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Regression

Consider ° “‘;:'
yi = f(xi) + €i, where f € F is sampled with x ~ Dx and ¢; is noise with E [¢;] = 0. TS
Task: From data samples & = {(x;, y;)}"; find model h € H so that y ~ h(x). ot e

v

Linear regression: h(x) = w- x + b. Kernel regression: h(x) = w- ®(x) + b, with k(x;,x;) = (®(x;), ®(x;)).
Linear regression and variants among the most common.

Insights from weights w into how features x; = (x;',x?,....x;N) contribute to y;.

Berkeley Sales Price vs Home Square Footage
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Regression

Consider
yi = f(xi) + €i, where f € F is sampled with x ~ Dx and ¢; is noise with E [¢;] = 0.

Task: From data samples & = {(x;, yi)}/~: find model h € H so that y ~ h(x).

Loss Function: L(y',y): )Y x)Y — R.

Examples: L,-loss: L(y’,y) = ||y’ — y||5, special case L,-loss (least squares) L(h(x), f(x)) = ||h(x) — f(x)|I3.
Generalization Error (Risk):

R(h) = Ex.p [L(h(x), f(x)] .

Empirical Error (Empirical Risk):

R(h) = 3 3271 L(h(x), £(x))-

Technical Assumption: We may find it useful to bound the loss functions L(y’,y) < M, referred to as
(bounded regression problem) .

Example: Loss L(h(x), f(x)) = min{|||h(x) — fF(x)|||3, M}.
Many variants of regression:
@ Linear Regression, Kernel Ridge Regression

@ Support Vector Regression, LASSO Regression, ...

Paul J. Atzberger Machine Learning: Foundations and Applications http://atzberger.org/
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Regression: Motivation of Least-Squares

Regression: Consider

yi = f(x) 4+ mi, with iid. ;i ~n(0,0°) = [Gausssian mean 0, variance 02], and f(x) = w, x.

Task: From S = {(x;,y;)}"; find model h € H = {h| h(x) = w'x}.
Probabilistic Model: Predictions of the data use distribution y; = w'x; + n; with 7; ~ n(0, 02).
Probability Densities:

2

—1/2 —1/2 i WTX,'
noise: p(n) = (2%02) exp (—%) = observation: p(y; | xi, w) = (271‘02) exp (— b

For the full data set S we have

m —m/2 m P — T i 2
p(yl;---aym |X11-"7Xm;W):Hp(y!' |X1'7W): (27?0-2) exp (_21_1 (y Y X) ) :‘C(W|S)

2072 —_—
j‘:l & N
Likelihood

Maximum Likelihood Method: We can estimate w, as

m

. - 1y :
W' =argmax L(w|S) = W =argmin— Z (y,- — WTX,') :

This gives Method of Least-Squares.
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Regression: Bayesian Motivation

Probability of Observations for Model w:

i 2\ /2 >y (vi— WTX")z
p(ylw"'aym |X11-"7Xm;W):Hp(yf |X1'7W): (27]-0- ) EXp { — — :.C(W|S)
=1

S— —
Likelihood

Bayes Rule for Posterior Distribution over Models w:

likelihood prior

—— —
Pr{S|w}Pr{iw}  L(w|S) Pr{w}.

Pr{S} Pr{S}
N —’

evidence

Priw|S} =

Maximum A Posteriori (MAP) Estimate : We can estimate w, as

m 5 2
" = argmin —log (Pr{w|S}) = & = argmin =" (yi— w'x) +AR(w), R(w) = ~log (Pr{w}) A = 2.
w

w m

Role of Prior: For Pr{w} with p(w) = (27w2)71/2 exp (—w?/21°) we can take R(w) = w?, A = r:_j-? € R;.
Bayesian prior provides regularization R(w) for selection of w (related to "ridge regression” methods).

As v — o0 the prior becomes increasingly less informative and A — 0 reducing regularization of least-squares.
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Bias-Variance Trade-Off: L[,-Risk 1

L>-Risk: L(h(x), f(x)) = ||h(x) — f(x)||5 with

H = {all measurable functions x ~ D}, f measurable. :
Optimal Solution: m = argminpey Ep [L(A(X), Y)] is given by
> optimal
m(x) =E[Y|X = x]. | e >

complexity of F€
Recovers m(x) = f(x) except for set of measure zero ~ D.

Regression: Consider H now more restrictive. Estimate m,(x) € H from n data samples S, = {(x;, yi)} 1=1.

