{\boldsymbol{\tau}\in\mathcal{RT}_{k}}\frac{\boldsymbol{b}(\boldsymbol{\tau},\boldsymbol{v})}{\|\boldsymbol{\tau}\|_{0,h}}\geq\beta|\boldsymbol{v}|_{1,h},\ \forall\boldsymbol{v}\in\mathcal{M}^{k},$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

### **Proof (sketch):** Consider case k = 0, then J(v) is constant along each edge $e \subset \Gamma_h$ . This implies there exists $\tau \in RT_0$ so that

 $\tau n = h^{-1} J(v)$ 

on each edge  $e \subset \Gamma_h$ . Since in this case the area term in Green's Identity

The bilinear form b with the RT-elements satisfies

$$\sup_{\boldsymbol{r}\in\mathcal{RT}_{k}}\frac{\boldsymbol{b}(\boldsymbol{\tau},\boldsymbol{v})}{\|\boldsymbol{\tau}\|_{0,h}}\geq\beta|\boldsymbol{v}|_{1,h},\ \forall\boldsymbol{v}\in\mathcal{M}^{k},$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

### **Proof (sketch):** Consider case k = 0, then J(v) is constant along each edge $e \subset \Gamma_h$ . This implies there exists $\tau \in RT_0$ so that

 $\tau n = h^{-1} J(v)$ 

The bilinear form b with the RT-elements satisfies

$$\sup_{\boldsymbol{r}\in\mathcal{RT}_{k}}\frac{\boldsymbol{b}(\boldsymbol{\tau},\boldsymbol{v})}{\|\boldsymbol{\tau}\|_{0,h}}\geq\beta|\boldsymbol{v}|_{1,h},\ \forall\boldsymbol{v}\in\mathcal{M}^{k},$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

#### **Proof (sketch):** Consider case k = 0, then J(v) is constant along each edge $e \subset \Gamma_h$ . This implies there exists $\tau \in RT_0$ so that

$$\tau n = h^{-1} J(v)$$

$$b( au, extsf{v}) = h^{-1} \int_{\Gamma_h} \left| J( extsf{v}) 
ight|^2 ds$$

The bilinear form b with the RT-elements satisfies

$$\sup_{\boldsymbol{r}\in\mathcal{RT}_{k}}\frac{\boldsymbol{b}(\boldsymbol{\tau},\boldsymbol{v})}{\|\boldsymbol{\tau}\|_{0,h}}\geq\beta|\boldsymbol{v}|_{1,h},\ \forall\boldsymbol{v}\in\mathcal{M}^{k},$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

## Proof (sketch):

Consider case k = 0, then J(v) is constant along each edge  $e \subset \Gamma_h$ . This implies there exists  $\tau \in RT_0$  so that

$$\tau n = h^{-1} J(v)$$

$$b(\tau, \mathbf{v}) = h^{-1} \int_{\Gamma_h} |J(\mathbf{v})|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} \|J(\mathbf{v})\|_{0,e}^2$$

The bilinear form b with the RT-elements satisfies

$$\sup_{\boldsymbol{r}\in\mathcal{RT}_{k}}\frac{\boldsymbol{b}(\boldsymbol{\tau},\boldsymbol{v})}{\|\boldsymbol{\tau}\|_{0,h}}\geq\beta|\boldsymbol{v}|_{1,h},\ \forall\boldsymbol{v}\in\mathcal{M}^{k},$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

## Proof (sketch):

Consider case k = 0, then J(v) is constant along each edge  $e \subset \Gamma_h$ . This implies there exists  $\tau \in RT_0$  so that

$$\tau n = h^{-1} J(v)$$

$$b(\tau, \mathbf{v}) = h^{-1} \int_{\Gamma_h} |J(\mathbf{v})|^2 d\mathbf{s} = ch^{-1} \sum_{e \subset \Gamma_h} \|J(\mathbf{v})\|_{0,e}^2 = |\mathbf{v}|_{1,h}^2.$$

The bilinear form b with the RT-elements satisfies

$$\sup_{e \in \mathcal{R}\mathcal{T}_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

Proof (sketch) (continued):

$$b( au, m{v}) = h^{-1} \int_{\Gamma_h} |J(m{v})|^2 ds = c h^{-1} \sum_{e \subset \Gamma_h} \|J(m{v})\|_{0,e}^2 = |m{v}|_{1,h}^2.$$

The bilinear form b with the RT-elements satisfies

$$\sup_{e \in \mathcal{R}\mathcal{T}_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

Proof (sketch) (continued):

$$b( au, extbf{v}) = h^{-1} \int_{\Gamma_h} |J( extbf{v})|^2 ds = c h^{-1} \sum_{e \subset \Gamma_h} \|J( extbf{v})\|_{0,e}^2 = | extbf{v}|_{1,h}^2.$$

We also have

The bilinear form b with the RT-elements satisfies

$$\sup_{e \in \mathcal{R}\mathcal{T}_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

Proof (sketch) (continued):

$$b( au, extbf{v}) = h^{-1} \int_{\Gamma_h} |J( extbf{v})|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} \|J( extbf{v})\|_{0,e}^2 = | extbf{v}|_{1,h}^2.$$

We also have

$$\| au\|_{0,h}^2 \leq ch \sum_{e \in \Gamma_h} \| au\|_{0,e}^2 = ch^{-1} \sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$

The bilinear form b with the RT-elements satisfies

$$\sup_{e \in \mathcal{R}\mathcal{T}_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

