Introduction to Machine Learning Foundations and Applications

Paul J. Atzberger University of California Santa Barbara

Unsupervised Learning: Dimension Reduction

Dimension Reduction

Motivations for Unsupervised Learning:

Given data set $S = \{x_1, x_2, ..., x_m\}$ what types of patterns or structure occur.

Insights into how features $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^N)$ relate to one another.

Insights into low-dimensional structure inherent in data.

Insights into groupings or clustering of data (number of classes).

Many methods to consider depending on aims:

- Clustering Methods (K-means)
- Principal Component Analysis (PCA / KPCA)
- Manifold Learning + (many more methods)

Overall methods share some common features.

Abstractly trying to learn characteristics of $\mathcal{D} \sim \mathcal{X}$.

Principal Component Analysis

K-Means Clustering

Motivations

Manifold-like structures in high dimensional spaces (natural images, audio, physical fields, PDE solutions).

Paul J. Atzberger, UCSB

Machine Learning

Clustering: K-Means

~

K-Means Clustering

Task: Given data set $S = \{x_1, x_2, ..., x_m\}$ find partition into k sets $\Omega = \{\Omega_1, \Omega_2, ..., \Omega_k\}$.

K-Means Clustering Optimization Problem:

 $\arg\min_{\Omega}\sum_{l=1}^{n}\sum_{x\in\Omega_{l}}\|x-\mu_{l}\|^{2}$

Challenge: Exact solution is NP-hard (requires considering all partitions).

Need to use approximate methods.

Voronoi Iteration (Lloyd's Algorithm):

- Randomly choose k initial seed points.
 - o Compute Voronoi Cells of seed points and centroids.
 - Move seed points to centroid of points in each Voronoi Cell.
 - Repeat until termination criteria (seed points move less than ε).

Voronoi iteration yields seeds tending toward distribution w/ more uniform cells.

Seed points tend to migrate toward cluster centers giving approximate solution.

Machine Learning

http://atzberger.org/

K-Means Clustering: Example

Example: k = 3 clusters, std. dev. $\sigma = 1.0$, $m = 1.5 \times 10^3$ samples.

2 0 -2 -4-6-8 -10.0-7.5 -5.0 -2.5 0.0 2.5 5.0

K-Means Clustering

Paul J. Atzberger, UCSB

Machine Learning

K-Means Clustering: Example

Example: k = 3 clusters, std. dev. $\sigma = 1.0$, $m = 1.5 \times 10^3$ samples.

K-Means can be sensitive to hyperparameters and data distribution.

- Positing the wrong number k of clusters.
- Anisotropic cluster distribution.
- Unequal variance or size of clusters.

Cross validation can be used to help determine good hyperparameters.

Strong assumption that data is distributed in distinct clusters.

Unequal Variance Clusters

Paul J. Atzberger, UCSB

Machine Learning

http://atzberger.org/

Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

Singular Value Decomposition (SVD)

Task: Given matrix C find the best approximating rank r matrix A_r.

Optimization Problem:

 $\min_{A} \|C - A\|_2$
subject rank(A) = r.

Solution:

Singular Value Decomposition (SVD): $C = UAV^T \rightarrow A_r = UA_rV^T$

Features:

U, *V* are orthonormal matrices.

Λ is diagonal matrix of singular values $Λ = diag(λ_1, λ_2, ..., λ_n)$.

Rank r matrix $A_r = UA_rV^T$ where $A_r = diag(\lambda_1, \lambda_2, ..., \lambda_r, 0, ..., 0)$ matrix of largest r singular values.

Best approximation in sense $||C - Ar||_2 \le ||C - A||_2$ for any A with rank(A) = r.

Many useful applications.

Singular Value Decomposition

Example: Image Compression using SVD

Task: Given matrix C find the best approximating rank r matrix A?

Optimization Problem:

 $\min_{A} \|C - A\|_2$
subject rank(A) = r.

Image Compression:

View image as matrix C of column vectors x_i.

```
Singular Value Decomposition: C = UAV^T.
```

Compression \rightarrow find p-vectors that span columns of **C**.

Keep only first p singular vectors of U.

Many other compression techniques for images (better).

image 800x500 pixels

Example: Image Compression using SVD

Task: Given matrix C find the best approximating rank r matrix A?