Ly-error can be expressed as
E [Ima(x) = ()] = E [mi(x) = 2my()m(x) + m(x)| = E [m2(x)] = 28 [ma()] m(x) + m(x)
= E[m(0] = ©lma))? + (B lm))* — 28 [ma()] m(x) + m(x)

= Var [my(x)] + (E[ma(x)] — m(x))*
= Var [mn(x)] + (bias (ma(x)))*.

Bias-Variance Trade-off: As complexity of H increases bias | but Var 1 since more sensitivity to changes in
data samples S, drawn.

Generalization: Suggests balancing model accuracy on the training set with complexity to help generalization.
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Curse of Dimensionality
Sampling on Unit Cube: Consider samples X, X1, Xz, ..

., Xn € [0,1]¢ (d-dimensional hypercube).

Minimum Sample Distance: For n samples, denote the minimum distance between X and nearest sample X; by

deo(d,n) =E [min;e[lyn] | X — X,-||C,o]

We can express in terms of probability as

doo(d,n) = [ Pr{minicii,n | X — Xilloo > t}dt = [ 1 — Pr{minicp q [| X — Xi|l < t}dt.

The probability of being at most t apart in || - [|o-norm is
Pr{min,-e[l,,,] ||X — X;||oo < t} < n(2t)d.

d 1 ~1/d

1/2nt/d
Lower Bound on Distance: d..(d,n) > / 1 — n(2t)%dt = 5
0

(d+1)nt7d ~ "

doo(1,n) 20.0025 =20.00025 =0.000025 = 0.0000025
dor(10,1) 20.28 >022  =20.18 >0.14
do,(20,1) =0.37 >0.34  =20.30 > (.26

Gyorfi 2002

Consequence: Shows for n samples, the minimum distance decreases very slowly for large d, doo ~ n—

Samples

X;

~ e
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X/://:
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Regression: Without using assumed structure, regression requires many samples to ensure accuracy.

1/d.
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Generalization Error Bounds
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Regression: Rademacher Complexity o
Notation and definitions: ] Lt = ﬂ:.'
& input space, Y output space 4 # ¥ ;’,j,:

[ -

€ concept class, concept f(x): L 2> Y
¢t hypothesis class, hypothesis h(x): £ 2> Y.

Theorem: (regression bounds) Consider # so that |h(x) — f(x)| < M for all x € L, h € #, then forany p > 1

and any § > 0 we have with probability 1 — § that the following bounds hold uniformly for h € %,

log L
E “h(m) _ f(x)yp] < %Z h(z:) — f(a)|” + 2pMP R, (H) + MP (;fn 5, (Rademacher bound)

m 2

> |h(@i) = f(x3)|” + 2pMPT R (H) + 3MP lzgg , (Empirical Rademacher bound)
m
i=1

B[|h() - f@)]] <

Significance: The expected value of the loss can be bounded by the observed empirical average. This differs
at most by the Rademacher Complexity of regression class # plus a term vanishing as m - «.

We see complexity of the space of hypothesis functions used for the regression effects rate of
convergence of the generalization error as m — oo,

Key is to find bounds on the regression space Rademacher complexity R(H).


http://atzberger.org/

Regression: Pseudo-dimension Bounds and VC-Dimension

Motivation: Are there combinatorial bounds similar in spirit to VC-dimension we can use
to characterize complexity of regression spaces #?

Definition: Let G be family of functions L > R. We say a set {X;,X,,...X,} IS shattered by
G if there exists t,,t,,...,t,, such that

sgn (g(z1) — t1)
, ge G| =2"

sgn (g(zm) — tm)

We call the threshold values t,,t,,...,t,, the witness to the shattering.

Definition: For a family of functions G: L - R we define the pseudo-dimension of G
denoted Pdim(G) as the largest m so a set of points is shattered.
Remark: This is related to VC-dim by considering corresponding classifiers
Pdim(G) = VCdim({(a:,t) — 1(g(z)—t)>0: 9 € G})
Lemma (hyperplanes) The pseudo-dimension of hyperplanes in R" is given by
Pdim({x—w-x+b:wecRY bcR}) =N +1

T
| X1 X2

Ll ] G

v
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Regression: Pseudo-dimension Bounds

Theorem: If the pseudo-dimension Pdim(G) = d then for any § > 0 we have with
probability 1 — § that the following bounds hold uniformly for any h € %

_ 2dlog o= [log 1
R(h) < R(h) + My =254 gy [ 228
m 2m

where ¢ = {x -» L(h(x),f(x)): h € H},L < M.

