Introduction to Machine Learning Foundations and Applications

Paul J. Atzberger University of California Santa Barbara

Motivations: Image Generation GANs: CIFAR-10, 32x32

Karras 2018

CycleGANs

Zhu 2018

GANs: LSUN, 256x256

GANs Celeb-HQ

Karras 2018

Many other applications...

Paul J. Atzberger, UCSB

Machine Learnin

http://atzberger.org/

Motivations

Manifold-like structures in high dimensional spaces (natural images, audio, physical fields, PDE solutions). **Challenge:** How to learn high dimensional probability distributions, generators G(z) for sampling?

Paul J. Atzberger, UCSB

http://atzberger.org/

Generative Modeling

Generative Models

Goal

Learn a model distribution $p_{\text{model}}(z; \theta)$ approximating the data distribution $p_{\text{data}}(z)$.

Classification: For input x assign the class $y^* = \arg - \max_y p_{model}(y|x; \theta)$ (approximates the Bayes classifier).

For z = (x, y) this is typically broken down using p(x, y) = p(y|x)p(x). The model distribution with parameter θ is then $p_{\text{model}}(x, y; \theta) = p(y|x; \theta)p_{\text{data}}(x)$, where $p_{\text{data}}(x) = \int p_{\text{data}}(x, y)d\mu_y$.

Optimization Formulation

For an objective function $J[p_{model,\theta}, p_{data}]$, find

$$\theta^* = \operatorname{arg-min}_{\theta} J[p_{\operatorname{model},\theta}, p_{\operatorname{data}}].$$

Maximum Likelihood is a widely used approach, corresponds to the objective

$$J[\theta] = J[p_{\mathsf{model},\theta}, p_{\mathsf{data}}] = -\mathbb{E}_{(x,y) \sim p_{\mathsf{data}}}[\log\left(p_{\mathsf{model}}(x, y; \theta)\right)]$$

This is equivalent to minimizing the Kullback-Leibler Divergence D_{KL} with

$$J[heta] = D_{ extsf{KL}}\left(p_{ extsf{data}} \| p_{ extsf{model}, heta}
ight)$$

http://atzberger.org/

Generative Models

In practice: We do not have data distribution but only training samples $\{z_i\}_{i=1}^m$. We construct the empirical data distribution

$$ilde{
ho}_{\mathsf{data}}(z) = rac{1}{m}\sum_{i=1}^m \delta(z-z_i).$$

Goal (empirical distribution)

Learn a model distribution $p_{\text{model}}(z; \theta)$ approximating the data distribution $\tilde{p}_{\text{data}}(z)$. Find

 $\theta^* = \operatorname{arg-min}_{\theta} J[p_{\operatorname{model},\theta}, \tilde{p}_{\operatorname{data}}].$

Maximum Likelihood (empirical data distribution): For
$$\tilde{p}_{data}$$
 becomes

$$J[\theta] = -\mathbb{E}_{(x,y)\sim \tilde{p}_{data}} \left[log \left(p_{model}(x,y;\theta) \right) \right] = -\frac{1}{m} \sum_{i=1}^{m} log \left(p_{model}(x_i,y_i;\theta) \right).$$

In practice: p_{data} often high dimensional requiring rich class of $p_{model,\theta}$. Above requires some way to compute the log-likelihood function. To get good gradient need overlap of distributions (absolute continuity). Often difficult to compute functional form of p_{model} . Need for alternatives.

- **Goodfellow 2014:** Generative Adversarial Networks (GANs).
- **GANs:** Utilizes deep learning with DNNs for generators $G(z; \theta)$.
- **Key idea:** Use properties of supervised learning and generalization behaviors of classifiers D to train generators $G(z; \theta)$.
- Synthetic data distribution mixture of "real" and "fake" samples.

Two player-game:

- (i) D aims to classify x as "real" or "fake."
- (ii) G aims to generate "fake" samples so well D can not tell difference.

Successes: image generation, video augmentation, and other applications. Challenges (counting, spatial alignment,...)

early work on GANs

Remark: Two-player game with *G* generating samples

so well that the discriminator D can not distinguish from samples of the data distribution.

