Exercises

Machine Learning: Foundations and Applications MATH 260

Paul J. Atzberger http://atzberger.org/

Can choose to complete 1 out the following 3 problems.

- 1. (Neural Networks) Consider a basic Multilayer Perceptron (MLP) with two inputs x_1, x_2 , single output y, and a hidden layer with n units h_i . Corresponding to this MLP is the hypothesis space $\mathcal{H} = \{q : \mathbb{R}^2 \to \mathbb{R} \mid q(x_1, x_2; \mathcal{W}) = \sum_{i=1}^n w_i^{(2)} h_i$, where $h_i = \sigma(w_{i1}^{(1)} x_1 + w_{i2}^{(1)} x_2)\}$. The output is $y = q(x_1, x_2; \mathcal{W})$ where the \mathcal{W} denotes the collection of weights.
 - (a) Consider the case where we set $x_2 = 1$ and $x_1 \in [0, 1]$ with activation the Rectified Linear Unit (ReLU) $\sigma = \max(0, z)$. Show that with at most n = k + 2 hidden units we can exactly represent any function $f(x_1)$ that is piece-wise linear with k internal transition points on [0, 1] and f(x) = 0 for $x \notin (0, 1)$. For instance, show that f(x) = 2xfor $x \leq 1/2$ and f(x) = 2(1-x) for x > 1/2, which has k = 1 internal transition points, can be exactly represented on [0, 1] by a MLP with n = 3 hidden units.
 - (b) Consider approximating a general function f(x) on [0,1] by using a gradient descent $\dot{\mathbf{w}} = -\alpha \nabla_{\mathbf{w}} L$ to minimize the loss $L(q) = \frac{1}{m} \sum_{i=1}^{m} (f(z_i) q(z_i; \mathbf{w}))^2$. Consider *m* data points $z_i \in [0,1]$ where we take in the MLP $x_1 = z_i$ and $x_2 = 1$. State for the MLP the back-propagation method for computing the gradient in \mathbf{w} . Draw the computational graph in the case when n = 1 and m = 1 for both the "forward pass" and the "backward pass."
 - (c) Explain techniques for how you might mitigate getting stuck in local minima or overfitting the data?
- 2. (Neural Networks) Consider a Multilayer Perceptron (MLP) with two inputs x_1, x_2 and activation $\sigma(z)$.
 - (a) Show a single layer Perceptron is not able to solve the XOR problem to output $y = x_1 \otimes x_2$.
 - (b) Show a two layer MLP can solve the XOR problem. For inputs $x_1, x_2 \in \{-1, 1\}$ show there is an MLP with $\sigma(z) = \max(z, 0)$ that can can give the correct output $y = x_1 \otimes x_2$.
 - (c) Show for any Boolean function $b(x_1, x_2) : \{-1, 1\}^2 \to \{-1, 1\}$ there is an MLP with two layers and activations $\sigma(z) = \operatorname{sign}(z)$ that can compute the output matching b. Show when the activation is $\sigma(z) = \max(z, 0)$ the two layer MLP can also compute outputs matching b.
- 3. (Perceptron and Gradient Descent) Consider a dataset $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ where $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, +1\}$. Assume this dataset is separable in the sense that there exists a \mathbf{w} so that $y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1$. Let \mathbf{w}^* be such a separating weight that has the minimum norm $\|\mathbf{w}\|^2$. Consider $f(\mathbf{w}) = \max_i (1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle)$.
 - (a) Show that for S and \mathbf{w}^* above we have $\min_{\mathbf{w}:\|\mathbf{w}\| \le \|\mathbf{w}^*\|} f(\mathbf{w}) = 0$. Show that for any \mathbf{w} with $f(\mathbf{w}) < 1$ we have the weight \mathbf{w} separates S.

- (b) Compute the subgradient ∂f of the function $f(\mathbf{w})$. The subgradient at \mathbf{w} is the set of vectors $\partial f(\mathbf{w})$ with $\mathbf{g} \in \partial f(\mathbf{w})$ if $\forall \mathbf{u}$ we have $f(\mathbf{u}) \geq f(\mathbf{w}) + \langle \mathbf{u} \mathbf{w}, \mathbf{g} \rangle$.
- (c) Consider the Stochastic Subgradient Descent optimization algorithm for $f(\mathbf{w})$. Compare this to the Batch Perceptron training algorithm discussed previously and in the exercises.