Remark: This gives analogous result as for VC-dimension. This is not tightest bound but
gives worst-case guarantees when bounds on Rademacher complexity are difficult.

Remark: Hyperplanes in R” (linear regression) % ={h | h(x) = wix + b} have d =N + 1.

Remark: Note, these bounds are when using only ERM. Alternatively, we also can use
regularization and other strategies to select model h(x) (discussed later).
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Linear Regression
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Linear Regression

Optimization Problem:

min 1 Z (W - ®(z;) +b—y;)°

w,b m
=1

m

Equivalent Optimization Problem I:
w1 yl
min F(W) = i\|XTW—Y\|2 X = [P P ] = [ ‘ ] Y = [ : ]

Solution: W = (XXT)TXY
2
VwF =0, = —
m
Pick w with smallest ||w||> when XX is non-invertible.
Pseudo-inverse: For matrix A the pseudo-inverse is
~1
A = lim (ATA —1—’}11) AT
v40
For Ax = b, x = ATh <= x7 = argmin ||Ax — b||3 + v||x]|3, x = lim, o x7.

When A is invertible, Al = A71A=TAT = A1,

X (XTW— Y) 0 = XXTw=X"Y =w=xXx")Ix"y.

v
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Linear Regression 4
Equivalent Optimization Problem I: ° 0: o
w1 Y1 ",'
min F(W) = —[XTW - Y|? X =[] W= [ : ] Y = [ : } o %o
A% m wéN Yrm o '?“ °
o* o
Solution: W = (XXT)tXY ’ °

Issues when features x:2 are strongly correlated with xP , say equal, or one has a fixed value.
| |

Strong correlations or co-linearity can result in XXT nearly-singular. Results very sensitive to noise in data!

fit with features fit with features pseudo-inverse fit with features
uncorrelated correlated or fixed correlated or fixed

"°"""W&wa~\,
Output

indin0
|

1 asmead
Feature 1

Feature 2

[vF
[vF

E Feature 2
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Kernel Ridge Regression
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Kernel Ridge Regression

Theorem: (ridge regression bounds) Consider kernel regression using # = {h(x) = w - ®(x)| |lw|l, < A} with
K(x,x) <r?and |f(x)| < Ar then for any § > 0 we have with probability 1 — § that the following bounds hold
uniformly for h € €

5 2A? 1 [log ;
R(h) < B(h) + (1+— ﬁ)

2 2

= 8r2 A2 Tr[K] 3 [log2
R(h) < R(h) + T (\/ — +Z\/TS)

Significance: Provides tighter bounds than the combinatorial approach using pseudo-dimension.

Second bound provides tighter estimate since Tr[K] < mr?, trace makes use of properties of the kernel.
Tightest bound from minimizing the RHS. This yields an optimization problem.

We need ||lw||? < A?so making A% as small as possible corresponds to making [|w||? small. Can view bound as

R(h) < R(h) + AA2 where A = i‘—/_(l + 5\/"—’.’35) = 0(%)
Yields optimization problem

min F(w) = A[w|[* + > (W- ®(z:) — %)
i=1
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Kernel Ridge Regression

Optimization Problem:

min F(w) = A|w[|* + > (w- ®(z;) — :)°

=1

wi Y1
wN v
b e

Equivalent Problem:

min,, F(w) = )\||W||2 + ||XTW - Y||2

Solution:
VwF(w)=0 = (XX +Xl)w=XY

1

= w= (XX + ) " XY.

Kernelization using the dual formulation.

v

Ordinary
Least Squares

Ridge
Regression

»
»

N

Least-Squares
L2- Objective
Regularization
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Kernel Ridge Regression

Primal Problem:

m“i{nF(w) = \|w]|® + Z (W ®(zi) - yz')2

=1

Equivalent optimization problem I:

: N N2 B . 2 2
min Zl(w ®(r;) —y;)> subject to: [|w]|* <A

Equivalent optimization problem II:

min ZE? subject to: (|w[* < A*) A (Vi€ [1,m], & =y —w - ®(x;))
i=1

Kernelization of the regression makes use of the dual formulation.

Lagrangian

LEw,a N =3+ allyi—&—w-®(2:) + Alw? — A?)
i=1

=1

Paul J. Atzberger Machine Learning: Foundations and Applications http://atzberger.org/
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Kernel Ridge Regression : Dual Formulation

Lagrangian
a1
L(Ew,a',]N) ZE,Q +Za —w-®(z;)) + /\(||W||2 —A?) X = [@(fl) - <I>(€m)] Y= er}
KKT Conditions
m 1 s, Solution:
vwcz—gaz@(ri)ﬁz\w:() = W=ﬁ¥“iq’(m w=XK+A)Y
Vol — 2% ol —0 . &= al/2 h(x) =w-®(x)=>", aik(xi, x)

Vie [1,m],a(y; — & —w-@(x;)) =0
A(Iw? = 4%) =o0.