Optimization Problem:

 $\min_{A} \|C - A\|_{2}$
subject rank(A) = r.

Image Compression:

View image as matrix C of column vectors x_i.

Singular Value Decomposition: $C = UAV^T$.

Compression \rightarrow find p-vectors that span columns of **C**.

Keep only first p singular vectors of U.

Many other compression techniques for images (better).

Full-Rank Tiger

1002

Rank 3 Tiger

Gibiansky 2015

Rank 50 Tiger

Example: Image Compression using SVD

Task: Given matrix C find the best approximating rank r matrix A?

Optimization Problem:

 $\min_{A} \|C - A\|_2$
subject rank(A) = r.

Image Compression:

View image as matrix C of column vectors x_i.

Singular Value Decomposition: $C = UAV^T$.

Compression \rightarrow find p-vectors that span columns of **C**.

Keep only first p singular vectors of U.

Many other compression techniques for images (better).

Rank Full

Rank 50

Rank 50 ~ 16% original size

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Task: Given data set $S = \{x_1, x_2, ..., x_m\}$ with $x_i \in \mathbb{R}^N$ and $\sum_{i=1}^m x_i = 0$ find the best approximating hyperplane h = span{w₁, w₂,...,w_p}.

Optimization Problem:

$$\min_{W,Z} \sum_{i=1}^{m} \|\boldsymbol{x}_i - W\boldsymbol{z}_i\|_2^2$$

subject $W^T W = I_{p \times p}, W \in \mathbb{R}^{N \times p}.$

Principal Component Analysis

Finds optimal orthonormal basis w_i best accounting for **covariance** $C = \frac{1}{m} \sum_{i=1}^{m} x_i x_i^T \sim \sum_{a=1}^{p} \lambda_a w_a w_a^T$.

Closely related to the Singular Value Decomposition (SVD): $C = UAV^T$.

Solution: W= $[u_1, u_2, ..., u_p]$ first p singular vectors of U and $\mathbf{z}_i = \mathscr{P}_W \mathbf{x}_i := W^T \mathbf{x}_i$, $\widetilde{\mathbf{x}}_i = W \mathbf{z}_i = W W^T \mathbf{x}_i$.

Selects p directions of data $\{x_i\}$ with greatest variation.

Projects data x_i to the **nearest hyperplane point** to yield **z**_i.

Low-dimensional linear structure then expect **good fit** for p << N.

Task: Given data set $S = \{x_1, x_2, ..., x_m\}$ with $x_i \in \mathbb{R}^N$ and $\sum_{i=1}^m x_i = 0$ find the best approximating hyperplane h = span{w₁,w₂,...w_p}.

Principal Component Analysis (PCA)

Optimization Problem:

$$\min_{W,Z} \sum_{i=1}^{m} \|\boldsymbol{x}_i - W\boldsymbol{z}_i\|_2^2$$

subject $W^T W = I_{p \times p}, W \in \mathbb{R}^{N \times p}.$

Finds optimal orthonormal basis w_i best accounting for **covariance** $C = \frac{1}{m} \sum_{i=1}^{m} x_i x_i^T \sim \sum_{a=1}^{p} \lambda_a w_a w_a^T$.

Closely related to the Singular Value Decomposition (SVD): $C = UAV^T$

Solution: W= $[u_1, u_2, ..., u_p]$ first p singular vectors of U and $\mathbf{z}_i = \mathscr{P}_W \mathbf{x}_i := WW^T \mathbf{x}_i$.

Example: m = 3×10^3 data points, exact: $u_1 = [cos(\pi/8), sin(\pi/8)], u_2 = [-sin(\pi/8), cos(\pi/8)], \Lambda = diag(36.0, 1.0).$

Results: $\Lambda = diag(37.68, 1.01), w_1 = [-0.926, -0.378], w_2 = [-0.378, 0.926],$ $<math>cos(\pi/8) = 0.924, sin(\pi/8) = 0.383 \rightarrow u_1 = [0.924, -0.383], u_2 = [-0.383, 0.924].$ **Assumptions:** Variation is indicative of importance of a feature, data distributed within a linear subspace.

