Exercises

Machine Learning: Foundations and Applications MATH 260

Paul J. Atzberger
http://atzberger.org/

Can choose to complete 2 out the following 6 problems.

1. (Support Vector Machine (SVM)). The SVM is a widely used method to perform classification by trying to find hyperplanes that separate the data classes of $\mathcal{S}=\left\{x_{i}, y_{i}\right\}_{i=1}^{m}$. SVMs aim to obtain generalization by looking for hyperplanes with the largest margin. In the case with two separable classes, this corresponds to the constrained optimization problem

$$
\min _{\mathbf{w}, b}\|\mathbf{w}\|^{2} \text { subject to }\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) y_{i} \geq 1 .
$$

(a) What is the VC-dimension of the set of hyperplane classifiers for $\mathbf{x} \in \mathbb{R}^{n}$? The hypothesis space is $\mathcal{H}=\left\{h \mid h(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right), \mathbf{w} \in \mathbb{R}^{n}, b \in \mathbb{R}\right\}$.
(b) We derived in lecture the dual problem for SVMs in the non-separable case using the Karush-Kuhn-Tucker (KKT) conditions. Derive the dual formulation for the SVM in the separable case.
(c) How does the weight vector \mathbf{w} depend on the training data samples $\mathcal{S}=\left\{x_{i}, y_{i}\right\}_{i=1}^{m}$? In particular, which training data samples contribute to \mathbf{w} ? Hint: Use the KKT conditions to obtain representation formula for \mathbf{w} in terms of the data. (Which coefficients are non-zero?)
2. (Kernel Methods and RKHS) Consider the classification of points $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ having labels associated with the XOR operation $y=x_{1} \oplus x_{2}$ with
$\mathcal{S}=\{(-1,-1, F),(-1,1, T),(1,-1, T),(1,1, F)\}$. There is no direct linear classifier $h(\mathbf{x})=$ $\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)$ that can correctly label these points. Here, we use (-1 for False, 1 for True). However, if we use the feature map $\phi(\mathbf{x})=\left[\phi_{1}(\mathbf{x}), \phi_{2}(\mathbf{x}), \phi_{3}(\mathbf{x})\right]=\left[x_{1}, x_{2}, x_{1} x_{2}\right]$ into \mathbb{R}^{3} there is a linear classifier of the form $h(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{T} \phi(\mathbf{x})+b\right)$.
(a) Find weights \mathbf{w} and b that correctly classifies the points with XOR labels.
(b) Give the kernel function $k(\mathbf{x}, \mathbf{z})$ associated with this feature map into \mathbb{R}^{3}.
(c) Show the Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} for this feature map consists of all the functions of the form $f(\cdot)=a x_{1}+b x_{2}+c x_{1} x_{2}$. Using that $\phi(\mathbf{z})=k(\cdot, \mathbf{z})$, give the inner-product $\langle f, g\rangle_{\mathcal{H}}$ for two functions $f(\cdot)$ and $g(\cdot)$ from this space.
(d) Show $k(\cdot, \mathbf{z})$ has the reproducing property under this inner-product.
(e) Show that we can express $\mathbf{w}=\sum_{i} \alpha_{i} k\left(\cdot, \mathbf{x}_{i}\right)$ and that the classifier can be expressed using only kernel evaluations as $h(\mathbf{x})=\operatorname{sign}\left(\sum_{i} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)+b\right)$.
Hint: Recall that the dot-product expressions are short-hand $\mathbf{w}^{T} \phi(\mathbf{x})=\langle\mathbf{w}, \phi(\mathbf{x})\rangle_{\mathcal{H}}$.
3. (Perceptron) Consider the separable case and a dataset $\mathcal{S}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{m}$ represented as $\mathbf{x}_{i}=\left(\tilde{\mathbf{x}}_{i}, 1\right)$ to handle the bias term. We could try to find a classifying hyperplane $h(\mathbf{x})=$ $\operatorname{sign}(\langle\mathbf{w}, \mathbf{x}\rangle)$ using the following procedure: (i) initialize $\mathbf{w}^{(1)}=0$, (ii) if there is some index i with \mathbf{x}_{i} misclassified with $y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \leq 0$ then update the weights using $\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}+y_{i} \mathbf{x}_{i}$.
(a) Show this method always converges in the separable case to a $\hat{\mathbf{w}}$ so that $y_{i}\left\langle\hat{\mathbf{w}}, \mathbf{x}_{i}\right\rangle>0$.
(b) Show the method converges in at most T iterations with $T \leq(R B)^{2}$, where $B=$ $\min _{\mathbf{w}}\left\{\|\mathbf{w}\|\right.$ s.t. $\left.y_{i}\langle\mathbf{w}, \mathbf{x}\rangle \geq 1\right\}$ and $R=\max _{i}\left\|\mathbf{x}_{i}\right\|$.

