Finite Element Methods: Numerical Exercises

Paul J. Atzberger

1. Show that each of the elements have the stated regularity as follows:
(a) Lagrange triangular element based on \mathcal{P}_{k} with $k+1$ distinct nodes along each edge is C^{0}.
(b) Hermite triangular element based on \mathcal{P}_{3} is C^{0}.
(c) Argyris triangular element based on \mathcal{P}_{5} is C^{1} in the normal direction across edges.

Figure 1: Triangular Elements.
2. There are many ways to develop quadratures for triangulations \mathcal{T} to approximate

$$
\iint_{\mathcal{T}_{0}} f(\mathbf{x}) d \mathbf{x} \approx \sum_{k} w_{k} f\left(\mathbf{x}_{k}\right), \quad \mathbf{x}=\left(x_{1}, x_{2}\right)
$$

(a) Consider Duffy's Transform from a reference triangular element to a quadrilateral element as shown in Figure 2. This is given by

$$
\begin{aligned}
\xi & =\left(\frac{1+\xi^{\prime}}{2}\right)\left(\frac{1-\eta^{\prime}}{2}\right), \quad \eta=\frac{1+\eta^{\prime}}{2} \\
\xi^{\prime} & =\frac{2 \xi}{1-\eta}-1, \quad \eta^{\prime}=2 \eta-1
\end{aligned}
$$

where $\eta \in[0,1], \xi \in[0,1-\eta], \xi^{\prime}, \eta^{\prime} \in[0,1]$. We can express integration over the triangular element as

$$
\int_{0}^{1} \int_{0}^{1-\eta} f(\xi, \eta) d \eta d \xi=\int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta) J\left(\xi^{\prime}, \eta^{\prime}\right) d \eta^{\prime} d \xi^{\prime}
$$

where the Jacobian for Duffy's Transform is given by $J\left(\xi^{\prime}, \eta^{\prime}\right)=\frac{1}{8}\left(1-\eta^{\prime}\right)$.

Figure 2: Duffy's Transform.

Use Gaussian quadratures for the cases of 2 and 3 nodes to construct quadratures for the iterated integrals for the quadrilateral. Determine the corresponding nodes and weights for the triangle and construct a quadrature table for the triangular elements for the Gaussian quadrature cases.
(b) Alternatively, we can use for the weights w_{k} and nodes \mathbf{x}_{k} from Table 1. For $n=4,7$, compare this with the Duffy's Transform approach for the test functions (i) $3 x^{3} y^{2}$, (ii) $\sin (\pi x y / 2)$, and (iii) $\exp \left(-3 x^{2}+3 y^{2}\right)$. In each case, which yields the more accurate approximation.

d	n	k	\mathbf{x}_{k}	ω_{k}	k	\mathbf{x}_{k}	w_{k}	k	\mathbf{x}_{k}	w_{k}	k	\mathbf{x}_{k}	w_{k}
1	1	1	$(1 / 3,1 / 3)$	$1 / 2$									
2	3	1	$(1 / 6,1 / 6)$	$1 / 6$	2	$(2 / 3,1 / 6)$	$1 / 6$	3	$(1 / 6,2 / 3)$	$1 / 6$			
3	4	1	$(1 / 3,1 / 3)$	$-9 / 32$	2	$(3 / 5,1 / 5)$	$25 / 96$	3	$(1 / 5,3 / 5)$	$25 / 96$	4	$(1 / 5,1 / 5)$	$25 / 96$
4	7	1	$(0,0)$	$1 / 40$	2	$(1 / 2,0)$	$1 / 15$	3	$(1,0)$	$1 / 40$			
		4	$(1 / 2,1 / 2)$	$1 / 15$	5	$(0,1)$	$1 / 40$	6	$(0,1 / 2)$	$1 / 15$	7	$(1 / 3,1 / 3)$	$9 / 40$

