EXERCISE SET 1.1

1.

Show that the following equations have at least one solution in the given intervals.
a. xcosx—2x"4+3x—1=0, [0.2,03])and[l1.2,1.3]

b. (x=2Y—Inx=0, [1,2]and][e.4]

c. 2xcos(2x)—(x —2) =0, [2.3]and[3,4]

d r—(nx)'=0 1[4, 5]

Show that the following equations have at least one solution in the given intervals.
a. Jr—cosx=0, [01]

bh. ¢ —x"4+3x—2=0. [0.1]

c. —3tan(Zx)4+x=0. [0.1]

d hx-x*+3ix-1=0 [i1]

Find intervals cun;ﬂjnin g sulutinns_m the following equations.

a x—27"=0

2xcos(2x) —(x + 1)’ =0

Ix—e'=0

x+1=2sin(rx)=0

B



12 CHAPTER 1 = Mathematical Preliminaries and Error Analysis

4. Find intervals containing solutions to the following equations.
a x-=-37"=0
b. 4’ —e' =0
€. X =2x"—-dx4+2=0
d. +*+4.001x* +4.002x + 1.101 =0
5. Find max,<,< | f(x)| for the following functions and intervals.
a flix)=02-e"+2x)/3, [0,1]
b. fix)=(4x —3)/(x*—=2x), [0.5.1]
e.  f(x)=2xcos(2x) —(x = 2)°, [2.4]
d  f)=14+e 00 11,2]
6. Find max,<.<s | f(x)| for the following functions and intervals.
a.  f(x)=2x/(x*+1), [0,2]
b. f(x)=xV{4—x). [0.4]
e. flx)=x"—4x+2, [1,2]
d.  f)=xJ/3-=x3. [0,1]
7. Show that f'(x) is 0 at least once in the given intervals.
a fx)=1—=¢"4(e—Dsin((x/2)x), [0 1]
b. filx)=(x—1Dtanx +xsinmwx, [0 1]
c. flx)=xsinmx—(x—2Inx, [I1,2]
d fix)=(x—2)sinxInix +2), [—1.3]
B. Suppose f € Cla, b] and f'(x) exists on (a, b). Show that if f'(x) 52 0 for all x in (a, b), then there
can exist at most one number p in [a, b] with f(p) = 0.
9, Let fix)=x".
a. Find the second Taylor polynomial P (x) about x5 = 0.
b. Find R:(0.5) and the actual error in using P>(0.5) to approximate f(0.5).
c. Repeat part (a) using xp = 1.
d. Repeat part (b) using the polynomial from part (c).
10.  Find the third Taylor polynomial P;(x) for the function f(x) = J’m about xy = 0. Approximate
u"'{ﬁ, \fﬁ, m, and v'1.5 using P;(x) and find the actual errors.
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Find the second Taylor polynomial P;(x) for the function f(x) = £* cos x about x, = 0.

b.

C.

d.

Use P:(0.5) to approximate f(0.5). Find an upper bound for error | f{0.5) — P»(0.5)| using the
error formula and compare it to the actual error.

Find a bound for the error | f{x) — P:(x)| in using P>(x) to approximate f(x) on the interval
[0, 1].

Approximate fnl f(x) dx using fnl Psix) dx.

Find an upper bound for the error in (c) using fu' |R2(x) dx| and compare the bound to the actual
error.

Repeat Exercise 11 using xy = /6.
Find the third Taylor polynomial P;(x) for the function f(x) = (x — 1) Inx about x = 1.

b.

d.

Use P:(0.5) to approximate f(0.5). Find an upper bound for error | f{0.5) — P;(0.5)] using the
error formula and compare it to the actual error.

Find a bound for the error | f{x) — Ps(x)| in using P3(x) to approximate f(x) on the interval
[0.5, 1.5].

Approximate ful.': f(x) dx using f,; '55 Py(x) dx.

Find an upper bound for the error in (c) using ful_': |Rs(x) dx| and compare the bound to the
actual error.

Let f(x) = 2xcos(2x) — (x — 2)* and xp = 0.

Find the third Taylor polynomial P;(x) and use it to approximate f(0.4).
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21.
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b. Usethe error formula in Taylor’s Theorem to find an upper bound for the error | f(0.4)— P;(0.4)].
Compute the actual error.

c¢. Find the fourth Taylor polynomial F;(x) and use it to approximate f({0.4).

d. Usethe error formula in Taylor's Theorem to find an upper bound for the error | f(0.4)— P, (0.4)].
Compute the actual error.