Hint: Let \mathbf{w}^{*} be the vector of smallest norm with $y_{i}\left\langle\mathbf{w}^{*}, \mathbf{x}_{i}\right\rangle \geq 1$, which exists by the separability condition. Show after T iterations $\frac{\left\langle\mathbf{w}^{*}, \mathbf{w}^{(T+1)}\right\rangle}{\left\|\mathbf{w}^{*}\right\|\left\|\mathbf{w}^{(T+1)}\right\|} \geq \frac{\sqrt{T}}{R B}$. Cauchy-Schwartz then yields the inequality.
4. (Kernel-Ridge Regression) Consider the problem of constructing a model that approximates the relation $y=f(x)$ from samples obscured by noise $y_{i}=f\left(\mathbf{x}_{i}\right)+\xi_{i}$, where ξ_{i} is Gaussian. As discussed in lecture when using Bayesian methods with a Gaussian prior this leads to the optimization problem

$$
\min _{\mathbf{w}} J(\mathbf{w}) \text {, where } J(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{m}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\frac{1}{2} \gamma \mathbf{w}^{T} \mathbf{w} .
$$

(a) Show that the solution weight vector \mathbf{w} always can be expressed in the form $\mathbf{w}=$ $\sum_{i=1}^{m} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)$. Hint: Compute the gradient $\nabla_{\mathbf{w}} J=0$.
(b) Consider the design matrix $\Phi=\left[\phi\left(\mathbf{x}_{\mathbf{1}}\right), \ldots, \phi\left(\mathbf{x}_{\mathbf{m}}\right)\right]^{T}$ defined by the data so we can express $\mathbf{w}=\Phi^{T} \alpha$. Substitute this into the optimization problem to obtain the dual formulation in terms of minimizing over a function $J(\alpha)$. Express this in terms of the design matrix Φ and Gram matrix K, where $K_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$.
(c) Compute the gradient $\nabla_{\alpha} J=0$ to derive equations for the solution of the optimization problem. Express the linear equations for the solution α in terms of the Gram matrix K.
(d) Explain briefly the importance of the term γ and role it plays in the solution.
(e) Suppose we consider the regression problem to be over all functions $f \in \mathcal{H}$ in some Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} with kernel k and use regularization $\|f\|_{\mathcal{H}}^{2}$. This corresponds to the optimization problem

$$
\min _{f \in \mathcal{H}} J[f], \text { with } J[f]=\frac{1}{2} \sum_{i=1}^{m}\left(f\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\frac{1}{2}\|f\|_{\mathcal{H}}^{2} .
$$

Show the solution to this optimization problem yields the same result as in the formulation above using α. Hint: Use representation results for objective functions of the form $J[f]=L\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right)+G\left(\|f\|_{\mathcal{H}}\right)$.
5. Consider kernel regression in the case when $k(\mathbf{x}, \mathbf{z})=\exp \left(-c\|\mathbf{x}-\mathbf{z}\|^{2}\right)$. Compute the kernelridge regression for $f(x)=\sin (x)$ in the specific case of $y_{i}=\sin \left(x_{i}\right)$ with $x_{i}=2 \pi(i-1) / m$ for $i=1,2, \ldots, m$. Study the L_{2}-error (least-squares error) $\epsilon_{\text {err }}=\int_{0}^{2 \pi}\left(\mathbf{w}^{T} \phi(z)-f(z)\right)^{2} d z$ when estimated by $\tilde{\epsilon}_{\text {err }}=\frac{2 \pi}{N} \sum_{\ell=1}^{N}\left(\mathbf{w}^{T} \phi\left(z_{i}\right)-f\left(z_{i}\right)\right)^{2}$. To try to approximate the integral well take $z_{i}=2 \pi(i-1) / N$ with large $N \gg m$, say $N=10^{5}$. Use this to construct a log-log plot of $\tilde{\epsilon}_{\text {err }}$ vs m when m varies over the range, say $10,10 \times 2^{1}, 10 \times 2^{2}, \ldots 10 \times 2^{9}$. Plot on the same figure the errors $\tilde{\epsilon}_{\text {err }}$ vs m for a few different choices of the hyperparameter c, say
$c=100,10,1,0.1,0.01$. For $f(x)=\sin (x)$ for which c values do you get the best accuracy? Explain briefly for what choice of c you would expect for the model to generalize the best under a data distribution for x_{i} that is uniform on $[0,2 \pi]$.
6. (L_{1} vs L_{2} Regularization) Consider the optimization problem

$$
\min _{\mathbf{w}} J(\mathbf{w}), \text { with } J(\mathbf{w})=\frac{1}{2}(\mathbf{w}-\mathbf{q})^{T}(\mathbf{w}-\mathbf{q})+R(\mathbf{w}) .
$$

(a) Find the solution $\mathbf{w} \in \mathbb{R}^{4}$ when $R(\mathbf{w})=\gamma \frac{1}{2}\|\mathbf{w}\|_{2}^{2}$ with $\mathbf{q}=(1,1,1,4)$ and $\gamma=1$. Hint: Consider values \mathbf{w} where $\nabla_{\mathbf{w}} J=0$ or the gradient does not exist.
(b) Find the solution $\mathbf{w} \in \mathbb{R}^{4}$ when $R(\mathbf{w})=\gamma\|\mathbf{w}\|_{1}$ with $\mathbf{q}=(1,1,1,4)$ and $\gamma=1$. Hint: Consider values \mathbf{w} where $\nabla_{\mathbf{w}} J=0$ or the gradient does not exist.
(c) For which solution are most of the components of \mathbf{w} zero. Briefly explain why one might expect one of the regularizations to do better in pushing solutions close to the coordinate axes to promote sparsity.