15

-15 -10 -5

-20

Kernel Principal Component Analysis (KPCA):

Task: Given data set $S = \{x_1, x_2, ..., x_m\}$ with $x_i \in \mathbb{R}^N$, Φ feature map of K. Find in feature space $\mathcal{H}_{\mathsf{RKHS}}$ the best approximating hyperplane h = span $\{v_1, v_2, ..., v_p\}$ of $\tilde{S} = \{\Phi(x_1), \Phi(x_2), ..., \Phi(x_m)\}$.

Optimization Problem:

 $\min_{W,Z} \sum_{i=1}^{m} \|\Phi(x_i) - Wzi\|_2^2$ subject $W^T W = I_{p \times p}, W \in (\mathcal{H}_{\mathsf{RKHS}})^p.$

Reformulate: $q_i = \Phi(x_i)$, $C = \frac{1}{m} \sum_{i=1}^m q_i q_i^T$. Solution using SVD, $C = U \Lambda U^T$.

$$\lambda_a \mathbf{u}_a = C \mathbf{u}_a = \frac{1}{m} \sum_{i=1}^m \mathbf{q}_i \mathbf{q}_i^T \mathbf{u}_a = \frac{1}{m} \sum_{i=1}^m \left(\mathbf{q}_i^T \mathbf{u}_a \right) \mathbf{q}_i \implies \mathbf{u}_a = \sum_i \frac{\mathbf{q}_i^T \mathbf{u}_a}{m \lambda_a} \mathbf{q}_i = \sum_i \alpha_i^a \mathbf{q}_i, \ \mathbf{u}_a \in \operatorname{span}\{\mathbf{q}_i\}.$$

Project the equations using

$$q_i^T C u_a = \lambda_a q_i^T u_a, \quad \Rightarrow \quad q_i^T \frac{1}{m} \sum_k q_k q_k^T \sum_j \alpha_j^a q_j = \lambda_a q_i^T \sum_j \alpha_j^a q_j$$
$$\Rightarrow \quad \frac{1}{m} \sum_{j,k} \alpha_j^a \left(q_i^T q_k \right) \left(q_k^T q_j \right) = \lambda_a \sum_j \alpha_j \left(q_i^T q_j \right).$$

Paul J. Atzberger, UCSB

Machine Learning

Input Feature Space

New Feature Space

We now use $K(\mathbf{x}_i, \mathbf{x}_i) = \Phi^T(\mathbf{x}_i)\Phi(\mathbf{x}_i) = \mathbf{q}_i^T \mathbf{q}_i, \Rightarrow K^2 \alpha^a = m \lambda_a K \alpha^a, \Rightarrow K \alpha^a = \tilde{\lambda}_a \alpha^a, \quad \tilde{\lambda}_a = m \lambda_a$

Gives: $y_a = u_a^T q = \sum_i \alpha_i^a q_i^T q = \sum_i \alpha_i^a K(x_i, x).$

Kernel Principal Component Analysis (KPCA):

Optimization Problem:

 $\min_{W,Z} \sum_{i=1} \|\Phi(x_i) - Wzi\|_2^2$ subject $W^T W = I_{p \times p}, W \in (\mathcal{H}_{\mathsf{RKHS}})^p$.

Reformulate: $q_i = \Phi(x_i)$, $C = \frac{1}{m} \sum_{i=1}^{m} q_i q_i^T$. Solution using SVD, $C = U \Lambda U^T$.

$$\lambda_{a}\mathsf{u}_{a} = C\mathsf{u}_{a} = \frac{1}{m}\sum_{i=1}^{m}\mathsf{q}_{i}\mathsf{q}_{i}^{\mathsf{T}}\mathsf{u}_{a} = \frac{1}{m}\sum_{i=1}^{m}\left(\mathsf{q}_{i}^{\mathsf{T}}\mathsf{u}_{a}\right)\mathsf{q}_{i} \implies \mathsf{u}_{a} = \sum_{i}\frac{\mathsf{q}_{i}^{\mathsf{T}}\mathsf{u}_{a}}{m\lambda_{a}}\mathsf{q}_{i} = \sum_{i}\alpha_{i}^{a}\mathsf{q}_{i}, \ \mathsf{u}_{a} \in \mathsf{span}\{\mathsf{q}_{i}\}.$$

