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Can choose to complete 1 out the following 3 problems.

1. (Neural Network Universal Approximation and Activations) The Cybenko Theorem states
that if a continuous activation function g(z) is discriminatory on the unit cube In ⊂ Rn

then the linear space V = {q | q(x) =
∑n

j=1 αjg(w
T
j x + bj), n ∈ N} is dense in the space of

continuous functions C(In). In other words, for any continuous function f ∈ C(In) and ϵ > 0,
there exists a q ∈ V such that |f(x) − q(x)| < ϵ for all x ∈ In. An activation function g(z)
is said to be discriminatory if for a Borel measure µ ∈ M we have for all weights w, b that∫
g(wTx+ b)dµ(x) = 0 then the measure must be zero µ ≡ 0.

(a) Show that the sigmoid activation function g(z) = 1/1 + e−z is discriminatory on I1 =
[0, 1]. Hint: Use that

∫
g(wTx+b)dµ(x) = 0 for all w, b iff

∫
q(x)dµ(x) = 0 for all q ∈ V.

(b) Show that the ReLU activation function g(z) = max(z, 0) is discriminatory on I1. Hint:
Use that

∫
g(wTx+ b)dµ(x) = 0 for all w, b iff

∫
q(x)dµ(x) = 0 for all q ∈ V.

(c) Show that the linear activation function g(z) = z is not discriminatory on I1. Hint:
Construct a counter-example using a measure of the form µ(x) = a1δ(x− x1) + a2δ(x−
x2) + a3δ(x− x3), where δ(·) denotes here the Dirac δ-function (measure).

2. (Approximating Distributions / Variational Inference) Consider a data distribution of the
form zi ∼ ρ̄ where ρ̄(z) = (1/Z) exp (−βU(z)), where U(z) = (1 − z2)2 − 4αz, Z =∫
exp (−βU(z)), α = 0.171 = 9/10− (9/10)3.

(a) Plot the distribution for the range z ∈ [−3, 3] when β = 1.5.

(b) Show the critical points U ′(z) = 0 are at z− = −9/10, z+ = 1
20

(
9 +

√
157

)
and z0 =

1
20

(
9−

√
157

)
. The z± give local minima of U , and consequently local maxima of ρ̄.

(c) Suppose as a generative model a Gaussian is used with parameter µ = z+ and σ2 =
(βu′′(z+))

−1, denote this distribution by ρ̃. Derive this Gaussian estimate for β ≫ 1 by
computing Taylor expansion of U(z) = U(z+) + U ′(z+)(z − z+) +

1
2U

′′(z+)(z − z+)
2 +

· · ·+R(z, z+) and substituting for U . The approximation ρ̃ of ρ̄ is obtained by retaining
the leading order terms in β(z − z+)

ℓ with ℓ ≤ 2.

(d) How well does ρ̃ approximate the distribution ρ̄? For β = 0.5, 1.0, 1.5, 2.0, 3.0 compute
numerical estimates of the L1-norm error ∥ρ̃− ρ̄∥1.

3. (Generative Models and MLE) The method of Maximum Likelihood Estimation (MLE) selects
a model θ∗ from data {zi}mi=1 by optimizing

θ∗ = argmin
θ∈Θ

m∑
i=1

− log (ρ(zi; θ)) .

(a) Consider estimating the mean and variance of a Gaussian using MLE. Show that the
MLE estimate θ̂ for the variance σ2 of a Gaussian zi ∼ η(µ, σ2) is biased. An estimator
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θ̂ is called biased if E
[
θ̂
]
− σ2 ̸= 0, where σ2 is the true parameter value of the data

distribution.

(b) Consider using linear models for regression H = {wTx + b | w ∈ Rn, b ∈ R}, where
θ = (w, b) and zi = (xi,yi). Assume a Gaussian noise model for the data generation
yi = f(xi) + ξi with i.i.d. ξi ∼ η(0, σ), f ∈ H, and n = 1. Show in this case that MLE
is equivalent to performing least-squares regression.

(c) Use MLE to find the estimate for θ = (µ, σ2) in the limit of an infinite number of
samples (i.e. replace the MLE objective sum with

∫
− log (ρ(z; θ)) ρ̄(z)dz). Show that

for Gaussian generative models ρ(z; θ) = 1√
2πσ2

exp
(
− 1

2σ2 (z − µ)2
)
the infinite sample

MLE approximates ρ̄ by selecting for ρ(z; θ) the parameters µ =
∫
zρ̄(z)dz and σ2 =∫

(z − µ)2ρ̄(z)dz.
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