Proof (sketch) (continued):

$$b( au, extbf{v}) = h^{-1} \int_{\Gamma_h} |J( extbf{v})|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} \|J( extbf{v})\|_{0,e}^2 = | extbf{v}|_{1,h}^2.$$

We also have

$$\| au\|_{0,h}^2 \leq ch \sum_{e \in \Gamma_h} \| au\|_{0,e}^2 = ch^{-1} \sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$

By taking  $|v|_{1,h}^2 = |v|_{1,h}c^{-1/2}\|\tau\|_{0,h}$ ,

The bilinear form b with the RT-elements satisfies

$$\sup_{e \in \mathcal{R}\mathcal{T}_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

Proof (sketch) (continued):

$$b( au, extbf{v}) = h^{-1} \int_{\Gamma_h} |J( extbf{v})|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} \|J( extbf{v})\|_{0,e}^2 = | extbf{v}|_{1,h}^2.$$

We also have

$$\|\tau\|_{0,h}^2 \leq ch \sum_{e \in \Gamma_h} \|\tau\|_{0,e}^2 = ch^{-1} \sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$

By taking  $|v|_{1,h}^2 = |v|_{1,h}c^{-1/2}\|\tau\|_{0,h}$ , we have  $b(\tau,v) \ge c^{-1/2}|v|_{1,h}\|\tau\|_{0,h}$ .

The bilinear form b with the RT-elements satisfies

$$\sup_{e \in \mathcal{R}\mathcal{T}_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

Proof (sketch) (continued):

$$b( au, extbf{v}) = h^{-1} \int_{\Gamma_h} |J( extbf{v})|^2 ds = c h^{-1} \sum_{e \subset \Gamma_h} \|J( extbf{v})\|_{0,e}^2 = | extbf{v}|_{1,h}^2.$$

We also have

$$\|\tau\|_{0,h}^2 \leq ch \sum_{e \in \Gamma_h} \|\tau\|_{0,e}^2 = ch^{-1} \sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$

By taking  $|v|_{1,h}^2 = |v|_{1,h}c^{-1/2} \|\tau\|_{0,h}$ , we have  $b(\tau, v) \ge c^{-1/2} |v|_{1,h} \|\tau\|_{0,h}$ . Establishes the Inf-Sup Condition.

The bilinear form b with the RT-elements satisfies

$$\sup_{e \in \mathcal{R}\mathcal{T}_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in \mathcal{M}^k,$$

where  $\beta > 0$  and depends on k and the shape regularity of the triangulation  $\mathcal{T}_h$ .

Proof (sketch) (continued):

$$b( au, extbf{v}) = h^{-1} \int_{\Gamma_h} |J( extbf{v})|^2 ds = c h^{-1} \sum_{e \subset \Gamma_h} \|J( extbf{v})\|_{0,e}^2 = | extbf{v}|_{1,h}^2.$$

We also have

$$\| au\|_{0,h}^2 \leq ch \sum_{e \in \Gamma_h} \| au\|_{0,e}^2 = ch^{-1} \sum_{e \in \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$

By taking  $|v|_{1,h}^2 = |v|_{1,h}c^{-1/2} ||\tau||_{0,h}$ , we have  $b(\tau, v) \ge c^{-1/2} |v|_{1,h} ||\tau||_{0,h}$ . Establishes the Inf-Sup Condition.

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$
  
div  $u = 0, \ x \in \Omega$ 

$$\begin{array}{rcl} \Delta u + \operatorname{grad} p &=& -f, \ x \in \Omega \\ & \operatorname{div} u &=& 0, \ x \in \Omega \\ & u &=& u_0, \ x \in \partial \Omega. \end{array}$$

## Stokes Flow

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$
  
 $\operatorname{div} u = 0, \ x \in \Omega$   
 $u = u_0, \ x \in \partial \Omega.$ 

The  $u: \Omega \to \mathbb{R}^n$  is fluid velocity and  $p: \Omega \to \mathbb{R}$  is pressure.

## Stokes Flow

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$
  
 $\operatorname{div} u = 0, \ x \in \Omega$   
 $u = u_0, \ x \in \partial \Omega.$ 

The  $u: \Omega \to \mathbb{R}^n$  is fluid velocity and  $p: \Omega \to \mathbb{R}$  is pressure.

The div u = 0 is constraint for fluid to be **incompressible**.

## Stokes Flow

$$\begin{array}{rcl} \Delta u + \operatorname{grad} p & = & -f, \ x \in \Omega \\ & \operatorname{div} u & = & 0, \ x \in \Omega \\ & u & = & u_0, \ x \in \partial\Omega. \end{array}$$

The  $u: \Omega \to \mathbb{R}^n$  is fluid velocity and  $p: \Omega \to \mathbb{R}$  is pressure.

The div u = 0 is constraint for fluid to be **incompressible**.

Only imposes p up to constant, usually use condition  $\int p dx = 0$ .

### Stokes Flow

The  $u: \Omega \to \mathbb{R}^n$  is fluid velocity and  $p: \Omega \to \mathbb{R}$  is pressure.

The div u = 0 is constraint for fluid to be **incompressible**.

Only imposes p up to constant, usually use condition  $\int p dx = 0$ .

### Stokes Flow

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$
  
 $\operatorname{div} u = 0, \ x \in \Omega$   
 $u = u_0, \ x \in \partial \Omega.$ 

The  $u: \Omega \to \mathbb{R}^n$  is fluid velocity and  $p: \Omega \to \mathbb{R}$  is pressure.

The div u = 0 is constraint for fluid to be **incompressible**.

