Exercises

Machine Learning: Foundations and Applications MATH 260

Paul J. Atzberger
http://atzberger.org/

Can choose to complete 3 out the following 6 problems.

1. Show that the concept class of hyper-rectangles $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times\left[a_{n}, b_{n}\right] \in \mathbb{R}^{n}$ in PAC learnable. Hint: Start by considering $n=2$ and showing this is learnable and then work from there.
2. Consider the concept class of concentric circles of the form $\left\{(x, y) \mid x^{2}+y^{2} \leq r^{2}\right\}$ for $r>0, r \in$ \mathbb{R}. Show this is (ϵ, δ)-PAC-learnable from a training data set of size $m \geq(1 / \epsilon) \log (1 / \delta)$.
3. Consider a data collection (x, y) with $x \in \mathcal{X}$ a discrete set and $y \in\{0,1\}$ with distribution $\mathcal{D}_{x, y}$ when for x the assigned labels y are stochastic (non-deterministic). Consider the Bayes Classifier given by $h_{\text {bayes }}(x)=\operatorname{argmax}_{y} \operatorname{Pr}[y \mid x]$. Show the Generalization Error $R(\cdot)$ has the property that $R^{*}=R\left(h_{\text {bayes }}\right) \leq R(h)$ for any hypothesis.
4. Show that the strategy of Empirical Risk Minimization (ERM) for a discrete hypothesis space \mathcal{H} satisfies the bound

$$
\begin{equation*}
R\left(h^{E R M}\right)-R\left(h^{*}\right) \leq 2 \sup _{h \in \mathcal{H}}|R(h)-\hat{R}(h)| . \tag{1}
\end{equation*}
$$

Here, $h^{E R M}=\operatorname{argmin}_{h} \hat{R}(h)$ and $h^{*}=\operatorname{argmin}_{h} R(h)$. State why this result is potentially useful.
5. Consider a collection of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{N}$ with finite mean μ and variance σ^{2}. From the Law of Large Numbers we know that $S_{N}=\sum_{k=1}^{n} X_{k}$ will have $\mu_{N}=\frac{1}{N} S_{N} \rightarrow \mu$. Using the Cheyshev inequality derive an estimate for at least how many samples N are required so that for the estimate of the mean $\mu_{N}=\frac{1}{N} S_{N}$ satisfies for a given $\epsilon>0$ and $\delta>0$

$$
\begin{equation*}
\operatorname{Pr}\left\{\left|\mu_{N}-\mu\right|>\epsilon\right\} \leq \delta . \tag{2}
\end{equation*}
$$

In the case we make the special choice of $\epsilon=m \sigma$ state the lower bound on N.
6. Suppose we observe a collection of flips of a coin with the unknown probability of heads p^{*}. We make an estimate $\tilde{p}=\mu_{N}$ of this probability where $X=1$ for heads and $X=0$ for tails. To be confident that our estimate \tilde{p} is within 0.1 of the true probability p^{*} would occur 99% of the time we use this approach, how many samples N do we need to make sure to observe?

