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Can choose to complete 2 out the following 6 problems.

1. (Support Vector Machine (SVM)). The SVM is a widely used method to perform classification
by trying to find hyperplanes that separate the data classes of S = {xi, yi}mi=1. SVMs aim to
obtain generalization by looking for hyperplanes with the largest margin. In the case with
two separable classes, this corresponds to the constrained optimization problem

min
w,b

∥w∥2 subject to
(
wTxi + b

)
yi ≥ 1.

(a) What is the VC-dimension of the set of hyperplane classifiers for x ∈ Rn? The hypothesis
space is H = {h | h(x) = sign(wTxi + b),w ∈ Rn, b ∈ R}.

(b) We derived in lecture the dual problem for SVMs in the non-separable case using the
Karush-Kuhn-Tucker (KKT) conditions. Derive the dual formulation for the SVM in
the separable case.

(c) How does the weight vector w depend on the training data samples S = {xi, yi}mi=1? In
particular, which training data samples contribute to w? Hint: Use the KKT conditions
to obtain representation formula for w in terms of the data. (Which coefficients are
non-zero?)

2. (Kernel Methods and RKHS) Consider the classification of points x = (x1, x2) ∈ R2 having
labels associated with the XOR operation y = x1 ⊕ x2 with
S = {(−1,−1, F ), (−1, 1, T ), (1,−1, T ), (1, 1, F )}. There is no direct linear classifier h(x) =
sign(wTx + b) that can correctly label these points. Here, we use (−1 for False, 1 for True).
However, if we use the feature map ϕ(x) = [ϕ1(x), ϕ2(x), ϕ3(x)] = [x1, x2, x1x2] into R3 there
is a linear classifier of the form h(x) = sign(wTϕ(x) + b).

(a) Find weights w and b that correctly classifies the points with XOR labels.

(b) Give the kernel function k(x, z) associated with this feature map into R3.

(c) Show the Reproducing Kernel Hilbert Space (RKHS) H for this feature map consists of
all the functions of the form f(·) = ax1 + bx2 + cx1x2. Using that ϕ(z) = k(·, z), give
the inner-product ⟨f, g⟩H for two functions f(·) and g(·) from this space.

(d) Show k(·, z) has the reproducing property under this inner-product.

(e) Show that we can express w =
∑

i αik(·,xi) and that the classifier can be expressed
using only kernel evaluations as h(x) = sign(

∑
i αik(x,xi) + b).

Hint: Recall that the dot-product expressions are short-hand wTϕ(x) = ⟨w, ϕ(x)⟩H.

3. (Perceptron) Consider the separable case and a dataset S = {(xi, yi)}mi=1 represented as
xi = (x̃i, 1) to handle the bias term. We could try to find a classifying hyperplane h(x) =
sign(⟨w,x⟩) using the following procedure: (i) initialize w(1) = 0, (ii) if there is some index i
with xi misclassified with yi⟨w,xi⟩ ≤ 0 then update the weights using w(t+1) = w(t) + yixi.
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(a) Show this method always converges in the separable case to a ŵ so that yi⟨ŵ,xi⟩ > 0.

(b) Show the method converges in at most T iterations with T ≤ (RB)2, where B =
minw{∥w∥ s.t. yi⟨w,x⟩ ≥ 1} and R = maxi ∥xi∥.

Hint: Let w∗ be the vector of smallest norm with yi⟨w∗,xi⟩ ≥ 1, which exists by the

separability condition. Show after T iterations ⟨w∗,w(T+1)⟩
∥w∗∥∥w(T+1)∥ ≥

√
T

RB . Cauchy-Schwartz

then yields the inequality.

4. (Kernel-Ridge Regression) Consider the problem of constructing a model that approximates
the relation y = f(x) from samples obscured by noise yi = f(xi) + ξi, where ξi is Gaussian.
As discussed in lecture when using Bayesian methods with a Gaussian prior this leads to the
optimization problem

min
w

J(w), where J(w) =
1

2

m∑
i=1

(
wTϕ(xi)− yi

)2
+

1

2
γwTw.

(a) Show that the solution weight vector w always can be expressed in the form w =∑m
i=1 αiϕ(xi). Hint: Compute the gradient ∇wJ = 0.

(b) Consider the design matrix Φ = [ϕ(x1), . . . , ϕ(xm)]T defined by the data so we can
express w = ΦTα. Substitute this into the optimization problem to obtain the dual
formulation in terms of minimizing over a function J(α). Express this in terms of the
design matrix Φ and Gram matrix K, where Kij = k(xi,xj) = ϕ(xi)

Tϕ(xj).

(c) Compute the gradient ∇αJ = 0 to derive equations for the solution of the optimization
problem. Express the linear equations for the solution α in terms of the Gram matrix
K.

(d) Explain briefly the importance of the term γ and role it plays in the solution.

(e) Suppose we consider the regression problem to be over all functions f ∈ H in some
Reproducing Kernel Hilbert Space (RKHS)H with kernel k and use regularization ∥f∥2H.
This corresponds to the optimization problem

min
f∈H

J [f ], with J [f ] =
1

2

m∑
i=1

(f(xi)− yi)
2 +

1

2
∥f∥2H.

Show the solution to this optimization problem yields the same result as in the formula-
tion above using α. Hint: Use representation results for objective functions of the form
J [f ] = L(f(x1), . . . , f(xm)) +G(∥f∥H).

5. Consider kernel regression in the case when k(x, z) = exp
(
−c∥x− z∥2

)
. Compute the kernel-

ridge regression for f(x) = sin(x) in the specific case of yi = sin(xi) with xi = 2π(i − 1)/m

for i = 1, 2, . . . ,m. Study the L2-error (least-squares error) ϵerr =
∫ 2π
0

(
wTϕ(z)− f(z)

)2
dz

when estimated by ϵ̃err = 2π
N

∑N
ℓ=1

(
wTϕ(zi)− f(zi)

)2
. To try to approximate the integral

well take zi = 2π(i− 1)/N with large N ≫ m, say N = 105. Use this to construct a log-log
plot of ϵ̃err vs m when m varies over the range, say 10, 10 × 21, 10 × 22, . . . 10 × 29. Plot on
the same figure the errors ϵ̃err vs m for a few different choices of the hyperparameter c, say
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c = 100, 10, 1, 0.1, 0.01. For f(x) = sin(x) for which c values do you get the best accuracy?
Explain briefly for what choice of c you would expect for the model to generalize the best
under a data distribution for xi that is uniform on [0, 2π].

6. (L1 vs L2 Regularization) Consider the optimization problem

min
w

J(w), with J(w) =
1

2
(w − q)T (w − q) +R(w).

(a) Find the solution w ∈ R4 when R(w) = γ 1
2∥w∥22 with q = (1, 1, 1, 4) and γ = 1. Hint:

Consider values w where ∇wJ = 0 or the gradient does not exist.

(b) Find the solution w ∈ R4 when R(w) = γ∥w∥1 with q = (1, 1, 1, 4) and γ = 1. Hint:
Consider values w where ∇wJ = 0 or the gradient does not exist.

(c) For which solution are most of the components of w zero. Briefly explain why one might
expect one of the regularizations to do better in pushing solutions close to the coordinate
axes to promote sparsity.
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