Only imposes p up to constant, usually use condition  $\int p dx = 0$ .

$$a(u, v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx,$$

### Stokes Flow

$$\Delta u + \operatorname{grad} p = -f, \ x \in \Omega$$
  
 $\operatorname{div} u = 0, \ x \in \Omega$   
 $u = u_0, \ x \in \partial \Omega.$ 

The  $u: \Omega \to \mathbb{R}^n$  is fluid velocity and  $p: \Omega \to \mathbb{R}$  is pressure.

The div u = 0 is constraint for fluid to be **incompressible**.

Only imposes p up to constant, usually use condition  $\int p dx = 0$ .

$$a(u, v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v, q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

$$a(u, v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v, q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

Variational Formulation:  $X = H_0^1(\Omega)^n$ ,  $M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \int q dx = 0\}$ .

$$a(u, v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v, q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

## Saddle-Point Problem (Stokes)

Variational Formulation:  $X = H_0^1(\Omega)^n$ ,  $M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \int q dx = 0\}$ .

$$a(u, v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v, q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

## Saddle-Point Problem (Stokes)

 $X = H_0^1(\Omega)^n, \ M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \ \int q dx = 0\}.$ 

Variational Formulation:  $X = H_0^1(\Omega)^n$ ,  $M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \int q dx = 0\}$ .

$$a(u, v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v, q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

## Saddle-Point Problem (Stokes)

 $X = H_0^1(\Omega)^n, \ M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \ \int q dx = 0\}.$ 

$$a(u,v)+b(v,p) = (f,v)_0, \forall v \in X$$

Variational Formulation:  $X = H_0^1(\Omega)^n$ ,  $M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \int q dx = 0\}$ .

$$a(u, v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v, q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

## Saddle-Point Problem (Stokes)

 $egin{aligned} X &= H_0^1(\Omega)^n, \; M = L_{2,0}(\Omega) := ig\{ q \in L_2(\Omega); \; \int q dx = 0 ig\}. \ & a(u,v) + b(v,p) \;\; = \;\; (f,v)_0, \;\; orall v \in X \ & b(u,q) \;\; = \;\; 0, \;\; orall q \in M. \end{aligned}$ 

Paul J. Atzberger, UCSB

Variational Formulation:  $X = H_0^1(\Omega)^n$ ,  $M = L_{2,0}(\Omega) := \{q \in L_2(\Omega); \int q dx = 0\}$ .

$$a(u, v) = \int_{\Omega} \operatorname{grad} u : \operatorname{grad} v \, dx, \qquad b(v, q) = \int_{\Omega} \operatorname{div}(v) \, q \, dx.$$

## Saddle-Point Problem (Stokes)

$$\begin{split} X &= H_0^1(\Omega)^n, \; M = L_{2,0}(\Omega) := \big\{ q \in L_2(\Omega); \; \int q dx = 0 \big\}. \\ &= a(u,v) + b(v,p) \; = \; (f,v)_0, \; \; \forall v \in X \\ &= b(u,q) \; = \; 0, \; \; \forall q \in M. \end{split}$$

Need to establish the Inf-Sup Conditions.

# Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

# Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$V:=\left\{ v\in X; \ (\operatorname{div} v,q)_{0,\Omega}=0, \ \forall q\in L_2(\Omega) \right\}, \quad V^{\perp}:=\left\{ u\in X; \ (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0, \ \forall v\in V \right\}.$$

# Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

 $V:=\{v\in X; \ (\operatorname{div} v,q)_{0,\Omega}=0, \ \forall q\in L_2(\Omega)\}\,, \quad V^\perp:=\{u\in X; \ (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0, \ \forall v\in V\}\,.$ 

The  $V^{\perp}$  is  $H^1$ -orthogonal complement of V.

For Stokes we have

$$V:=\{v\in X; \ (\operatorname{div} v,q)_{0,\Omega}=0, \ \forall q\in L_2(\Omega)\}\,, \quad V^\perp:=\{u\in X; \ (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0, \ \forall v\in V\}\,.$$

The  $V^{\perp}$  is  $H^1$ -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

For Stokes we have

$$V:=\{v\in X; \ (\operatorname{div} v,q)_{0,\Omega}=0, \ \forall q\in L_2(\Omega)\}\,, \quad V^\perp:=\{u\in X; \ (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0, \ \forall v\in V\}\,.$$

The  $V^{\perp}$  is  $H^1$ -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

### Theorem I

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary.

For Stokes we have

 $V:=\{v\in X; \ (\operatorname{div} v,q)_{0,\Omega}=0, \ \forall q\in L_2(\Omega)\}\,, \quad V^\perp:=\{u\in X; \ (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0, \ \forall v\in V\}\,.$ 

The  $V^{\perp}$  is  $H^1$ -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

#### Theorem I

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

For Stokes we have

 $V:=\{v\in X; \ (\operatorname{div} v,q)_{0,\Omega}=0, \ \forall q\in L_2(\Omega)\}\,, \quad V^\perp:=\{u\in X; \ (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0, \ \forall v\in V\}\,.$ 

The  $V^{\perp}$  is  $H^1$ -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

#### Theorem I

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

 $\mathsf{div} \, : \, \boldsymbol{V}^{\perp} \quad \rightarrow \quad L_{2,0}(\Omega)$ 

For Stokes we have

$$V:=\{v\in X; \ (\operatorname{div} v,q)_{0,\Omega}=0, \ \forall q\in L_2(\Omega)\}\,, \quad V^\perp:=\{u\in X; \ (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0, \ \forall v\in V\}\,.$$