Table 1: Quadratures on triangulations for $\int_{0}^{1} \int_{0}^{1-x_{1}} f(\mathbf{x}) d \mathbf{x} \approx \sum_{k} f\left(\mathbf{x}_{k}\right) w_{k}, \mathbf{x}=\left(x_{1}, x_{2}\right)$. The d is the quadrature order, n number of nodes, \mathbf{x}_{k} nodes, and ω_{k} weights. For affine reference element map $\mathbf{x}=$ $\psi(\mathbf{X})$ with $\psi\left(\mathcal{T}_{\ell}\right)=\mathcal{T}_{0}$ and Jacobian $J(\mathbf{X})=|\operatorname{det} \partial \psi / \partial \mathbf{X}|$, the quadrature is applied using $\int_{\mathcal{T}_{\ell}} F(\mathbf{X}) d \mathbf{X}=$ $\int_{\mathcal{T}_{0}} F\left(\psi^{-1}(\mathbf{x})\right) J^{-1} d \mathbf{x}$.
3. Consider the elliptic PDE (Poisson problem) given by

$$
\Delta u(\mathbf{x})=-f(\mathbf{x}), \quad \mathbf{x} \in \Omega, \quad u(\mathbf{x})=0, \quad \mathbf{x} \in \partial \Omega
$$

where $\Omega=[-L, L] \times[-L, L] \subset \mathbb{R}^{2}$. In the Ritz-Galerkin approximation, we seek a solution $u_{h} \in \mathcal{V}_{h} \subset \mathcal{V}=H_{0}^{1}(\Omega)$ with

$$
a\left(u_{h}, w\right)=-\langle f, w\rangle_{L^{2}}, \quad \forall w \in \mathcal{V}_{h},
$$

where $a\left(u_{h}, w\right)=\int_{\Omega} \nabla_{\mathbf{x}} u_{h}(\mathbf{x}) \cdot \nabla_{\mathbf{x}} w(\mathbf{x}) d \mathbf{x}$ and $\langle f, w\rangle_{L^{2}}=\int_{\Omega} f(\mathbf{x}) w(\mathbf{x}) d \mathbf{x}$. Consider a basis of functions $\left\{\phi_{k}\right\}_{k=1}^{N}$ for \mathcal{V}_{h}. We can represent any $v \in V_{h}$ by $v(\mathbf{x})=\sum_{i} v_{i} \phi_{i}(\mathbf{x})$,
$u_{h}(\mathbf{x})=\sum_{i} u_{i} \phi_{i}(\mathbf{x})$, and approximate f by $f_{h}(\mathbf{x})=\sum_{i} f_{i} \phi_{i}(\mathbf{x})$. The FEM approximation u_{h} can be expressed as solving the linear system

$$
A \mathbf{u}=-M \mathbf{f}
$$

The A is the stiffness matrix given by $A_{i j}=a\left(\phi_{i}, \phi_{j}\right), M$ is the mass matrix given by $M_{i j}=\left\langle\phi_{i}, \phi_{j}\right\rangle_{L^{2}}$, and $[\mathbf{u}]_{i}=u_{i},[\mathbf{f}]_{i}=f_{i}$.
(a) (Meshing) Discretize the domain Ω into elements $\mathcal{T}=\left\{\mathcal{T}_{\ell}\right\}_{\ell=1}^{m}$, where \mathcal{T}_{ℓ} are triangular elements. For the square domain $\Omega=[-L, L] \times[-L, L] \subset \mathbb{R}^{2}$, one way to discretize is to define a coarse mesh. A basic algorithm to obtain a more refined discretization is to loop over each triangle and bisect the edges to obtain four smaller triangles, see Figure 3. Data structures for this are a list of vertices $\mathbf{v}_{i} \in \mathbb{R}^{2}$ and tuples $\left(i_{1}, i_{2}, i_{3}\right)$ which give the indices of the vertices of each triangle.

Figure 3: Mesh triangulation and refinement by triangle bisection.
Implement this meshing algorithm for the triangulation in Figure 3. Plot the triangulations when this refinement procedure is done up to $n=5$ times.
(b) (Assembly and Quadratures) For the discretization into triangular elements $\mathcal{T}=$ $\left\{\mathcal{T}_{\ell}\right\}_{\ell=1}^{m}$, take $\left\{\phi_{k}\right\}_{k=1}^{N}$ to be the nodal basis functions for Lagrange elements with polynomial shape functions of degree d so that $v_{h} \mid \mathcal{T}_{\ell} \in \mathcal{P}_{d}$. The stiffness matrix A is obtained through an assembly procedure where we compute the integral by breaking it into parts summing up the inner-products over each element \mathcal{T}_{ℓ} as $A_{i j}=a\left(\phi_{i}, \phi_{j}\right)=\sum_{\ell=1}^{m} \int_{\mathcal{T}_{\ell}} \nabla_{\mathbf{x}} \phi_{i}(\mathbf{x}) \cdot \nabla_{\mathbf{x}} \phi_{j}(\mathbf{x}) d \mathbf{x}=\sum_{\ell=1}^{m} A_{\ell, i j}$, and similarly, $M_{i j}=$ $\left\langle\phi_{i}, \phi_{j}\right\rangle_{L^{2}}=\sum_{\ell=1}^{m} \int_{\mathcal{T}_{\ell}} \phi_{i}(\mathbf{x}) \phi_{j}(\mathbf{x}) d \mathbf{x}=\sum_{\ell=1}^{m} M_{\ell, i j}$. Integrals are approximated by high-precision quadratures