Dual Formulation' Substitute w*, £* so F(a') = inf, ¢ L(&, w,a’,\) =

m

L™ w™,al, A).

Fo') = Z—Jrzay, a——ﬁzo/z'zcb(x, ¢(><J)+A(41 Zaf.cbx,

A2
i=1

ij=1

2
_ /\2)

= -\ Za,+2)\2ay,—/\z:aaj (x;) - ®(x)) — AN®, a; = al/2).

ij=1
Dual Optlmlzatlon Problem:

maﬁg—)\aTos+2osTY—aT (XTX)a — maﬁg—aT(K+)\l)a+2aTY.
ac ac
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Kernel Ridge Regression
' Example
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Kernel Ridge Regression: Example f(x) = sin(x)

Example: Consider target function f(x) = sin(x) where data y;, = f(x;) + n, where 7, is noise. Find h € 3,

Kernel Ridge Regression (KRR): Find minimizer of

m

min F(w) = A[w|?+ Y (w- @) =5:)" = h(x) = ) a K(xx)
1=1 i=1

Solution: (Radial Basis Function Kernel (RBF), K (x,y) = e~ Ylx-»IF

KRR: A= 2.51e+02
N =100, gamma = 10, vary lambda) = —
® ° e data
21 ®
How does fit vary with different choices of the lambda? * .
11 ,0.3 0.~~ °
How does fit vary with different choices of the RBF gamma . "/ o o .
width? S| @ o v
5 ° - \. .
[
Hyperparameter choice is crucial to obtain good fits. ey « e
Hyperparameters are tuned through Cross-Validation (CV). 2 .
0 1 2 3 4 5
KRR typically use grid-search try to obtain best fit in CV. et

K(x’ y) — e—V”x—YHZ y = 10 E
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Kernel Ridge Regression: Example f(x) = sin(x)

Example: Consider target function f(x) = sin(x) where data y;, = f(x;) + n, where 7, is noise. Find h € 3,

Kernel Ridge Regression (KRR): Find minimizer of

T m
min F(w) = [l + 3 (w-(0:) —5:)° = h() = Y aK(xx)
1=1 i=1

Solution: (Radial Basis Function Kernel (RBF), K (x,y) = e Ylx=vl
N =100, gamma = 10, vary lambda)

KRR: A= 2.24e-02

[ ] —— KRR
[ ] e data
21 ®

How does fit vary with different choices of the lambda?

How does fit vary with different choices of the RBF gamma
width?

target
(=]

Hyperparameter choice is crucial to obtain good fits. B

Hyperparameters are tuned through Cross-Validation (CV). = .
0 1 2 3 4 5

KRR typically use grid-search try to obtain best fit in CV. e

K(x’ y) — e—V”x—YHZ y = 10 E
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Kernel Ridge Regression: Example f(x) = sin(x)

Example: Consider target function f(x) = sin(x) where data y;, = f(x;) + n, where 7, is noise. Find h € 3,

Kernel Ridge Regression (KRR): Find minimizer of

m

n&nF(w) = \|w|* + Z (w-®(z;)—u)’ = h(x)= Z a; K(x;,x)

1=1 i=1

Solution: (Radial Basis Function Kernel (RBF), N = 100,

KRR: gamma = 1.58e-01
lambda = 0.1, vary gamma)

[ ] — KRR
e data

How does fit vary with different choices of the lambda?

How does fit vary with different choices of the RBF gamma
width?

target
o

Hyperparameter choice is crucial to obtain good fits. 1

Hyperparameters are tuned through Cross-Validation (CV). ] .
0 1 2 I:] 4 é

KRR typically use grid-search try to obtain best fit in CV. e

K(x’ y) — e—)/llx—yHZ E
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Kernel Ridge Regression: Example f(x) = sin(x)

Example: Consider target function f(x) = sin(x) where data y;, = f(x;) + n, where 7, is noise. Find h € 3,

Kernel Ridge Regression (KRR): Find minimizer of

T m
min F(w) = [l + 3 (w-(0:) —5:)° = h() = Y aK(xx)
1=1 i=1
Solution: (Radial Basis Function Kernel (RBF), N = 100,
lambda = 0.1, vary gamma) KRR: gamma = 1.58e-01
[ ] — KRR
L4 [ ] @ data
How does fit vary with different choices of the lambda? e .

