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Can choose to complete 1 out the following 3 problems.

1. (Neural Network Universal Approximation and Activations) The Cybenko Theorem states
that if a continuous activation function g(z) is discriminatory on the unit cube I,, C R"”
then the linear space V = {q | ¢(x) = > 7, ajg(ijx +b;j),n € N} is dense in the space of
continuous functions C(I,,). In other words, for any continuous function f € C(I,,) and € > 0,
there exists a ¢ € V such that |f(x) — ¢(x)| < € for all x € I,,. An activation function g(z)
is said to be discriminatory if for a Borel measure p € M we have for all weights w, b that
[ g(wTx + b)du(x) = 0 then the measure must be zero u = 0.

(a) Show that the sigmoid activation function g(z) = 1/1 + e~# is discriminatory on I; =
[0,1]. Hint: Use that [ g(wlx+b)du(x) = 0 for all w,biff [ g(x)du(x) =0 for all g € V.

(b) Show that the ReLU activation function g(z) = max(z,0) is discriminatory on I;. Hint:
Use that [ g(wTx +b)du(x) = 0 for all w,b iff [ q(x)du(x) =0 for all g € V.

(c) Show that the linear activation function g(z) = z is not discriminatory on I;. Hint:

Construct a counter-example using a measure of the form p(z) = a16(x — x1) + a2d(x —
x2) + azd(x — x3), where §(-) denotes here the Dirac §-function (measure).

2. (Approximating Distributions / Variational Inference) Consider a data distribution of the
form z; ~ p where p(z) = (1/Z)exp(—BU(z)), where U(z) = (1 — 2%)? — daz, Z =
[exp (—BU(2)), a = 0.171 = 9/10 — (9/10)>.

(a) Plot the distribution for the range z € [—3, 3] when 5 = 1.5.

(b) Show the critical points U'(z) = 0 are at z— = —9/10, z; = % (9+V157) and 2z =
2—10 (9 -V 157). The z4 give local minima of U, and consequently local maxima of p.

(c) Suppose as a generative model a Gaussian is used with parameter y = z, and o2 =
(Bu”(24)) ", denote this distribution by . Derive this Gaussian estimate for 8> 1 by
computing Taylor expansion of U(z) = U(z4) 4+ U'(z4)(z — 24) + sU" (24)(z — z4)* +
-+++ R(z, z1) and substituting for U. The approximation p of p is obtained by retaining
the leading order terms in B(z — 24 )¢ with ¢ < 2.

(d) How well does p approximate the distribution p? For 8 = 0.5,1.0,1.5,2.0,3.0 compute
numerical estimates of the L'-norm error || — pl|;.

3. (Generative Models and MLE) The method of Maximum Likelihood Estimation (MLE) selects
a model 0* from data {z;}]", by optimizing

m
f* = in)  —1 10)).
arg min 2 og (p(zi;0))

(a) Consider estimating the mean and variance of a Gaussian using MLE. Show that the
MLE estimate 6 for the variance o2 of a Gaussian z; ~ n(u, 0?) is biased. An estimator
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0 is called biased if E [é] — 0% # 0, where o is the true parameter value of the data
distribution.

Consider using linear models for regression H = {w'x +b | w € R”, b € R}, where
6 = (w,b) and z; = (x;,y;). Assume a Gaussian noise model for the data generation
yi = f(x;) + & with ii.d. & ~n(0,0), f € H, and n = 1. Show in this case that MLE
is equivalent to performing least-squares regression.

Use MLE to find the estimate for § = (u,0?) in the limit of an infinite number of

samples (i.e. replace the MLE objective sum with [ —log(p(z;6)) p(z)dz). Show that

for Gaussian generative models p(z;0) = \/2;7 exp (—# (z — ,u)2> the infinite sample

MLE approximates p by selecting for p(z;6) the parameters u = [ 2p(z)dz and 0% =
J(z = p)?*p(2)d.