The  $V^{\perp}$  is  $H^1$ -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

#### Theorem I

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$egin{array}{rcl} {
m div} \, : \, V^{ot} & o & L_{2,0}(\Omega) \ & v & \mapsto & {
m div} \, v. \end{array}$$

For Stokes we have

$$V:=\left\{ v\in X; \ (\operatorname{div} v,q)_{0,\Omega}=0, \ \forall q\in L_2(\Omega) \right\}, \quad V^{\perp}:=\left\{ u\in X; \ (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0, \ \forall v\in V \right\}.$$

The  $V^{\perp}$  is  $H^1$ -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

#### Theorem I

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$egin{array}{rcl} {
m div}\,:\,V^{\perp}&
ightarrow\, L_{2,0}(\Omega)\ &v&\mapsto&{
m div}\,v. \end{array}$$

For any  $q \in L_2(\Omega)$  with  $\int q \, dx = 0$ ,

For Stokes we have

$$V:=\{v\in X; \ (\operatorname{div} v,q)_{0,\Omega}=0, \ \forall q\in L_2(\Omega)\}\,, \quad V^\perp:=\{u\in X; \ (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0, \ \forall v\in V\}\,.$$

The  $V^{\perp}$  is  $H^1$ -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

#### Theorem I

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$egin{array}{rcl} {
m div}\,:\,V^{\perp}&
ightarrow&L_{2,0}(\Omega)\ &v&\mapsto&{
m div}\,v. \end{array}$$

For any  $q \in L_2(\Omega)$  with  $\int q \, dx = 0$ , there exists  $v \in V^\perp \subset H^1_0(\Omega)^n$ 

For Stokes we have

$$V:=\{v\in X; \ (\operatorname{div} v,q)_{0,\Omega}=0, \ \forall q\in L_2(\Omega)\}\,, \quad V^\perp:=\{u\in X; \ (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0, \ \forall v\in V\}\,.$$

The  $V^{\perp}$  is  $H^1$ -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

#### Theorem I

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$egin{array}{rcl} {\operatorname{div}} & \colon V^{\perp} & o & L_{2,0}(\Omega) \ & v & \mapsto & \operatorname{div} v. \end{array}$$

For any  $q \in L_2(\Omega)$  with  $\int q \, dx = 0$ , there exists  $v \in V^{\perp} \subset H_0^1(\Omega)^n$  with

 $\operatorname{div} v = q ext{ and } \|v\|_{1,\Omega} \leq c \|q\|_{0,\Omega},$ 

For Stokes we have

$$V:=\{v\in X; \ (\operatorname{div} v,q)_{0,\Omega}=0, \ \forall q\in L_2(\Omega)\}\,, \quad V^\perp:=\{u\in X; \ (\operatorname{grad} u,\operatorname{grad} v)_{0,\Omega}=0, \ \forall v\in V\}\,.$$

The  $V^{\perp}$  is  $H^1$ -orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

#### Theorem I

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

$$egin{array}{rcl} {\operatorname{div}} & \colon V^{\perp} & o & L_{2,0}(\Omega) \ & v & \mapsto & \operatorname{div} v. \end{array}$$

For any  $q \in L_2(\Omega)$  with  $\int q \, dx = 0$ , there exists  $v \in V^{\perp} \subset H_0^1(\Omega)^n$  with

$$\operatorname{div} v = q \text{ and } \|v\|_{1,\Omega} \leq c \|q\|_{0,\Omega},$$

where  $c = c(\Omega)$  constant.

Paul J. Atzberger, UCSB

### Theorem II

### Theorem II

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary.

### Theorem II

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in  $H^{-1}(\Omega)^n$ 

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in  $H^{-1}(\Omega)^n$ 

 $\mathsf{grad} \, : \, L_2(\Omega) \to H^{-1}(\Omega)^n$ 

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in  $H^{-1}(\Omega)^n$ 

 $ext{grad}$  :  $L_2(\Omega) o H^{-1}(\Omega)^n$ 

(2) For  $f \in H^{-1}(\Omega)^n$ , if

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in  $H^{-1}(\Omega)^n$ 

 $ext{grad}$  :  $L_2(\Omega) o H^{-1}(\Omega)^n$ 

(2) For  $f \in H^{-1}(\Omega)^n$ , if

$$\langle f, v \rangle = 0, \ \forall v \in V.$$

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in  $H^{-1}(\Omega)^n$ 

 $ext{grad}$  :  $L_2(\Omega) o H^{-1}(\Omega)^n$ 

(2) For 
$$f \in H^{-1}(\Omega)^n$$
, if

$$\langle f, v \rangle = 0, \ \forall v \in V.$$

(3) There is constant  $c = c(\Omega)$  so that

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in  $H^{-1}(\Omega)^n$ 

 $\mathsf{grad}\,:\,L_2(\Omega) o H^{-1}(\Omega)^n$ 

(2) For  $f \in H^{-1}(\Omega)^n$ , if

$$\langle f, v \rangle = 0, \ \forall v \in V.$$

(3) There is constant  $c = c(\Omega)$  so that

$$\|q\|_{0,\Omega} \quad \leq \quad c\left(\| ext{grad }q\|_{-1,\Omega}+\|q\|_{-1,\Omega}
ight) \qquad orall q \in L_2(\Omega),$$

Let  $\Omega \subset \mathbb{R}^n$  be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in  $H^{-1}(\Omega)^n$ 