How does fit vary with different choices of the RBF gamma
width?

target
o

Hyperparameter choice is crucial to obtain good fits. -1
Hyperparameters are tuned through Cross-Validation (CV). -2
KRR typically use grid-search try to obtain best fit in CV. i 1 D ‘ 5

K(x’ y) — e—)/llx—yHZ E
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sSupport Vector Regression
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Support Vector Regression

Definition: For any ¢ > 0 we define the support-limited loss function
y" — yle = max(0, [y — y[ —€)

also referred to as the s-insensitive loss function.

Theorem (support vector regression) Consider kernel regression using # = {h(x) = w - ®(x)| [[w]l, < A} with
K(x,x) <r?and |f(x)| < Ar then for any § > 0 we have with probability 1 — § that the following bounds hold

uniformly for h € 29\ log 5 2
IED“h(m} — f(z)]] < J:E [|~(z) = f(x)]e] + \/* (1+ \i )

2?*1\
E lih(z) = f(z)ld] < [Ih(m) f(@)le]
Remark: The bound takes on the form
R(h) < R(h) + AA

z
+3 ‘5

T?

Optimization Problem (Support Vector Regression (SVR))

min —||w||2+02|%—(w B(z;) +b)|.

=1
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Support Vector Regression

Definition: For any € > 0 we define the support-limited loss function
Y — yle = max(0, |y’ —y| —¢)

also referred to as the s-insensitive loss function.

Optimization Problem (Support Vector Regression (SVR))

m
12?:’1 %Hw”"’ + (‘; lyi — (W ®(x;) + .’)]|E

Interpretation:

Incurs penalty only when loss exceeds ¢. Data with |y’ — y|, > € are called Support Vectors.

Promotes fitting a “tube” that covers large part of the data set.

Helps filter out within data high-frenquency noise, control weighting of outliers, account for density effects.

Shares similarities with Support Vector Machines (SVM).
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Support Vector Regression

Equivalent Optimization Problem I:

1 5 m
min —|lwl|l* +C "y
w,b.£.& 2” | ;(E &)

subject & = 0,£, >0, (W-®(x;)) +b) —yi < e+ &
yi — (w- ®(x;) +b) < e+
Dual Formulation: .

max —e(a’ +a) 1+ (a —a)'y - E(a’ —a) K - a)
a.af

subject to: (0 < a<C)A(0<a’ <C)A((e/ —a)'1=0).
Representation of solution
h(x) = (af — ;) K(x;,x) + b
=1
where b can be determined from any x; with 0 < a; <Cor0 <a; <C

b= — Z(a; —a;)K(zi,zj) +y; +e

=1

Complimentary Conditions (KKT)
%((W"I’(ﬂ?i) +b) — v —E—fi) =0
a;((w-®(z;) +b) —yi +e+&) =0

When we have «; # 0then

which corresponds to x; outside of e-tube.

Similar condition holds for a; # 0.

All x; inside the e-tube have

a; =0anda; =0.
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support Vector Regression
| Example
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Support Vector Regression: Example f(x) = sin(x)

Example: Consider target function f(x) = sin(x) where data y;, = f(x;) + n, where 7, is noise. Find h € 3,

Support Vector Regression (SVR): Find minimizer of

m m

.1 2,
min §||w||“—|—( Z|y,—{w:¢ﬁ[.r,]+n’;]|l‘ =  h(x) = zaiK(xi,x)

=1 i=1

Solution: (Radial Basis Function Kernel (RBF), N = 100,
epsilon = 0.1, gamma = 1) SVR: epsilon = 1,540

(] - SVR
@ SVR support vectors
o data

How does fit vary with different choices of the e-tube width? .

How does fit vary with different choices of the RBF gamma
width?

target
o

Hyperparameter choice is crucial to obtain good fits. -1

Hyperparameters are tuned through Cross-Validation (CV). ~21

SVR typically use grid-search try to obtain best fit in CV. data
K(x’ y) — e—)/llx—yHZ E


http://atzberger.org/
https://vimeo.com/503702822/006b0bded8

Support Vector Regression: Example f(x) = sin(x)

Example: Consider target function f(x) = sin(x) where data y;, = f(x;) + n, where 7, is noise. Find h € 3,