Remark: The objective is similar to a counterfeiter *G* printing money so that the police *D* can not tell if the bills are real or fake. $G \rightarrow \square \rightarrow \square \qquad P = \begin{bmatrix} real \\ fake \end{bmatrix}$

Key Idea: Replaces the problematic calculation using D_{KL} -objective by instead using the discriminator D to serve to drive the model distribution p_{model} toward p_{data} . Leverages capabilities of supervised learning methods.

Learn generative models using:

GANs

Generator G: samples $x \sim p_{model}(x; \theta^G)$. Discriminator D(x): binary classifier for if (i) input x is sampled from $p_{data}(x)$, or (ii) generated from $p_{model}(x; \theta^G)$.

Generative Adversarial Networks (GANs)

Synthetic Labeled Data: Create a synthetic labeled set of data as follows:
(i) with probability 1/2 sample x from the data distribution p_{data}(x) and assign the label 1,
(ii) with probability 1/2 sample x from the model distribution p_{model}(x; θ^G) and assign the label 0.

Binary Classifier: Consider generative classifier that assigns the probability D(x) that x was sampled from the data distribution. Then 1 - D(x) is the assigned probability that x was generated from the model distribution.

 $D(x) = p_D(y = 1|x) \approx \Pr\{Y = 1|X = x\}, \quad 1 - D(x) = p_D(y = 0|x) \approx \Pr\{Y = 0|X = x\}.$

Classification: For input x assign the class $y^* = \operatorname{arg-max}_v \Pr\{Y = y | X = x\}$ (approximates Bayes classifier).

Synthetic Labeled Data: This has the data distribution p_{synth-I} given by

$$p_{ ext{synth-I}}(\mathsf{x},y) = 1_{y=1}rac{1}{2}p_{ ext{data}}(\mathsf{x},y) + 1_{y=0}rac{1}{2}p_{ ext{model}}(\mathsf{x},y; heta^G).$$

For this distribution we have

$$\mathsf{Pr}\{Y=1|X=x\}=rac{p_{\mathsf{data}}(\mathsf{x})}{p_{\mathsf{data}}(\mathsf{x})+p_{\mathsf{model}}(\mathsf{x})}.$$

 $p_{data}(z)$ $p_{model}(z; \theta)$

 $p_{\rm data}(z)$

 $p_{\text{model}}(z;\theta)$

Thus, $D(x) = p_{data}(x)/(p_{data}(x) + p_{model}(x))$ would give us the best possible discriminator (Bayes classifier). **Remark:** If we were successful in getting our model distribution to exactly match the data distribution then $p_{model} = p_{data}$ and D(x) = 1/2.

Remark: When D(x) = 1/2 the discriminator can not tell if the sample was more likely to come from the data distribution or from the generator. For generative discriminator, let $p_D(x, y; \theta^D) := p_D(y|x; \theta^D) p_{synth-I}(x)$.

We aim to achieve this outcome by learning simultaneously θ^D for the optimal discriminator D and learning θ^G for an optimal generator G. Let $C(\theta^G)$ term be entropy of the synthetic distribution.

We formulate the classification problem for D using cross-entropy loss with objective function

$$\hat{J}^{D}(\theta^{D}, \theta^{G}) = -\mathbb{E}_{\mathsf{x}, y \sim p_{\mathsf{synth-I}, \theta^{G}}} \left[\mathsf{log} p_{D}(\mathsf{x}, y; \theta^{D}) \right] = -\frac{1}{2} \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{data}}} \left[\mathsf{log} \left(D(\mathsf{x}) \right) \right] - \frac{1}{2} \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{model}, \theta^{G}}} \left[\mathsf{log} \left(1 - D(\mathsf{x}) \right) \right] + C(\theta^{G})$$

Discriminator D

Find $\theta^{D*} = \operatorname{arg-min} J^D(\theta^D, \theta^G)$ with

$$J^{D}(\theta^{D}, \theta^{G}) = -\mathbb{E}_{\mathsf{x}, y \sim p_{\mathsf{synth-l}, \theta^{G}}} \left[\mathsf{log} p_{D}(y | \mathsf{x}; \theta^{D}) \right] = -\frac{1}{2} \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{data}}} \left[\mathsf{log} \left(D(\mathsf{x}) \right) \right] - \frac{1}{2} \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{model}, \theta^{G}}} \left[\mathsf{log} \left(1 - D(\mathsf{x}) \right) \right].$$

Entropy term $C(\theta^G)$ not used. Generator G aims for distribution close to data distribution.