 $\mathsf{grad}\,:\,L_2(\Omega) o H^{-1}(\Omega)^n$ 

(2) For  $f \in H^{-1}(\Omega)^n$ , if

$$\langle f, v \rangle = 0, \ \forall v \in V.$$

(3) There is constant  $c = c(\Omega)$  so that

$$\begin{split} \|q\|_{0,\Omega} &\leq c \, (\|\text{grad } q\|_{-1,\Omega} + \|q\|_{-1,\Omega}) \quad \forall q \in L_2(\Omega), \\ \|q\|_{0,\Omega} &\leq c \|\text{grad } q\|_{-1,\Omega} \quad \forall q \in L_{2,0}(\Omega). \end{split}$$

$$\sup_{\boldsymbol{\nu}\in X}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

$$\sup_{\boldsymbol{\nu}\in X}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

## Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{\nu}\in X}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

Proof (sketch):

## Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{\nu}\in X}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### Proof (sketch):

(By Theorem I):

$$\sup_{\boldsymbol{\nu}\in\boldsymbol{X}}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### Proof (sketch):

(By Theorem 1): For a  $q \in L_{2,0}$ , exists  $v \in H_0^1(\Omega)^n$  satisfying div v = q and  $||v||_{1,\Omega} \leq c ||q||_{0,\Omega}$  (from previous thm.)

$$\sup_{\boldsymbol{\nu}\in\boldsymbol{X}}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### Proof (sketch):

(By Theorem 1): For a  $q \in L_{2,0}$ , exists  $v \in H_0^1(\Omega)^n$  satisfying div v = q and  $||v||_{1,\Omega} \le c ||q||_{0,\Omega}$  (from previous thm.) This implies

$$\sup_{\boldsymbol{\nu}\in\boldsymbol{X}}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### Proof (sketch):

(By Theorem 1): For a  $q \in L_{2,0}$ , exists  $v \in H_0^1(\Omega)^n$  satisfying div v = q and  $||v||_{1,\Omega} \le c ||q||_{0,\Omega}$  (from previous thm.) This implies

$$\sup_{v\in X}\frac{b(v,q)}{\|v\|_1}$$

$$\sup_{\boldsymbol{\nu}\in\boldsymbol{X}}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### Proof (sketch):

(By Theorem 1): For a  $q \in L_{2,0}$ , exists  $v \in H_0^1(\Omega)^n$  satisfying div v = q and  $||v||_{1,\Omega} \leq c ||q||_{0,\Omega}$  (from previous thm.) This implies

$$\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} = \frac{(\text{div } v, q)}{\|v\|_1}$$

$$\sup_{\boldsymbol{\nu}\in\boldsymbol{X}}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### Proof (sketch):

(By Theorem 1): For a  $q \in L_{2,0}$ , exists  $v \in H_0^1(\Omega)^n$  satisfying div v = q and  $||v||_{1,\Omega} \leq c ||q||_{0,\Omega}$  (from previous thm.) This implies

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} = \frac{(\operatorname{div} v,q)}{\|v\|_1} = \frac{\|q\|_0^2}{\|v\|_1}$$

$$\sup_{\boldsymbol{\nu}\in\boldsymbol{X}}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### Proof (sketch):

(By Theorem 1): For a  $q \in L_{2,0}$ , exists  $v \in H_0^1(\Omega)^n$  satisfying div v = q and  $||v||_{1,\Omega} \le c ||q||_{0,\Omega}$  (from previous thm.) This implies

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} = \frac{(\mathsf{div}\,v,q)}{\|v\|_1} = \frac{\|q\|_0^2}{\|v\|_1} \geq \frac{\|q\|_0^2}{c\|q\|_0}$$

$$\sup_{\boldsymbol{\nu}\in X}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### Proof (sketch):

(By Theorem 1): For a  $q \in L_{2,0}$ , exists  $v \in H_0^1(\Omega)^n$  satisfying div v = q and  $||v||_{1,\Omega} \le c ||q||_{0,\Omega}$  (from previous thm.) This implies

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} = \frac{(\operatorname{div} v,q)}{\|v\|_1} = \frac{\|q\|_0^2}{\|v\|_1} \ge \frac{\|q\|_0^2}{c\|q\|_0} = \frac{1}{c} \|q\|_0.$$

$$\sup_{\boldsymbol{\nu}\in X}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### **Proof (sketch):**

(By Theorem 1): For a  $q \in L_{2,0}$ , exists  $v \in H_0^1(\Omega)^n$  satisfying div v = q and  $||v||_{1,\Omega} \le c ||q||_{0,\Omega}$  (from previous thm.) This implies

$$\sup_{v \in X} \frac{b(v,q)}{\|v\|_1} = \frac{(\mathsf{div}\,v,q)}{\|v\|_1} = \frac{\|q\|_0^2}{\|v\|_1} \geq \frac{\|q\|_0^2}{c\|q\|_0} = \frac{1}{c} \|q\|_0.$$

This gives the Brezzi Condition for b.

$$\sup_{\boldsymbol{v}\in X}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_1}\geq \beta\|\boldsymbol{q}\|_0.$$

## Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{\nu}\in X}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

Proof (sketch):

## Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{\nu}\in X}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

**Proof (sketch):** (By Theorem II):

## Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{\nu}\in X}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

Proof (sketch):

(By Theorem II): For  $q \in L_{2,0}$ , and second inequality of II, that  $\|\text{grad } q\|_{-1} \ge c^{-1} \|q\|_0$ .

### Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{v}\in X}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### Proof (sketch):

(By Theorem II): For  $q \in L_{2,0}$ , and second inequality of II, that  $\|\text{grad } q\|_{-1} \ge c^{-1} \|q\|_0$ . From def. of negative norm, there exists  $v \in H_0^1(\Omega)^n$  with  $\|v\|_1 = 1$  and

#### Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{\nu}\in X}\frac{b(\boldsymbol{\nu},\boldsymbol{q})}{\|\boldsymbol{\nu}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### **Proof (sketch):**

(By Theorem II): For  $q \in L_{2,0}$ , and second inequality of II, that  $\|\text{grad } q\|_{-1} \ge c^{-1} \|q\|_0$ . From def. of negative norm, there exists  $v \in H_0^1(\Omega)^n$  with  $\|v\|_1 = 1$  and

 $(v, \operatorname{grad} q)_{0,\Omega}$ 

#### Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{v}\in X}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### Proof (sketch):

(By Theorem II): For  $q \in L_{2,0}$ , and second inequality of II, that  $\|\text{grad } q\|_{-1} \ge c^{-1} \|q\|_0$ . From def. of negative norm, there exists  $v \in H_0^1(\Omega)^n$  with  $\|v\|_1 = 1$  and

$$(v, \operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \|v\|_1 \|\operatorname{\mathsf{grad}} q\|_{-1}$$

#### Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{v}\in X}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### Proof (sketch):

(By Theorem II): For  $q \in L_{2,0}$ , and second inequality of II, that  $\|\text{grad } q\|_{-1} \ge c^{-1} \|q\|_0$ . From def. of negative norm, there exists  $v \in H_0^1(\Omega)^n$  with  $\|v\|_1 = 1$  and

$$( extsf{v}, \operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \| extsf{v} \|_1 \| \operatorname{\mathsf{grad}} q \|_{-1} \geq rac{1}{2c} \| q \|_0.$$

#### Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{v}\in X}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### **Proof (sketch):**

(By Theorem II): For  $q \in L_{2,0}$ , and second inequality of II, that  $\|\text{grad } q\|_{-1} \ge c^{-1} \|q\|_0$ . From def. of negative norm, there exists  $v \in H_0^1(\Omega)^n$  with  $\|v\|_1 = 1$  and

$$( extsf{v}, \operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \| extsf{v} \|_1 \| \operatorname{\mathsf{grad}} q \|_{-1} \geq rac{1}{2c} \| q \|_0.$$

#### Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{v}\in X}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### **Proof (sketch):**

(By Theorem II): For  $q \in L_{2,0}$ , and second inequality of II, that  $\|\text{grad } q\|_{-1} \ge c^{-1} \|q\|_0$ . From def. of negative norm, there exists  $v \in H_0^1(\Omega)^n$  with  $\|v\|_1 = 1$  and

$$(
u, \operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \| v \|_1 \| \operatorname{\mathsf{grad}} q \|_{-1} \geq rac{1}{2c} \| q \|_0$$

$$rac{b(-v,q)}{\|v\|_1}$$

#### Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{v}\in X}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### **Proof (sketch):**

(By Theorem II): For  $q \in L_{2,0}$ , and second inequality of II, that  $\|\text{grad } q\|_{-1} \ge c^{-1} \|q\|_0$ . From def. of negative norm, there exists  $v \in H_0^1(\Omega)^n$  with  $\|v\|_1 = 1$  and

$$(
u, \operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \| v \|_1 \| \operatorname{\mathsf{grad}} q \|_{-1} \geq rac{1}{2c} \| q \|_0$$

$$\frac{b(-v,q)}{\|v\|_1} = (v,\operatorname{\mathsf{grad}} q)_{0,\Omega}$$

#### Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{v}\in X}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### **Proof (sketch):**

(By Theorem II): For  $q \in L_{2,0}$ , and second inequality of II, that  $\|\text{grad } q\|_{-1} \ge c^{-1} \|q\|_0$ . From def. of negative norm, there exists  $v \in H_0^1(\Omega)^n$  with  $\|v\|_1 = 1$  and

$$(
u, \operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \| v \|_1 \| \operatorname{\mathsf{grad}} q \|_{-1} \geq rac{1}{2c} \| q \|_0.$$

$$rac{b(-
u,q)}{\|
u\|_1}=(
u, ext{grad}\ q)_{0,\Omega}\geq rac{1}{2c}\|q\|_0.$$

#### Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{v}\in X}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### **Proof (sketch):**

(By Theorem II): For  $q \in L_{2,0}$ , and second inequality of II, that  $\|\text{grad } q\|_{-1} \ge c^{-1} \|q\|_0$ . From def. of negative norm, there exists  $v \in H_0^1(\Omega)^n$  with  $\|v\|_1 = 1$  and

$$(v, \operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \|v\|_1 \|\operatorname{\mathsf{grad}} q\|_{-1} \geq rac{1}{2c} \|q\|_0.$$

By Greens Identity  $b(v,q) = -\int v \cdot \operatorname{grad} q \, dx$  we have

$$rac{b(-
u,q)}{\|
u\|_1}=(
u, ext{grad}\ q)_{0,\Omega}\geq rac{1}{2c}\|q\|_0.$$

This gives the Brezzi Condition for *b*.