Support Vector Regression (SVR): Find minimizer of

Tt m

1‘]3:}1 %”W”E—F(‘Z|IE‘j,'—{W*‘£'I:.I"',']+|’J:]|E =  h(x) = Zail{(xi,x)

i=1]1 i=1
Solution: (Radial Basis Function Kernel (RBF), N = 100,

epSilon =0.1, gamma = 1) SVR: gamma = 1.00e-04
. . . . B 24 ® . [ ] _:- :zi support vectors
How does fit vary with different choices of the e-tube width? ° . o daa
o “'
How does fit vary with different choices of the RBF gamma oo P S i "
width? Lo , o Aﬂg
B o \. o
Hyperparameter choice is crucial to obtain good fits. -1 . %0 comm
L
Hyperparameters are tuned through Cross-Validation (CV). -21 .
0 1 2 3 a 5
SVR typically use grid-search try to obtain best fit in CV. dota

K(x’ y) — e—)/llx—yHZ E
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Support Vector Regression: Example f(x) = sin(x)

Example: Consider target function f(x) = sin(x) where data y;, = f(x;) + n, where 7, is noise. Find h € 3,

Support Vector Regression (SVR): Find minimizer of

I m
W 1 2 L
min E||w|| +C Z|y;—{w:¢l[.r;]+hj|f =  h(x) = Zail{(xi,x)
i=1 =1
Solution: (Radial Basis Function Kernel (RBF), N = 100,

epsilon = 0.1, gamma = 1)

SVR: gamma = 1.00e-04

@ — SVR
L SVR support vectors
How does fit vary with different choices of the e-tube width? 1 e ° o an
L]
How does fit vary with different choices of the RBF gamma 1 e o ovt Py . "
width? 5, & ° N
5 0 L]
- Lol \. ®
Hyperparameter choice is crucial to obtain good fits. 11 % o OIS
[
Hyperparameters are tuned through Cross-Validation (CV). -21 =

0 1 2 3 4 5

SVR typically use grid-search try to obtain best fit in CV. data

K(x,y) = e VeI
>
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Support Vector Regression: Example f(x) = sin(x)

Example: Consider target function f(x) = sin(x) where data y;, = f(x;) + n, where 7, is noise. Find h € 3,

Support Vector Regression (SVR): Find minimizer of
I m

.1 2,
min §||w||“—|—( Z|y,—{w:¢ﬁ[.r,l+hj|6 =  h(x) = ZaiK(xi,x)

i=1 i=1

Solution: (Radial Basis Function Kernel (RBF), N = 100, SVR: epsilon = 0.100
H — —_ *] — SVR
epS”On - Ola gamma = 1) 5 @ ) @ SVR support vectors
® (] e data

How does fit vary with different choices of the e-tube width?

How does fit vary with different choices of the RBF gamma
width?

target
o

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV). ®
| K(x’ y) = e—]/”X-J’”Z

SVR typically use grid-search try to obtain best fit in CV.

0 1 2 3 4 5
data
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Comparison KRR and SVR
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Comparison of KRR and SVR: Example f(x) = sin(x)

Example: Consider target function f(x) = sin(x) where data y;, = f(x;) + n, where 7, is noise. Find h € 3,

Kernel Ridge Regression (KRR): Find minimizer of
m

min F(w) = \|w|? + 3 (w- &(z:) ~4:)° = h(x) = Z a, K (x;, %)

1=1
Support Vector Regression (SVR): Find minimizer of

i=1

. 1 ) 1 m
min E||w|| +C Z lyi — (W ®(x;) + .’:r]|ﬁ
i=1
> (af — 0a)K(xi,%) + b
i=1
Solution: (Radial Basis Function Kernel (RBF), N = 100,
epsilon = 0.1, gamma = 1)

— h(z)

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).

SVR/KRR typically use grid-search try to obtain best fit in CV.

KRR, SVR: gamma = 1.00e-04

— SVR

5] ® o — KRR
5} L @® SVR support vectors
® data
L]
14 “' .\ =
o
7 :L A‘é °
LY
o
£ o9 L4 o o
© \
0:..
25 e¥osie]

0 1 2

K(x’ y) — e_)/”x_yllz
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Comparison of KRR and SVR: Example f(x) = sin(x)

Example: Consider target function f(x) = sin(x) where data y;, = f(x;) + n, where 7, is noise. Find h € 3,

Kernel Ridge Regression (KRR): Find minimizer of

m

min F(w) = \|w|? + 3 (w- &(z:) ~4:)° = h(x) = Z a, K (x;, %)

1=1
Support Vector Regression (SVR): Find minimizer of

i=1

. 1 ) 1 m
min E||w|| +C Z lyi — (W ®(x;) + .’:r]|ﬁ
i=1
> (af — i) K(xi,%) + b
i=1
Solution: (Radial Basis Function Kernel (RBF), N = 100,
epsilon = 0.1, gamma = 1)

— h(z)

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).