Generator G: Approach I

Find $\theta^{G*} = \operatorname{arg-max} J^{G}(\theta^{D}, \theta^{G})$ with $J^{G} = J^{D}$.

Generative Adversarial Networks (GANs)

Discriminator D

Find $\theta^{D*} = \operatorname{arg-min} J^D(\theta^D, \theta^G)$ with

$$J^{D}(\theta^{D}, \theta^{G}) = -\mathbb{E}_{\mathsf{x}, y \sim p_{\mathsf{synth-I}, \theta^{G}}} \left[\mathsf{log} p_{D}(y | \mathsf{x}; \theta^{D}) \right] = -\frac{1}{2} \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{data}}} \left[\mathsf{log} \left(D(\mathsf{x}) \right) \right] - \frac{1}{2} \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{model}, \theta^{G}}} \left[\mathsf{log} \left(1 - D(\mathsf{x}) \right) \right].$$

Entropy term $C(\theta^G)$ not used. Generator G aims for distribution close to data distribution.

Generator G: Approach I

Find $\theta^{G*} = \operatorname{arg-max} J^{G}(\theta^{D}, \theta^{G})$ with $J^{G} = J^{D}$.

This gives a zero-sum game, so has valuation function $V(\theta^D, \theta^G) = J^G$.

Remark: Deep Neural Networks will be used to learn $D(x; \theta^D)$ and $G(z; \theta^G)$.

Remark: Notice the objective functions now no longer require evaluating the expression of the model probability distribution. They only require expectations, which can be approximated from sampling $x \sim p_{model}$.

We use the **reparameterization technique** to generate $x \sim p_{model}$ using $x = G(z; \theta^G)$, where $z \sim \hat{p}_{model}$ with \hat{p}_{model} an easy to generate distribution. The challenge is shifted to learning the function $G(z; \theta^G)$.

Discriminator D

Find $\theta^{D*} = \operatorname{arg-min} J^D(\theta^D, \theta^G)$ with

$$J^{D}(\theta^{D}, \theta^{G}) = -\mathbb{E}_{\mathsf{x}, y \sim p_{\mathsf{synth-I}, \theta^{G}}} \left[\mathsf{log} p_{D}(y | \mathsf{x}; \theta^{D}) \right] = -\frac{1}{2} \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{data}}} \left[\mathsf{log} \left(D(\mathsf{x}) \right) \right] - \frac{1}{2} \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{model}, \theta^{G}}} \left[\mathsf{log} \left(1 - D(\mathsf{x}) \right) \right].$$

Entropy term $C(\theta^G)$ not used. Generator G aims for distribution close to data distribution.

Generator G: Approach I

Find $\theta^{G*} = \operatorname{arg-max} J^{G}(\theta^{D}, \theta^{G})$ with $J^{G} = J^{D}$.

Vanishing Gradient Issue: For bad generators the discriminator can become very good at just rejecting samples from the model distribution resulting in vanishing gradient in θ^{G} and no learning.

Alternative Formulation: We aim for generator to make the discriminator probability D(x) as large as possible (hence fooling it). We use

Generator G: Approach II

Find
$$\theta^{G*} = \operatorname{arg-max} J^{G}(\theta^{D}, \theta^{G})$$
 with $J^{G} = \mathbb{E}_{z \sim p_{\operatorname{model}, \theta^{G}}} \left[\log \left(D(x; \theta^{D}) \right) \right]$

Discriminator D

Find $\theta^{D*} = \operatorname{arg-min} J^D(\theta^D, \theta^G)$ with

$$J^{D}(\theta^{D}, \theta^{G}) = -\mathbb{E}_{\mathsf{x} \sim p_{\mathsf{synth-I}, \ \theta^{G}}} \left[\mathsf{log} p_{D}(y | \mathsf{x}; \theta^{D}) \right] = -\frac{1}{2} \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{data}}} \left[\mathsf{log} \left(D(\mathsf{x}) \right) \right] - \frac{1}{2} \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{model}, \theta^{G}}} \left[\mathsf{log} \left(1 - D(\mathsf{x}) \right) \right].$$

Generator G: Approach II

Find
$$\theta^{G*} = \operatorname{arg-max} J^{G}(\theta^{D}, \theta^{G})$$
 with $J^{G} = \mathbb{E}_{z \sim P_{\operatorname{model}, \theta^{G}}} \left[\log \left(D(x; \theta^{D}) \right) \right]$.

