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1. Show that each of the elements have the stated regularity as follows:

(a) Lagrange triangular element based on Pk with k + 1 distinct nodes
along each edge is C0.

(b) Hermite triangular element based on P3 is C
0.

(c) Argyris triangular element based on P5 is C
1 in the normal direction

across edges.

Figure 1: Triangular Elements.

2. Consider the elliptic PDE (Poisson problem) given by

∆u(x) = −f(x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω,

where Ω = [−L,L]× [−L,L] ⊂ R2. In the Ritz-Galerkin approximation,
we seek a solution uh ∈ Vh ⊂ V = H1

0(Ω) with

a(uh, w) = −⟨f, w⟩L2, ∀w ∈ Vh,

where a(uh, w) =
∫
Ω∇xuh(x) · ∇xw(x)dx and ⟨f, w⟩L2 =

∫
Ω f(x)w(x)dx.

Consider a basis of functions {ϕk}Nk=1 for Vh. We can represent any v ∈
Vh by v(x) =

∑
i viϕi(x), uh(x) =

∑
i uiϕi(x), and approximate f by

fh(x) =
∑

i fiϕi(x). The FEM approximation uh can be expressed as
solving the linear system

Au = −M f .



The A is the stiffness matrix given by Aij = a(ϕi, ϕj), M is the mass
matrix given by Mij = ⟨ϕi, ϕj⟩L2, and [u]i = ui, [f ]i = fi.

(a) (Meshing) Discretize the domain Ω into elements T = {Tℓ}mℓ=1, where
Tℓ are triangular elements. For the square domain Ω = [−L,L] ×
[−L,L] ⊂ R2, one way to discretize is to define a coarse mesh. A
basic algorithm to obtain a more refined discretization is to loop over
each triangle and bisect the edges to obtain four smaller triangles, see
Figure 2. Data structures for this are a list of vertices vi ∈ R2 and
tuples (i1, i2, i3) which give the indices of the vertices of each triangle.

Figure 2: Mesh triangulation and refinement by triangle bisection.

Implement this meshing algorithm for the triangulation in Figure 2.
Plot the triangulations when this refinement procedure is done up to
n = 5 times.

(b) (Assembly and Quadratures) For the discretization into triangular
elements T = {Tℓ}mℓ=1, take {ϕk}Nk=1 to be the nodal basis functions
for Lagrange elements with polynomial shape functions of degree d
so that vh|Tℓ ∈ Pd. The stiffness matrix A is obtained through an
assembly procedure where we compute the integral by breaking it
into parts summing up the inner-products over each element Tℓ as
Aij = a(ϕi, ϕj) =

∑m
ℓ=1

∫
Tℓ ∇xϕi(x) · ∇xϕj(x)dx =

∑m
ℓ=1Aℓ,ij, and

similarly, Mij = ⟨ϕi, ϕj⟩L2 =
∑m

ℓ=1

∫
Tℓ ϕi(x)ϕj(x)dx =

∑m
ℓ=1Mℓ,ij.

Integrals are approximated by high-precision quadratures

Ãℓ,ij =
∑
k

ωk∇xϕi(xk) · ∇xϕj(xk), M̃ℓ,ij =
∑
k

ωkϕi(xk)ϕj(xk).

The {ωk} are the quadrature weights and {xk} are the quadrature
nodes. Note in general the quadrature nodes can differ from the



finite element nodes. We use these approximations to obtain

Ãu = −M̃ f .

For the case of Lagrange elements using polynomial spaces of degree d,
we use quadratures that have order 2d. This allows for computing the
integrals up to round-off errors. For quadratures on triangulations,
see Figure 3 and Table 1.

Figure 3: Quadrature Nodes.

d n k xk ωk k xk wk k xk wk k xk wk

1 1 1 (1/3,1/3) 1/2
2 3 1 (1/6,1/6) 1/6 2 (2/3,1/6) 1/6 3 (1/6,2/3) 1/6
3 4 1 (1/3,1/3) -9/32 2 (3/5,1/5) 25/96 3 (1/5,3/5) 25/96 4 (1/5,1/5) 25/96
4 7 1 (0,0) 1/40 2 (1/2,0) 1/15 3 (1,0) 1/40

4 (1/2,1/2) 1/15 5 (0,1) 1/40 6 (0,1/2) 1/15 7 (1/3,1/3) 9/40

Table 1: Quadratures on triangulations for
∫ 1

0

∫ 1−x1

0
f(x)dx ≈

∑
k f(xk)wk, x = (x1, x2). The d is the

quadrature order, n number of nodes, xk nodes, and ωk weights. For affine reference element map x =
ψ(X) with ψ(Tℓ) = T0 and Jacobian J(X) = |det ∂ψ/∂X|, the quadrature is applied using

∫
Tℓ
F (X)dX =∫

T0
F (ψ−1(x))J−1dx.

Using this assembly + quadrature approach, implement codes to com-
pute for a given triangulation the stiffness and mass matrices when
d = 1 and d = 2.

Consider the FEM approximation for the solutions u with L = π and
(i) u(x1, x2) = cos(5x1) sin(5x2) and (ii) u(x1, x2) = exp (− cos(3x1) + sin(3x2)).
Use f(x) = −∆u evaluated at the nodal points to obtain the numer-
ical data for these test problems.

Make a log-log plot of the solution error vs mesh size h−1 = 2−n for
meshes with refinements n = 1, 2, . . . , 5. What is the exhibited order
of accuracy of the Lagrange FEMs when d = 1 and d = 2?



(c) (Iterative Methods) To solve approximately

Au = b, where b = −M f ,

iterative methods can be used of the form

Bun+1 = Cun + b.

For convergence, B−C = A and the spectral radius of B−1C is taken
to satisfy ρ(B−1C) < 1. It is common to decompose the matrix as
A = D−L−U , where D is the diagonal entries, −L the lower entries,
and −U the upper entries. A few example iterative methods are

i. Direct Relaxation with B = I and C = I+ ηA, with small enough
η s.t. η ≤ 2/λ or smaller, where λ is the largest eigenvalue of A.

ii. Jacobi Iteration with B = D and C = L+ U .

iii. Gauss-Seidel Iteration with B = D + L and C = U .

Compare these methods for approximating the solution u when L = π

and (i) u(x1, x2) = cos(5x1) sin(5x2) and
(ii) u(x1, x2) = exp (− cos(3x1) + sin(3x2)). Use f(x) = −∆u evalu-
ated at the nodal points to obtain the numerical data for these test
problems.

Make a log-log plot of the number iterations and the error for meshes
with n = 5 refinements. How many iterations does each method need
to converge to 1% accuracy for solving the linear system? We remark
that in practice these convergence rates are further enhanced by using
preconditioners.