Project the equations using

$$q_i^T C u_a = \lambda_a q_i^T u_a, \quad \Rightarrow \quad q_i^T \frac{1}{m} \sum_k q_k q_k^T \sum_j \alpha_j^a q_j = \lambda_a q_i^T \sum_j \alpha_j^a q_j$$
$$\Rightarrow \quad \frac{1}{m} \sum_{i,k} \alpha_j^a \left(q_i^T q_k \right) \left(q_k^T q_j \right) = \lambda_a \sum_i \alpha_j \left(q_i^T q_j \right).$$

New Feature Space

Input Feature Space

Kernel Principal Component Analysis (KPCA):

Task: Given data set $S = \{x_1, x_2, ..., x_m\}$ with $x_i \in \mathbb{R}^N$, Φ feature map of K. Find in feature space $\mathcal{H}_{\mathsf{RKHS}}$ the best approximating hyperplane h = span{v₁, v₂,...v_p} of $\tilde{S} = \{\Phi(x_1), \Phi(x_2), ..., \Phi(x_m)\}.$

KPCA Reformulation with Centering:

K^c $\boldsymbol{\alpha}^{a} = \tilde{\lambda}_{a} \boldsymbol{\alpha}^{a}$ where $K^{c}(\boldsymbol{x}_{i}, \boldsymbol{x}) = K(\boldsymbol{x}_{i}, \boldsymbol{x}) - \boldsymbol{\kappa}^{T}(\boldsymbol{x}_{i})\mathbf{1} - \boldsymbol{\kappa}^{T}(\boldsymbol{x})\mathbf{1} + \mathbf{1}^{T}\boldsymbol{k}\mathbf{1}$,

Notation:
$$[K^c]_{ij} = K^c(x_i, x_j)$$
 with $[\kappa(x)]_l = \frac{1}{m}K(x_l, x), [k]_{pl} = \frac{1}{m^2}K_{pl}$ and $[1]_l = 1$.

Principal components: $\boldsymbol{u}_{a} = \sum_{i=1}^{m} \alpha_{i}^{a} \Phi(\boldsymbol{x}_{i})$ with $\boldsymbol{u}_{a}^{T} \Phi(\boldsymbol{x}) = \sum_{i=1}^{m} \alpha_{i}^{a} K^{c}(\boldsymbol{x}_{i}, \boldsymbol{x})$, $K_{ij}^{c} = K_{ij} - \boldsymbol{\kappa}_{i}^{T} \mathbf{1} - \boldsymbol{\kappa}_{j}^{T} \mathbf{1} + \mathbf{1}^{T} \mathbf{k} \mathbf{1}$ Derivation: $K_{ij}^{c} = \left(\Phi(\boldsymbol{x}_{i}) - \frac{1}{m} \sum_{k=1}^{m} \Phi(\boldsymbol{x}_{k})\right)^{T} \left(\Phi(\boldsymbol{x}_{j}) - \frac{1}{m} \sum_{l=1}^{m} \Phi(\boldsymbol{x}_{l})\right)$

$$\mathcal{K}_{ij}^c = \Phi(\mathsf{x}_i)^T \Phi(\mathsf{x}_j) - \frac{1}{m} \sum_{k=1}^m \Phi(\mathsf{x}_k)^T \Phi(\mathsf{x}_j) - \frac{1}{m} \sum_{\ell=1}^m \Phi(\mathsf{x}_i)^T \Phi(\mathsf{x}_\ell) + \frac{1}{m^2} \sum_{k,\ell} \Phi(\mathsf{x}_k)^T \Phi(\mathsf{x}_\ell).$$

Input Feature Space

New Feature Space

Kernel Principal Component Analysis (KPCA): Example

Task: Given data set $S = \{x_1, x_2, ..., x_m\}$ with $x_i \in \mathbb{R}^N$, Φ feature map of K. Find in feature space $\mathcal{H}_{\mathsf{RKHS}}$ the best approximating hyperplane h = span{v_1, v_2, ..., v_p} of $\tilde{S} = \{\Phi(x_1), \Phi(x_2), ..., \Phi(x_m)\}.$

Example: Data-set *S* = {two semi-circles centered around (0,0) and (1,0)}, $m = 10^3$ samples, noise = 0.075, kernel= Radial Basis Function, $\gamma = 15$.