SVR/KRR typically use grid-search try to obtain best fit in CV.

target

KRR, SVR: gamma = 1.00e-04

1 ®

e
et

%

— SVR
— KRR
® SVR support vectors
e data

0 1 2

K(x, y) = e—Y”x—y”Z
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LASS0 Regression
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linear objective

linear objective 4 function

function
—

- -
solution
solution ;

L2-regularization é L1-regularization

function function

LASSO: Least Absolute Shrinkage and Selection Operator

L1-Norm Regularization: Tends to result in weights that are more sparse than
L2-Regularization (min||w||, vs min[w]|,).

Theorem (LASSO regression) Consider kernel regression using # = {h(x) = w - x| |lwl|l{ < A with [|x]| <
r, and |f (x)| < Ajr, then for any § > 0 we have with probability 1 — § that the following bounds hold uniformly
for h € 3¢

. 2 A2 1 objective objective
R(h) < R(h) + STL;C_AI ( log(2N) + %“‘ lOg ) ) function function
, .

Optimization Problem:

in F(w,b) = \ X +b—yi)?
min F(w, b) ||W|\1+Zl(w Xi + b — i)

Equivalent Problem I: L2-regularization L1-regularization
m function function

miil (W-x; +b—w;)° subject to: ||w|; < Ay
=

Kernelization trick not available for L1 so would need to compute inner-products in new feature space.

High-dimensional regression problems especially useful to promote sparsity.
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing

Computed Tomography (CT) and Radon Transform:

(z(2),y(z)) = ({zsina + scosa),(—zcosa + ssina))

Rf(as) = [ " f(2(2), y(2)) d2

Inverse Problem: Reconstruct density f(x,y) based
on projection data Rf.

fda.gov .
Optimization Problem: Over the hypothesis class € of e ger
images h(x;,y,) minimize error in matching projection data

A\ A n = (cos(a), sin(a))
mingege ARl + IRF —RRIZ T RE e
Sparse solutions desirable to reduce ghost artifacts. \< y
[( >
Sparse density maps inherent in many cases ‘. )
(scientific imaging, engineering characterization, industrial applications). \ £(x,y)
L1-regularization - sparse reconstructions = compressed sensing.
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing

Example: Consider 2D density with data from 1D projections. (N = 36 angles).

Density sparsely localized only on boundaries.

Task: Reconstruct the density map from the projection data. Compare KRR vs LASSO.

original image L2 penalization 4 =0.2 L1 penalization 4 =0.00001

Gouillart 2018
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing

n = (cos(a),sin(a))
Example: Consider 2D density with data from 1D projections. (N = 36 angles). \
Density sparsely localized only on boundaries.
ANRAC3Y)
Task: Reconstruct the density map from the projection data. Compare KRR vs LASSO.

original image L2 penalization: A = 1.334e-04 L1 penalization: A = 1.334e-04

T \ % LT

.
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing

Example: Consider 2D density with data from 1D projections. (N = 36 angles).

Density sparsely localized only on boundaries.

Task: Reconstruct the density map from the projection data. Compare KRR vs LASSO.
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing g

Example: Consider 2D density with data from 1D projections. (N = 36 angles).

Density sparsely localized only on boundaries.

Task: Reconstruct the density map from the projection data. Compare KRR vs LASSO.

L2 penalization A = 0.2 L1 penalization 4 = 0.01
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing N g

Example: Consider 2D density with data from 1D projections. (N = 36 angles).

Density sparsely localized only on boundaries.
Task: Reconstruct the density map from the projection data. Compare KRR vs LASSO.

L2 penalization A = 0.2 L1 penalization A = 0.1
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing

Example: Consider 2D density with data from 1D projections. (N = 36 angles).

Density sparsely localized only on boundaries.

Task: Reconstruct the density map from the projection data. Compare KRR vs LASSO.
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Curse of Dimensionality
an
Regression
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Curse of Dimensionality
Sampling on Unit Cube: Consider samples X, X1, Xz, ..

., Xn € [0,1]¢ (d-dimensional hypercube).

Minimum Sample Distance: For n samples, denote the minimum distance between X and nearest sample X; by

deo(d,n) =E [min;e[lyn] | X — X,-||C,o]

We can express in terms of probability as

doo(d,n) = [ Pr{minicii,n | X — Xilloo > t}dt = [ 1 — Pr{minicp q [| X — Xi|l < t}dt.