#### Lemma: Inf-Sup for Stokes

$$\sup_{\boldsymbol{v}\in X}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_1}\geq\beta\|\boldsymbol{q}\|_0.$$

#### **Proof (sketch):**

(By Theorem II): For  $q \in L_{2,0}$ , and second inequality of II, that  $\|\text{grad } q\|_{-1} \ge c^{-1} \|q\|_0$ . From def. of negative norm, there exists  $v \in H_0^1(\Omega)^n$  with  $\|v\|_1 = 1$  and

$$(v, \operatorname{\mathsf{grad}} q)_{0,\Omega} \geq rac{1}{2} \|v\|_1 \|\operatorname{\mathsf{grad}} q\|_{-1} \geq rac{1}{2c} \|q\|_0.$$

By Greens Identity  $b(v,q) = -\int v \cdot \operatorname{grad} q \, dx$  we have

$$rac{b(-
u,q)}{\|
u\|_1}=(
u, ext{grad}\ q)_{0,\Omega}\geq rac{1}{2c}\|q\|_0.$$

This gives the Brezzi Condition for *b*.

Consider triangulation  $\mathcal{T}_h$  and polymomial shape spaces  $\mathcal{P}_j$ .



Consider triangulation  $\mathcal{T}_h$  and polymomial shape spaces  $\mathcal{P}_i$ .

**Taylor-Hood Elements:** Stability achieved by velocity field in polynomial space larger degree than the pressure space.



Consider triangulation  $\mathcal{T}_h$  and polymomial shape spaces  $\mathcal{P}_i$ .

**Taylor-Hood Elements:** Stability achieved by velocity field in polynomial space larger degree than the pressure space.



$$X_h := \left(\mathcal{M}^2_{0,0}
ight)^d = \left\{v_h \in C(\bar{\Omega})^d \bigcap H^1_0(\Omega)^d; v_h|_{\mathcal{T}} \in \mathcal{P}_2, \, \forall \mathcal{T} \in \mathcal{T}_h
ight\}$$

Consider triangulation  $\mathcal{T}_h$  and polymomial shape spaces  $\mathcal{P}_i$ .

**Taylor-Hood Elements:** Stability achieved by velocity field in polynomial space larger degree than the pressure space.



$$\begin{aligned} X_h &:= \left(\mathcal{M}_{0,0}^2\right)^d = \left\{ v_h \in C(\bar{\Omega})^d \bigcap H_0^1(\Omega)^d; \ v_h|_{\mathcal{T}} \in \mathcal{P}_2, \ \forall \mathcal{T} \in \mathcal{T}_h \right\} \\ M_h &:= \mathcal{M}_0^1 \bigcap L_{2,0} = \left\{ q_h \in C(\Omega) \bigcap L_{2,0}(\Omega); \ q_h|_{\mathcal{T}} \in \mathcal{P}_1, \ \mathcal{T} \in \mathcal{T}_h \right\} \end{aligned}$$

Consider triangulation  $\mathcal{T}_h$  and polymomial shape spaces  $\mathcal{P}_j$ .

**Taylor-Hood Elements:** Stability achieved by velocity field in polynomial space larger degree than the pressure space.



$$\begin{array}{lll} X_h & := & \left(\mathcal{M}_{0,0}^2\right)^d = \left\{ v_h \in C(\bar{\Omega})^d \bigcap H_0^1(\Omega)^d; \ v_h|_{\mathcal{T}} \in \mathcal{P}_2, \ \forall \mathcal{T} \in \mathcal{T}_h \right\} \\ M_h & := & \mathcal{M}_0^1 \bigcap L_{2,0} = \left\{ q_h \in C(\Omega) \bigcap L_{2,0}(\Omega); \ q_h|_{\mathcal{T}} \in \mathcal{P}_1, \ \mathcal{T} \in \mathcal{T}_h \right\} \end{array}$$

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Consider triangulation  $\mathcal{T}_h$  and polymomial shape spaces  $\mathcal{P}_i$ .

**Taylor-Hood Elements:** Stability achieved by velocity field in polynomial space larger degree than the pressure space.



$$\begin{array}{lll} X_h & := & \left(\mathcal{M}_{0,0}^2\right)^d = \left\{ v_h \in C(\bar{\Omega})^d \bigcap H_0^1(\Omega)^d; \ v_h|_{\mathcal{T}} \in \mathcal{P}_2, \, \forall \mathcal{T} \in \mathcal{T}_h \right\} \\ M_h & := & \mathcal{M}_0^1 \bigcap L_{2,0} = \left\{ q_h \in C(\Omega) \bigcap L_{2,0}(\Omega); \ q_h|_{\mathcal{T}} \in \mathcal{P}_1, \ \mathcal{T} \in \mathcal{T}_h \right\} \end{array}$$

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

$$X_{h} := \mathcal{M}_{0,0}^{1} \left( \mathcal{T}_{h/2} \right)^{2} = \left\{ v_{h} \in C(\bar{\Omega})^{d} \bigcap H_{0}^{1}(\Omega)^{d}; v_{h} | \tau \in \mathcal{P}_{2}, \forall T \in \mathcal{T}_{h/2} \right\}$$

Paul J. Atzberger, UCSB

Consider triangulation  $\mathcal{T}_h$  and polymomial shape spaces  $\mathcal{P}_i$ .

