Finite Element Methods: Numerical Exercises

Paul J. Atzberger

1. Show that each of the elements have the stated regularity as follows:

(a) Lagrange triangular element based on Pj with k& + 1 distinct nodes
along each edge is CV.

(b) Hermite triangular element based on Ps is C°.

(c) Argyris triangular element based on Ps is C! in the normal direction
across edges.
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Figure 1: Triangular Elements.

2. Consider the elliptic PDE (Poisson problem) given by
Au(x) = —f(x), x€Q, u(x)=0, x €09,
where Q = [-L, L] x [-L, L] C R% In the Ritz-Galerkin approximation,
we seek a solution uy, € V, CV = H}(Q) with
a(up,w) = —{(f,w)rz, Yw € Vy,

where a(up, w) = [, Vxun(x) - Vxw(x)dx and (f,w)r2 = [, f( dx.
Consider a basis of functions {¢} w—q for Vj,. We can represent any v E

Vi by v(x) = > vigi(x), up(x) = >, ui¢i(x), and approximate f by
fn(x) = >, fipi(x). The FEM approximation u; can be expressed as
solving the linear system

Au = —MT.



The A is the stiffness matriz given by A;; = a(¢i, ¢j), M is the mass
matriz given by M;; = (¢s, ¢;) 12, and [u}; = w;, [f]; = fi.

(a) (Meshing) Discretize the domain €2 into elements 7 = {7;}}~,, where
T, are triangular elements. For the square domain Q = [—L, L] X
[—L,L] C R? one way to discretize is to define a coarse mesh. A
basic algorithm to obtain a more refined discretization is to loop over
each triangle and bisect the edges to obtain four smaller triangles, see
Figure 2. Data structures for this are a list of vertices v; € R? and
tuples (i1, 19, 73) which give the indices of the vertices of each triangle.

Figure 2: Mesh triangulation and refinement by triangle bisection.

Implement this meshing algorithm for the triangulation in Figure 2.
Plot the triangulations when this refinement procedure is done up to
n = 5 times.

(b) (Assembly and Quadratures) For the discretization into triangular
elements 7 = {T;},, take {¢;} | to be the nodal basis functions
for Lagrange elements with polynomial shape functions of degree d
so that v,|Ty € Py. The stiffness matrix A is obtained through an
assembly procedure where we compute the integral by breaking it
into parts summing up the inner-products over each element 7, as
Aij = al¢i,¢j) = 2201 [ Vx@i(x) - Vxj(x)dx = 3771, Agyj, and
similarly, Mi; = (6, @)z = D)1, [ di(x)@(x)dx = 3771, M.
Integrals are approximated by high-precision quadratures

Ay =) wiVxdi(xr) - Vi (xi), Mgy =Y wii(xi)dj(xy).
k k

The {wy} are the quadrature weights and {x;} are the quadrature
nodes. Note in general the quadrature nodes can differ from the



finite element nodes. We use these approximations to obtain

Au = —Mf.
For the case of Lagrange elements using polynomial spaces of degree d,
we use quadratures that have order 2d. This allows for computing the

integrals up to round-off errors. For quadratures on triangulations,
see Figure 3 and Table 1.

order 1 order 2 order 4

Figure 3: Quadrature Nodes.

d|n]|k X wr | k X wg | k X wg | k X Wi
1711 (1/3,1/3) 1/2
2131 (1/6,1/6) 1/6 | 2 (2/3,1/6) 1/6 | 3 (1/6,2/3) 1/6
341 (1/3,1/3) -9/32 12 (3/5,1/5) 25/96 | 3 (1/5,3/5) 25/96 | 4 (1/5,1/5) 25/96
4171 (0,0) 1/40 |2 (1/2,0) 1/15]3 (1,0) 1/40

4 (1/2,1/2) 1/15 |5 (0,1) 1/40 |6 (01/2) 1/15 | 7 (1/3,1/3)  9/40

Table 1: Quadratures on triangulations for fo ey f(x)dx ~ >, f(xp)w, x = (x1,22). The d is the
quadrature order, n number of nodes, xj nodes and wy weights. For affine reference element map X =
P(X) with ¥(7¢) = To and Jacobian J( ) = |det 9¢/0X], the quadrature is applied using [ F dX =

f?’o Fyp=1(x))J tdx.

Using this assembly + quadrature approach, implement codes to com-
pute for a given triangulation the stiffness and mass matrices when

d=1and d = 2.

Consider the FEM approximation for the solutions v with L = 7 and

(i) u(xy, x2) = cos(b5xy) sin(5x9) and (ii) u(x1, x9) = exp (— cos(3x1) + sin(3xs)).
Use f(x) = —Au evaluated at the nodal points to obtain the numer-

ical data for these test problems.

Make a log-log plot of the solution error vs mesh size h=! = 27" for
meshes with refinements n = 1,2,...,5. What is the exhibited order
of accuracy of the Lagrange FEMs when d =1 and d = 27



(c) (Iterative Methods) To solve approximately
Au = b, where b = —MTf,
iterative methods can be used of the form
Bu""' = Cu" +b.

For convergence, B—C = A and the spectral radius of B~'C' is taken
to satisfy p(B~!C) < 1. It is common to decompose the matrix as
A= D—L-U, where D is the diagonal entries, — L the lower entries,
and —U the upper entries. A few example iterative methods are

i. Direct Relaxation with B = I and C' = I +nA, with small enough
n s.t. 1 < 2/X or smaller, where A is the largest eigenvalue of A.

ii. Jacobi Iteration with B=D and C = L + U.
iii. Gauss-Seidel Iteration with B=D + L and C = U.

Compare these methods for approximating the solution u when L = 7
and (i) u(xy1, z2) = cos(bxq) sin(bxs) and

(ii) u(xy, z9) = exp (—cos(3x1) + sin(3z2)). Use f(x) = —Au evalu-
ated at the nodal points to obtain the numerical data for these test
problems.

Make a log-log plot of the number iterations and the error for meshes
with n = 5 refinements. How many iterations does each method need
to converge to 1% accuracy for solving the linear system? We remark
that in practice these convergence rates are further enhanced by using
preconditioners.