No longer a zero-sum game, the solution $(\theta^{D*}, \theta^{G*})$ now characterized as a Nash Equilibrium.

Training Protocol: Alternate minimizing discriminator objective with maximizing the generator objective.

Remark: This can result in oscillatory learning dynamics. Current area of research on best ways to address (likely this is application dependent).

JS-GANs: Jensen-Shannon Distance

Jensen-Shannon Distance

$$JS(p_{data}, p_{model}) = rac{1}{2} KL\left(p_{data} \left\|rac{p_{data} + p_{model}}{2}
ight) + rac{1}{2} KL\left(p_{model} \left\|rac{p_{data} + p_{model}}{2}
ight)$$

 $JS(p,q) \ge 0 \text{ and } JS(p,q) = 0 \Rightarrow p = q \ (a.s). \ KL(p \| q) = \mathbb{E}_{x \sim p} \left[\log \left(\frac{p}{q} \right) \right].$

The optimal discriminator is $D^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)}$. Substituting, we have

$$J^{D}(\theta^{D,*},\theta^{G}) = -\frac{1}{2}\mathbb{E}_{x \sim p_{data}}\left[\log\left(\frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)}\right)\right] - \frac{1}{2}\mathbb{E}_{x \sim p_{model,\theta^{G}}}\left[\log\left(\frac{p_{model}(x)}{p_{data}(x) + p_{model}(x)}\right)\right].$$

This gives

$$J^{D}(\theta^{D,*},\theta^{G}) = -JS(p_{data},p_{model,\theta^{G}}) + \log(2).$$

As a result, when $J^G = J^D$, we have $\theta^{G*} = \operatorname{arg-max}_{\theta^G} J^D(\theta^{D,*}, \theta^G) = \operatorname{arg-min}_{\theta^G} JS(p_{data}, p_{model, \theta^G})$.

Shows that original GANs with optimal discriminator $D^*(x)$ is equivalent to following gradients to minimize the *JS*-Distance between the model distribution p_{model} and p_{data} .

GANs have been successfully applied in many practical applications: Image Synthesis, Super-Resolution Imaging, Generative Art, Face and Video Synthesis. Other formulations of GANs (Wasserstein WGANs, E-GANs, etc...)

Example: Gaussian Target Distribution

Remark: Gaussians this diverges to give small probability for tails. Noise sources type important consideration in practice.

z

0.6

0.8

1.0

0.4

-2.0

0.0

0.2

Example: Gaussian Target Distribution

Results:

Paul J. Atzberger, UCSB

Machine Learning

http://atzberger.org

Example: Gaussian Target Distribution

Paul J. Atzberger, UCSB

GANs Celeb-HQ

Karras 2018

Paul J. Atzberger, UCSB

Zhu 2018

Task: Use input image to generate image of another class.

GANs trains **two generator maps** G(X) and F(Y).

Two discriminators: D_X and D_Y try to keep in space of natural images.

Reconstruction condition: $X \rightarrow Y \rightarrow \tilde{X}$ for information preservation.

Training: SGD over a large corpus of images or videos.

Results:

- image-to-image conversions (style, time-of-year, object class).
- video-to-video conversions (style, time-of-year, object class).

Training Protocol

horse \rightarrow zebra

 $zebra \rightarrow horse$

winter Yosemite → summer Yosemite

summer Yosemite → winter Yosemite

orange \rightarrow apple

Summary

Karras 2018

Losses

10000

15000

5000

GANs provides approach for training Generative Models.

JS-GANs uses properties of supervised learning for discriminator D to obtain loss functions related to classifier behaviors.

Many variants of GANs: Wasserstein (WGANs), Gradient Penalty (GP-GANs), Energy-based (E-GANs), ...

Provides representations and parameterizations for subsets of manifold-like structures.

Challenges remain:

- computationally expensive (involves training DNNs).
- learning full probability distribution (mode collapse).
- reliable training (oscillations, lack of convergence).

Successes in image processing / video (interpolation, super-resolution, reconstruction, augmentation).

Emerging applications in the sciences and engineering (surrogate models, subgrid models, model reductions).

Paul J. Atzberger, UCSB

Goodfellow 2016

100

 10^{-1}