**Taylor-Hood Elements:** Stability achieved by velocity field in polynomial space larger degree than the pressure space.



$$\begin{array}{lll} X_h & := & \left(\mathcal{M}_{0,0}^2\right)^d = \left\{ v_h \in C(\bar{\Omega})^d \bigcap H_0^1(\Omega)^d; \ v_h|_T \in \mathcal{P}_2, \, \forall T \in \mathcal{T}_h \right\} \\ M_h & := & \mathcal{M}_0^1 \bigcap L_{2,0} = \left\{ q_h \in C(\Omega) \bigcap L_{2,0}(\Omega); \ q_h|_T \in \mathcal{P}_1, \ T \in \mathcal{T}_h \right\} \end{array}$$

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

$$\begin{aligned} X_h &:= \mathcal{M}_{0,0}^1 \left( \mathcal{T}_{h/2} \right)^2 = \left\{ v_h \in C(\bar{\Omega})^d \bigcap H_0^1(\Omega)^d; \ v_h |_{\mathcal{T}} \in \mathcal{P}_2, \ \forall \mathcal{T} \in \mathcal{T}_{h/2} \right\} \\ M_h &:= \mathcal{M}_0^1 \bigcap L_{2,0} = \left\{ q_h \in C(\Omega) \bigcap L_{2,0}(\Omega); \ q_h |_{\mathcal{T}} \in \mathcal{P}_1, \ \mathcal{T} \in \mathcal{T}_h \right\} \end{aligned}$$

Consider triangulation  $\mathcal{T}_h$  and polymomial shape spaces  $\mathcal{P}_i$ .

**Taylor-Hood Elements:** Stability achieved by velocity field in polynomial space larger degree than the pressure space.



$$\begin{array}{lll} X_h & := & \left(\mathcal{M}_{0,0}^2\right)^d = \left\{ v_h \in C(\bar{\Omega})^d \bigcap H_0^1(\Omega)^d; \ v_h|_{\mathcal{T}} \in \mathcal{P}_2, \, \forall \mathcal{T} \in \mathcal{T}_h \right\} \\ M_h & := & \mathcal{M}_0^1 \bigcap L_{2,0} = \left\{ q_h \in C(\Omega) \bigcap L_{2,0}(\Omega); \ q_h|_{\mathcal{T}} \in \mathcal{P}_1, \ \mathcal{T} \in \mathcal{T}_h \right\} \end{array}$$

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

$$\begin{array}{lll} X_h & := & \mathcal{M}_{0,0}^1 \left( \mathcal{T}_{h/2} \right)^2 = \left\{ v_h \in C(\bar{\Omega})^d \bigcap H_0^1(\Omega)^d; \; v_h |_{\mathcal{T}} \in \mathcal{P}_2, \, \forall \, \mathcal{T} \in \mathcal{T}_{h/2} \right\} \\ M_h & := & \mathcal{M}_0^1 \bigcap L_{2,0} = \left\{ q_h \in C(\Omega) \bigcap L_{2,0}(\Omega); \; q_h |_{\mathcal{T}} \in \mathcal{P}_1, \; \mathcal{T} \in \mathcal{T}_h \right\} \end{array}$$

Figure: x denotes pressure values, · denotes velocity values.

## Stokes Hydrodynamic Equations: MINI Element

MINI Elements: Achieves stability by using interior "bubble" elements.





# Stokes Hydrodynamic Equations: MINI Element

MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let  $\lambda_1, \lambda_2, \lambda_3$  denotes the **barycentric coordinates** of a points **x**.





# Stokes Hydrodynamic Equations: MINI Element

**MINI Elements:** Achieves stability by using interior "bubble" elements. For triangle, let  $\lambda_1, \lambda_2, \lambda_3$  denotes the **barycentric coordinates** of a points **x**. Add to the shape space the "bubble" function

 $b(\mathbf{x}) = \lambda_1 \lambda_2 \lambda_3.$ 

Note, b vanishes on boundary of T.



MINI Element



MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let  $\lambda_1, \lambda_2, \lambda_3$  denotes the **barycentric coordinates** of a points **x**. Add to the shape space the "bubble" function

$$b(\mathbf{x}) = \lambda_1 \lambda_2 \lambda_3.$$

Note, b vanishes on boundary of T. The finite element spaces are

 $X_h := \left[\mathcal{M}^1_{0,0} \oplus B_3
ight]^2, \quad M_h := \mathcal{M}^1_0 igcap L_{2,0}(\Omega),$ 





MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let  $\lambda_1, \lambda_2, \lambda_3$  denotes the **barycentric coordinates** of a points **x**. Add to the shape space the "bubble" function

$$b(\mathbf{x}) = \lambda_1 \lambda_2 \lambda_3.$$

Note, b vanishes on boundary of T. The finite element spaces are

$$X_h := \left[\mathcal{M}^1_{0,0} \oplus B_3
ight]^2, \quad M_h := \mathcal{M}^1_0 \bigcap L_{2,0}(\Omega),$$

where  $B_3 := \{ v \in C^0(\overline{\Omega}); v |_{\mathcal{T}} \in \operatorname{span}[\lambda_1 \lambda_2 \lambda_3], \forall \mathcal{T} \in \mathcal{T}_h \}.$ 



P1 Element Bubble Element

#### http://atzberger.org/

MINI Element

MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let  $\lambda_1, \lambda_2, \lambda_3$  denotes the **barycentric coordinates** of a points **x**. Add to the shape space the "bubble" function

$$b(\mathbf{x}) = \lambda_1 \lambda_2 \lambda_3.$$

Note, b vanishes on boundary of T. The finite element spaces are

$$X_h := \left[\mathcal{M}^1_{0,0} \oplus B_3
ight]^2, \quad M_h := \mathcal{M}^1_0 \bigcap L_{2,0}(\Omega),$$

where  $B_3 := \{ v \in C^0(\overline{\Omega}); v |_T \in \text{span}[\lambda_1 \lambda_2 \lambda_3], \forall T \in \mathcal{T}_h \}.$ 

Figure: x denotes pressure values, · denotes velocity values.



**MINI Flement**