Find the fourth Taylor polynomial Py(x) for the function fix) = xe‘z about x5 = 0.
a. Find an upper bound for | f(x) — Fs(x)], for 0 < x < 0.4
b. Approximate ff‘ fi(x) dx using j;jﬂ 4 Py(x) dx.

c¢. Find an upper bound for the error in (b) using fﬂﬂ'd Py(x) dx.
d. Approximate f'(0.2) using P;(0.2) and find the error.

Use the error term of a Taylor polynomial to estimate the error involved in using sinx = x to
approximate sin 1°.

Use a Taylor polynomial about 7 /4 to approximate cos 42° to an accuracy of 107°.

Let f{x) = (1 — x)~! and xy = 0. Find the nth Taylor polynomial P,(x) for f(x) about x,. Find a
value of n necessary for P,(x) to approximate f(x) to within 10~* on [0, 0.5].

Let f(x) = ¢" and x; = 0. Find the nth Taylor polynomial P, (x) for f(x) about x;. Find a value of
n necessary for P,(x) to approximate f(x) to within 10~ on [0, 0.5].

Find the nth Maclaurin polynomial FP,(x) for f{x) = arctan x.

The polynomial Py (x) =1-— zl,:f1 15 to be used to approximate f(x) = cosx in [—%, El,]. Find a bound
for the maximum error.

Use the Intermediate Value Theorem 1.11 and Rolle’s Theorem 1.7 to show that the graph of f(x) =
x* 4+ 2x + k crosses the x-axis exactly once, regardless of the value of the constant k.

A Maclaurin polynomial for ¢* 1s used to give the approximation 2.5 to ¢. The error bound in this
approximation is established to be E = !;. Find a bound for the error in E.
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A Maclaurin polynomial for ¢* is used to give the approximation 2.5 to e. The error bound in this
approximation is established tobe E = (':‘ Find a bound for the error in E.

The error function defined by

X 2
erf(x) = %/ e " di
0

gives the probability that any one of a series of trials will lie within x units of the mean, assuming that
the trials have a normal distribution with mean 0 and standard deviation \/5/2. This integral cannot
be evaluated in terms of elementary functions, so an approximating technique must be used.

Integrate the Maclaurin series for ¢~ to show that

a.
2 5 (— l)k-‘.ﬂ-‘#l
rf(x) = ¢
i Ly ; 2k + Dk!
b.  The error function can also be expressed in the form
2 oo 22!
f(x) = —e™ .
SHx) = et Z-:g 13 S0
Verify that the two series agree for k = 1, 2, 3, and 4. [Hint: Use the Maclaurin series for e“z.]
c. Use the series in part (a) to approximate erf(1) to within 107,
d. Use the same number of terms as in part (¢) to approximate erf(1) with the series in part (b).
e. Explain why difficulties occur using the series in part (b) to approximate erf(x).
THEORETICAL EXERCISES

The nth Taylor polynomial for a function f at x; is sometimes referred to as the polynomial of degree
at most n that “best” approximates f near x.

a.

Explain why this description is accurate.
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b. Find the quadratic polynomial that best approximates a function f near x; = 1 if the tangent
line at x; = 1 has equation v = 4x — | and if f"(1) = 6.

Prove the Generalized Rolle’s Theorem, Theorem 1.10, by verifying the following.

a. Use Rolle’s Theorem to show that f (z;) = 0 for n — 1 numbers in [a. b] witha < 7z, < z, <

s Ip—l = b.

b. Use Rolle’s Theorem to show that f (w;) = 0 forn — 2 numbers in [a, b] withz, < w, < 2, <
Wa---Wpy_2 = ZTp—] =< b.

c¢. Continue the arguments in parts (a) and (b) to show that foreach j = 1,2, ... , n — 1, there are
n — j distinct numbers in [a, b], where fY'is (.

d. Show that part (c) implies the conclusion of the theorem.

Example 3 stated that for all x we have | sin x| < |x|. Use the following to verify this statement.

a. Show that for all x = 0, f(x) = x — sin x is nondecreasing, which implies that sinx = x with
equality only when x = (0.

b. Use the fact that the sine function is odd to reach the conclusion.

