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Can choose to complete 2 out the following 6 problems.

1. (Support Vector Machine (SVM)). The SVM is a widely used method to perform classification
by trying to find hyperplanes that separate the data classes of S = {z;,y;}I";. SVMs aim to
obtain generalization by looking for hyperplanes with the largest margin. In the case with
two separable classes, this corresponds to the constrained optimization problem

milr)l |w||? subject to (w'x; +b)y; > 1.
w7

(a) What is the VC-dimension of the set of hyperplane classifiers for x € R"? The hypothesis
space is H = {h | h(x) = sign(w'x; + b),w € R", b € R}.

(b) We derived in lecture the dual problem for SVMs in the non-separable case using the
Karush-Kuhn-Tucker (KKT) conditions. Derive the dual formulation for the SVM in
the separable case.

(c) How does the weight vector w depend on the training data samples S = {z;, y;}/%,? In
particular, which training data samples contribute to w? Hint: Use the KKT conditions
to obtain representation formula for w in terms of the data. (Which coefficients are
non-zero?)

2. (Kernel Methods and RKHS) Consider the classification of points x = (z1,72) € R? having
labels associated with the XOR operation y = x1 @ xo with
S={(-1,-1,F),(-1,1,7),(1,-1,7),(1,1,F)}. There is no direct linear classifier h(x) =
sign(w!'x + b) that can correctly label these points. Here, we use (—1 for False, 1 for True).
However, if we use the feature map ¢(x) = [¢1(x), ¢2(x), ¢3(x)] = [#1, T2, T172] into R3 there
is a linear classifier of the form h(x) = sign(w’ ¢(x) + b).

(a) Find weights w and b that correctly classifies the points with XOR labels.
(b) Give the kernel function k(x,z) associated with this feature map into R3.

(c) Show the Reproducing Kernel Hilbert Space (RKHS) # for this feature map consists of
all the functions of the form f(-) = ax; + bxy + cxixe. Using that ¢(z) = k(-,z), give
the inner-product (f, g)% for two functions f(-) and g(-) from this space.

(d) Show k(-,z) has the reproducing property under this inner-product.

(e) Show that we can express w = > . a;k(-,%;) and that the classifier can be expressed
using only kernel evaluations as h(x) = sign(}_, a;k(x,x;) + b).
Hint: Recall that the dot-product expressions are short-hand w’ ¢(x) = (w, ¢(x))%.

3. (Perceptron) Consider the separable case and a dataset S = {(x;,v;)}/", represented as
x; = (X;,1) to handle the bias term. We could try to find a classifying hyperplane h(x) =
sign((w, x)) using the following procedure: (i) initialize w(®) = 0, (ii) if there is some index i
with x; misclassified with y;(w,x;) < 0 then update the weights using w9 = w(®) 4 y;x;.
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(a) Show this method always converges in the separable case to a W so that y;(w,x;) > 0.

(b) Show the method converges in at most T iterations with 7' < (RB)? where B =
ming {||w|| s.t. y;(w,x) > 1} and R = max; ||x;]|.

Hint: Let w* be the vector of smallest norm with y;(w*,x;) > 1, which exists by the

>
(w'wTH)) T

separability condition. Show after T' iterations T T [w 0] %5 Cauchy-Schwartz

then yields the inequality.

4. (Kernel-Ridge Regression) Consider the problem of constructing a model that approximates
the relation y = f(z) from samples obscured by noise y; = f(x;) + &;, where &; is Gaussian.
As discussed in lecture when using Bayesian methods with a Gaussian prior this leads to the
optimization problem

(quS(xi) — yi)2 + LwaW.

min J(w), where J(w)= 5
i=1

w

N | =

(a) Show that the solution weight vector w always can be expressed in the form w =
S aip(x;). Hint: Compute the gradient Vy,J = 0.

(b) Consider the design matrix ® = [#(x1),...,¢(xm)]? defined by the data so we can
express w = ®Tq. Substitute this into the optimization problem to obtain the dual
formulation in terms of minimizing over a function J(«). Express this in terms of the
design matrix ® and Gram matrix K, where K;; = k(x;,%;) = ¢(x;)T ¢(x;).

(c) Compute the gradient V,.J = 0 to derive equations for the solution of the optimization

problem. Express the linear equations for the solution « in terms of the Gram matrix
K.

(d) Explain briefly the importance of the term 7 and role it plays in the solution.

(e) Suppose we consider the regression problem to be over all functions f € H in some
Reproducing Kernel Hilbert Space (RKHS) H with kernel k and use regularization || f||3,.
This corresponds to the optimization problem

1 & 1
?%iﬂ‘][f]’ with J[f]:2;(f(xi)yi)2+2”ﬂ3{'

Show the solution to this optimization problem yields the same result as in the formula-
tion above using «. Hint: Use representation results for objective functions of the form

JUT = L(f (@), f(@m)) + G fll%)-

5. Consider kernel regression in the case when k(x,z) = exp (—c||x — z||?). Compute the kernel-
ridge regression for f(z) = sin(z) in the specific case of y; = sin(x;) with z; = 27(i — 1)/m
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for i = 1,2,...,m. Study the La-error (least-squares error) €., = |, (WTgZ)(z) — f(z))de
when estimated by €., = QW” Zévzl (WT¢(Zi) — f(zl))2 To try to approximate the integral
well take z; = 27(i — 1)/N with large N > m, say N = 10°. Use this to construct a log-log
plot of €,, vs m when m varies over the range, say 10,10 x 2,10 x 22,...10 x 2°. Plot on
the same figure the errors €., vs m for a few different choices of the hyperparameter ¢, say



¢ = 100,10,1,0.1,0.01. For f(z) = sin(z) for which ¢ values do you get the best accuracy?
Explain briefly for what choice of ¢ you would expect for the model to generalize the best
under a data distribution for x; that is uniform on [0, 27].

6. (L1 vs Ly Regularization) Consider the optimization problem
1
min J(w), with J(w) = §(W —q)f(w—q)+ R(w).

(a) Find the solution w € R* when R(w) = v3||w||3 with q = (1,1,1,4) and v = 1. Hint:
Consider values w where Vy,J = 0 or the gradient does not exist.

(b) Find the solution w € R* when R(w) = 7||lwl|j; with q = (1,1,1,4) and v = 1. Hint:
Consider values w where Vy,J = 0 or the gradient does not exist.

(¢) For which solution are most of the components of w zero. Briefly explain why one might

expect one of the regularizations to do better in pushing solutions close to the coordinate
axes to promote sparsity.