Nearly one dimensional structure (non-linear).

Radial basis function kernel corresponds to similarity by proximity.

Results:

First component w₁ := u₁ captures enough information to **separate data set.**

Kernel methods can be sensitive to tuning of hyperparameters.

Cross-validation to get good hyperparameters but need metric (two common)

- if unsupervised learning can use reconstruction errors.
- if used for supervised learning (classifier) can use validation training errors.

Random Projection

.

Random Projections

Random Projection

Consider the transform $x = W\tilde{x}$ with random $W \sim \mu(\mathbb{R}^{n \times d})$ fixed for all $\tilde{x} \in \mathbb{R}^{d}$.

We define the **distortion** r of a transformed vector x as

$$r(\mathsf{x}) := \left| rac{\|W\mathsf{x}\|}{\|\mathsf{x}\|} - 1
ight|$$

Lemma: Distortion of a Gaussian Random Projection

For a fixed $x \in \mathbb{R}^d$, consider a random matrix $W \in \mathbb{R}^{n \times d}$ with each component $W_{ij} \sim \eta(0, 1)$ an independent Gaussian random variable. For every $\epsilon \in (0, 3)$, we have

$$\Pr\left\{\left|\frac{\|n^{-1/2}W\mathbf{x}\|^2}{\|\mathbf{x}\|^2} - 1\right| > \epsilon\right\} \le 2\exp\left(-\epsilon^2 n/6\right).$$

Paul J. Atzberger, UCSB

Random Projections

Lemma: Distortion of a Gaussian Random Projection

For a fixed $x \in \mathbb{R}^d$, consider a random matrix $W \in \mathbb{R}^{n \times d}$ with each component $W_{ij} \sim \eta(0, 1)$ an independent Gaussian random variable. For every $\epsilon \in (0, 3)$, we have

$$\Pr\left\{\left|\frac{\|n^{-1/2}W\mathbf{x}\|^2}{\|\mathbf{x}\|^2} - 1\right| > \epsilon\right\} \le 2\exp\left(-\epsilon^2 n/6\right).$$

Proof: Let z = x/||x||, then we can express the probability as

$$\Pr\left\{\left(1-\epsilon\right)n\leq \|W\mathsf{z}\|^2\leq \left(1+\epsilon\right)n
ight\}\geq 1-2\exp\left(-\epsilon^2n/6
ight).$$

For $w_i = W_{i,*}$ the i^{th} row of W, the product $\langle w_i, z \rangle$ is a Gaussian random variable with mean 0 and variance $\sum_i z_j^2 = 1$. As a consequence, $||Wz||^2 = \sum_{i=1}^n (\langle w_i, z \rangle)^2$ is a sum of squared Gaussians.

This has the well-known χ_n^2 distribution, which satisfies $\Pr\left\{\chi_n^2 \leq (1-\epsilon)n\right\} \leq \exp\left(-\epsilon^2 n/6\right)$ and $\Pr\left\{\chi_n^2 \geq (1+\epsilon)n\right\} \leq \exp\left(-\epsilon^2 n/6\right)$.

This yields the result.

Random Projections

Lemma: Johnson-Lindenstrauss

Consider *m* data points $x_i \in \mathbb{R}^d$ mapped to $y_i = Tx_i \in \mathbb{R}^n$. For any $0 < \epsilon < 1/2$, m > 4, and $n = 20 \log(m)/\epsilon^2$, consider the random projection $T : \mathbb{R}^d \to \mathbb{R}^n$ given by $T = n^{-1/2}W$ with n < d and W having components $W_{ij} \sim \eta(0, 1)$ i.i.d. Gaussians with mean 0 and variance 1. For any two data points x_i and x_j we have

$$(1 - \epsilon) \|x_i - x_j\|^2 \le \|Tx_i - Tx_j\|^2 \le (1 + \epsilon) \|x_i - x_j\|^2$$

holds with probability $1 - \delta$ where $\delta = 2 \exp(-n\epsilon^2/40)$.

This shows low distortion T can be achieved provided the dimension $n \sim \log(m)/\epsilon^2$.