$$
\tilde{A}_{\ell, i j}=\sum_{k} \omega_{k} \nabla_{\mathbf{x}} \phi_{i}\left(\mathbf{x}_{k}\right) \cdot \nabla_{\mathbf{x}} \phi_{j}\left(\mathbf{x}_{k}\right), \quad \tilde{M}_{\ell, i j}=\sum_{k} \omega_{k} \phi_{i}\left(\mathbf{x}_{k}\right) \phi_{j}\left(\mathbf{x}_{k}\right) .
$$

The $\left\{\omega_{k}\right\}$ are the quadrature weights and $\left\{\mathbf{x}_{k}\right\}$ are the quadrature nodes. Note in general the quadrature nodes can differ from the finite element nodes. We use these approximations to obtain

$$
\tilde{A} \mathbf{u}=-\tilde{M} \mathbf{f}
$$

For the case of Lagrange elements using polynomial spaces of degree d, we use quadratures that have order $2 d$. This allows for computing the integrals up to round-off errors. For quadratures on triangulations, see Figure 4 and Table 1.

Figure 4: Quadrature Nodes.

Using this assembly + quadrature approach, implement codes to compute for a given triangulation the stiffness and mass matrices when $d=1$ and $d=2$.

Consider the FEM approximation for the solutions u with $L=\pi$ and (i) $u\left(x_{1}, x_{2}\right)=$ $\cos \left(5 x_{1}\right) \sin \left(5 x_{2}\right)$ and (ii) $u\left(x_{1}, x_{2}\right)=\exp \left(-\cos \left(3 x_{1}\right)+\sin \left(3 x_{2}\right)\right)$. Use $f(\mathbf{x})=-\Delta u$ evaluated at the nodal points to obtain the numerical data for these test problems.

Make a $\log -\log$ plot of the solution error vs mesh size $h^{-1}=2^{-n}$ for meshes with refinements $n=1,2, \ldots, 5$. What is the exhibited order of accuracy of the Lagrange FEMs when $d=1$ and $d=2$?
(c) (Iterative Methods) To solve approximately

$$
A \mathbf{u}=\mathbf{b}, \text { where } \mathbf{b}=-M \mathbf{f}
$$

iterative methods can be used of the form

$$
B \mathbf{u}^{n+1}=C \mathbf{u}^{n}+\mathbf{b}
$$

For convergence, $B-C=A$ and the spectral radius of $B^{-1} C$ is taken to satisfy $\rho\left(B^{-1} C\right)<1$. It is common to decompose the matrix as $A=D-L-U$, where D is the diagonal entries, $-L$ the lower entries, and $-U$ the upper entries. A few example iterative methods are
i. Direct Relaxation with $B=I$ and $C=I+\eta A$, with small enough η s.t. $\eta \leq 2 / \lambda$ or smaller, where λ is the largest eigenvalue of A.
ii. Jacobi Iteration with $B=D$ and $C=L+U$.
iii. Gauss-Seidel Iteration with $B=D+L$ and $C=U$.

Compare these methods for approximating the solution \mathbf{u} when $L=\pi$ and (i) $u\left(x_{1}, x_{2}\right)=\cos \left(5 x_{1}\right) \sin \left(5 x_{2}\right)$ and
(ii) $u\left(x_{1}, x_{2}\right)=\exp \left(-\cos \left(3 x_{1}\right)+\sin \left(3 x_{2}\right)\right)$. Use $f(\mathbf{x})=-\Delta u$ evaluated at the nodal points to obtain the numerical data for these test problems.

Make a log-log plot of the number iterations and the error for meshes with $n=5$ refinements. How many iterations does each method need to converge to 1% accuracy for solving the linear system? We remark that in practice these convergence rates are further enhanced by using preconditioners.