The probability of being at most t apart in || - [|o-norm is
Pr{min,-e[l,,,] ||X — X;||oo < t} < n(2t)d.

d 1 ~1/d

1/2nt/d
Lower Bound on Distance: d..(d,n) > / 1 — n(2t)%dt = 5
0

(d+1)nt7d ~ "

doo(1,n) 20.0025 =20.00025 =0.000025 = 0.0000025
dor(10,1) 20.28 >022  =20.18 >0.14
do,(20,1) =0.37 >0.34  =20.30 > (.26

Gyorfi 2002

Consequence: Shows for n samples, the minimum distance decreases very slowly for large d, doo ~ n—

Samples

X;

~ e

- W

X/://:

LA} ¢
. *

. 3 &

- ..'Q

!F:' -~

RS T4
-

%.'i o

. ®

Regression: Without using assumed structure, regression requires many samples to ensure accuracy.

1/d.
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Curse of Dimensionality and Generalization Bounds for Regression

Regression Task: From data samples S = {(x;, yi)}/=; find model f € F so that y ~ f(x).

n

R(F) = =S Uy F(x)). R(F) = By [y, O], £y F00) = 5 (v — F())-

n <
i=1

Approach: Regularized Loss Minimization (RLM), f = arg min/cr (ﬁ’(f) + )vy(f)) .

v(f) = tlsr}\f/t u|(V), Mr={p|f(x)= / ov(x)du(v)}, V compact, u Radon measure.
H f \%

(V) = sup/ g(v)du(v), G ={g| g continuous, g(x) € [-1,1]}.
geg Jvy

related to:  f = argmin,zs R(f), F°{f € F|~(f) < 6} (appropriate choice of §).

Generalization Bound:

P . . < - o - . s . Fay o . . S )
R(f) flgj__R(f) < Llen;d R(f) flg}‘: R(f)] +2 flen;g |R(f) — R(f)| + |R(f) Flen}ffs R(f)|

- ~ s J N

g ~ -~ ¥

generalization error approximation error estimation error optimization error
Bach 2017
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Curse of Dimensionality and Generalization Bounds for Regression
Regression Task: From data samples S = {(x;, yi)}/=; find model f € F so that y ~ f(x).

F = argmin,crs R(F), FO{F € F|A(F) <o},

Generalization Bound:

R(f) — inf R(f) < | inf R(f)— inf R(f)] +2 inf |R(f) — R(f)| + |R(f) — fien;d R(f)|.

fer feFo feF feFo
generalization error approximation error estimation error optimization error
. . . . Bach 2017
Scaling in (n, d): When assuming the target function’s form,
Case Functional Form Lo-risk generalization error
general — n~ /193 og(n)
affine w ' x + b dl/2p=1/2
neural network (single layer) f:l nj(WJ—Tx + bj)4 kd'/2p=1/2
projection pursuit le fj—(mC,-Tx)j wj € RY kd'/2p—1/% log(n)
subspace projection le f}-(VVij), W, € RIXs | kgt/2p—1/(sH3) log(n)
Bach 2017

Summary: General case has exponential scaling in d! However, assumed structure - improves to polynomial in d!
If target function approximated well by above form - even high dimensional d may be tractable.

In practice: Many functions in ML empirically appear well approximated by above (modest kK, S).

Deep architectures (not case above) seem empirically to provide even better representations for many ML tasks.
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summary
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Regression Summary

4

Task: Find function h € g€ that models in data the relationship of y, to x; as y; ~ h(x)).

—
A

Ordinary Least-Squares (OLS): Fits considering only least-squared deviations of y; with h(x;).
Can become overly sensitive to noise if features x2 and x.° are strongly correlated or co-linear.

Kernel Ridge Regression (KRR): Fits using L2-penalty in addition to least-squares loss. The penalty helps
“shrink” weights yielding smaller values in directions where features x2 and x are strongly correlated or co-
linear.

Support Vector Regression (SVR): Fits using e-insensitive least-squares loss (e-tube) and L2-penalty. The
e-tube helps filter localized variations without incurring loss and L2-penalty results in “shrinkage” as in KRR.

Least Absolute Shrinkage and Selection Operator (LASSO): Fits using L1-penalty in addition to least-
squares loss. The penalty further helps “shrink” weights in many cases resulting in zero weight components
giving a sparse representation (very helpful in high-dimensional regression).

Many other forms of regression: Elastic Net, LARS, Bayesian Regression, Neural-Networks.
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