Random projections allow for **reducing the dimension** from *d* to *n* while **nearly preserving the pair-wise distances** between points.

Paul J. Atzberger, UCSB

Machine Learning

Manifold Learning

.

Manifold Learning

Task: Given data set $S = \{x_1, x_2, \dots, x_m\}$ with $x_i \in \mathbb{R}^N$, Find a p-dimensional manifold that approximates the data set.

Kernel PCA is one form of manifold learning.

Many other (related) ways to try to approximate data by manifold.

- Locally Linear Embedding (LLE)
- **ISOMAP**
- Spectral Embedding (SE)
- t-distributed Stochastic Neighbor Embedding (t-SNE)

Can be viewed in some cases as a form of KPCA (i.e. SE, ISOMAP).

Treats data as having relevant features close to some smooth low-dimensional manifold for inference, data exploration, visualization.

SE

Manifold Learning: t-SNE

Method:

Consider for all distinct pairs of points \mathbf{x}_i and \mathbf{x}_j the Gaussian probability distribution

$$p_{ij} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma^2)}{\sum_{k \neq l} \exp(-\|x_k - x_l\|^2 / 2\sigma^2)}$$

Want mapping $x \in \mathbb{R}^N \to y \in \mathbb{R}^p$ into a smaller dimensional $p \ll N$.

Consider probability t-distribution for neighbors under mapping

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq l} \left(1 + \|y_k - y_l\|^2\right)^{-1}}$$

Optimization Problem:

$$\min_{\mathbf{y}} KL(P||Q) = \sum_{i,j} p_{ij} \log\left(\frac{p_{ij}}{q_{ij}}\right)$$

Finds points \mathbf{y}_{i} **minimizing Kullback–Leibler (KL) Divergence of pair distributions.**

t-SNE used primarily for visualization (good at showing crowding / clustering).

bility distribution

-10

10 0

Swiss Roll Dataset

10

Manifold Learning: Locally Linear Embedding (LLE) Method:

Want mapping $x \in \mathbb{R}^N \to y \in \mathbb{R}^p$ into a smaller dimensional $p \ll N$.

Find for a point \mathbf{x}_i the k-nearest neighbors x_i .

Optimization Problem (step I):

$$\min_{W} \sum_{i} \left\| x_{i} - \sum_{j \in \mathcal{N}(x_{i})} W_{ij} x_{j} \right\|_{2}^{2}$$

subject $W \cdot 1 = 1$

Optimization Problem (step II):

$$\min_{\mathbf{y}} \sum_{i} \left\| \mathbf{y}_{i} - \sum_{j \in \mathcal{N}(x_{i})} W_{ij} \mathbf{y}_{j} \right\|_{2}^{2}$$

Finds points y_i so that embedding has similar linear weighting to reconstruct y_i from nearby points y_j .

Swiss Roll Dataset

10

0

Manifold Learning: Isomap

Method:

Consider for \mathbf{x}_i the neighborhood of points \mathbf{x}_i within distance ε .

Form graph \mathcal{G} with edges \mathbf{x}_i in ε -neighborhood of \mathbf{x}_i .

Compute distance matrix Δ_{ij} using shortest path in graph between points $x_i \rightarrow x_j$. The $\Delta_{ij} \sim$ squared geodesic distance.

Want mapping $x \in \mathbb{R}^N \to y \in \mathbb{R}^p$ into a smaller dimensional $p \ll N$.

Optimization Problem:

$$\min_{\mathbf{y}} \sum_{i,j} \left(\left\| \mathbf{y}_{i} - \mathbf{y}_{j} \right\|_{2}^{2} - \Delta_{ij} \right)^{2}$$

Finds points y_i so that embedding distance between pairs is close to Δ_{ij} .

Related to KCPA with kernel $\mathbf{K}_{\text{Iso}} = -\frac{1}{2}\mathbf{H}\Delta\mathbf{H}$ and $\mathbf{H} = \mathbf{I}_m - \frac{1}{m}\mathbf{1}\mathbf{1}^{\top}$.

Swiss Roll Dataset

Manifold Learning: Spectral Embedding

Consider for \mathbf{x}_i the neighborhood of points \mathbf{x}_i within distance ε .

Form graph \mathcal{G} with edges \mathbf{x}_i in ε -neighborhood of \mathbf{x}_i .

Compute weight matrix $W_{ij} = e^{-\|x_i - x_j\|_2^2/2\sigma^2}$

Want mapping $x \in \mathbb{R}^N \to y \in \mathbb{R}^p$ into a smaller dimensional $p \ll N$.

Optimization Problem:

 $\min_{\mathbf{y}} \sum_{i,j} W_{ij} \| \mathbf{y}_i - \mathbf{y}_j \|_2^2$ subject $y^T D y = 1$ with $D = \text{diag}(W \cdot \mathbf{1})$.

Finds points y_i so that embedding distance between pairs minimized. Note the penalty W_{ij} is stronger for closer pairs of points and weaker for further pairs of points.

Related to KCPA with kernel $K_L = L^{\dagger}$ where graph Laplacian L = D - W and $D = \text{diag}(W \cdot \mathbf{1})$. Solution: $Y = U_{L,p}$ from SVD of $L = U \Lambda U^T$.

Approximately preserves diffusion commute times on manifold from x_i to x_j .

Paul J. Atzberger, UCSB

Examples Unsupervised Learning Manifold Learning / Clustering

Pendulum Dynamics from Video: Spectral Embedding

Input: Image frames from video.

Kernel for frames (similarity)

Eigenvalues

Spectral Embedding: $\min_{\mathbf{y}} \sum_{i,j} W_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|_2^2$ subject $y^T Dy = 1$ with $D = \text{diag}(W \cdot \mathbf{1})$.

Results

Frame 0

Atzberger 2020

Paul J. Atzberger, UCSB

Manifold Learning and Clustering

MNIST Digits Database:

Widely used benchmark for classification methods.

 Task: Classify image to digit 0 - 9.

 0
 1
 2
 4
 5
 6
 7
 8
 9

Data: train + test ~ 80K+ images 28x28.

Considered as points in 784-dimensional space.

Dimension reduction methods used to visualize, better understand structure, perform tasks.

t-SNE vs Local Linear Embedding (LLE).

Manifold Learning and Clustering: LLE vs t-SNE

MNIST Digits Database:

Widely used benchmark for classification methods.

 Task: Classify image to digit 0 - 9.

 0
 1
 2
 4
 5
 6
 7
 8
 9

Data: train + test ~ 80K+ images 28x28.

Considered as points in 784-dimensional space.

Dimension reduction methods used to visualize, better understand structure, perform tasks.

t-SNE vs Local Linear Embedding (LLE).

Manifold Learning and Clustering: LLE vs t-SNE

MNIST Digits Database:

Widely used benchmark for classification methods.

 Task: Classify image to digit 0 - 9.

 0 1 2 3 4 5 6 7 8 9

Data: train + test ~ 80K+ images 28x28.

Considered as points in 784-dimensional space.

Dimension reduction methods used to visualize, better understand structure, perform tasks.

t-SNE vs Local Linear Embedding (LLE).

Manifold Learning: LLE

Face Database:

Local Linear Embedding (LLE).

Task: Organize data set of faces by "similarity"

Data: 1965 images at 20 × 28.

Considered as points in 560-dimensional space.

Dimension reduction method useful to visualize, better understand structure, classify, perform tasks.

Red path shows progression through embedding space.

Summary

~

Summary: Dimension Reduction

Motivations for Unsupervised Learning:

Abstractly trying to learn characteristics of $\mathcal{D} \sim \mathcal{X}$.

Find Structure and patterns in data $S = \{x_1, x_2, ..., x_m\}$.

A few features are often extremal in determining key properties.
Transforms input data allowing for incorporating prior knowledge.
Filtering to capture essential aspects of data, improves generalization.

Methods (depends on the task):

- Clustering Methods (K-means, Spectral Graph)
- Principal Component Analysis (PCA / KPCA)
- Manifold Learning (Isomap, LLE, Spectral)
- Generative Adversarial Networks (GANs).
- (many more methods)

Provides ways to learn structure from data, incorporate prior knowledge, improve generalization, improve computational efficiency.

Machine Learning

Paul J. Atzberger, UCSB

Machine Learning

http://atzberger.org/