A function f : [a, b] — R is said to satisfy a Lipschitz condition with Lipschitz constant L on [a, b]

if, for every x. v € [a, b], we have | fix) — f(¥v)] = L|x — v|.

a. Show that if f satisfies a Lipschitz condition with Lipschitz constant L on an interval [a, b],
then f € Cla. b].

b. Show that if f has a derivative that is bounded on [a, #] by L, then [ satisfies a Lipschitz
condition with Lipschitz constant L on [a, b].

¢. Give an example of a function that is continuous on a closed interval but does not satisfy a
Lipschitz condition on the interval.

Suppose f € Cla. b] and x; and x> are in [a, b].
a. Show that a number £ exists between x; and x, with

flxd+ fla) _ 1

1
fle)y= ) —ifixlj'i‘if{-’fﬂ-

b. Suppose c; and ¢; are positive constants. Show that a number £ exists between x; and x> with

e flx) 4+ eafixz)

L+

fi§) =

c. Give an example to show that the result in part (b) does not necessarily hold when ¢; and > have
opposite signs with ¢} # —ca.
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Suppose f € Cla, b] and x; and x> are in [a, b].
a. Show that a number £ exists between x; and x, with

Sxi)+ filxz) 1

f{E}= 2 _E

1
Sflx) 4+ Ef{-'l’:l

b. Suppose ¢; and ¢» are positive constants. Show that a number £ exists between x; and x> with

cy flxy) + e f(xz)

E‘[+E‘1

fig) =

¢. Give an example to show that the result in part (b) does not necessarily hold when ¢ and ¢; have
opposite signs with ¢ # —ca.

Let f € Cla, b], and let p be in the open interval (a, b).

a. Suppose f(p) # 0. Show that a § = 0 exists with f(x) £ 0, for all x in [p — &, p 4+ 8], with
[p— 4, p+ 4] asubsetof [a, b].

b. Suppose f(p) = 0and & = 0 1s given. Show that a § = 0 exists with | f{x)| < k, for all x in
[p—4&, p+ 3], with [p — &, p+ 4] a subset of [a, b].

DISCUSSION QUESTION

In your own words, describe the Lipschitz condition. Give several examples of functions that satisfy
this condition or give several examples of functions that do not satisfy this condition.



EXERCISE SET 1.2

1.

Compute the absolute error and relative error in approximations of p by p*.

a p=mx,p*=22/7 b. p=mx, p*=31416
c. p=e p*=2718 d p=+2 p*=1414
Compute the absolute error and relative error in approximations of p by p*.
a. p=e¢'" p* =22000 b. p=107, p* = 1400
c. p=28lL p*=39900 d.  p=9.p*=187(9/¢)°

Suppose p* must approximate p with relative error at most 10™>. Find the largest interval in which
p* must lie for each value of p.

a. 150 b. 900

c. 1500 d. 90

Find the largest interval in which p* must lie to approximate p with relative error at most 10— for
each value of p.

a b. ¢

e 2 d V7

Perform the following computations (1) exactly, (ii) using three-digit chopping arithmetic, and (iii)
using three-digit rounding arithmetic. (iv) Compute the relative errors in parts (ii) and (iii).

4 1 4 1

a. -+ - b. —--
573 5 3
1_3),3 4 1,3 3

.c“ — A — —_— . — —_— — —
311/ 20 3°11) 20

Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error
and relative error with the exact value determined to at least five digits.

a. 13340.92] b. 133 —0.499

c. (121 —0.327)-119 d. (121 —119) —0.327

Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error
and relative error with the exact value determined to at least five digits.

13 _6 3
R b. —10m 4+ 6e — —
2e — 5.4 62

« (5)G) S



Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error
and relative error with the exact value determined to at least five digits.

13 _ 6 3
AT b. —10m 4+ 6e — —
2e —5.4 62

« (5)-() =

Repeat Exercise 7 using four-digit rounding arithmetic.

Repeat Exercise 7 using three-digit chopping arithmetic.

Repeat Exercise 7 using four-digit chopping arithmetic.

The first three nonzero terms of the Maclaurin series for the arctangent function are x — (1/3)x* +

(1/5)x°. Compute the absolute error and relative error in the following approximations of 7 using
the polynomial in place of the arctangent:

)
b. lﬁarctan(é) —4mm(ﬁ)
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13.

14.

The number ¢ can be defined by ¢ = Ziﬂ{lhr!}, wheren! =nin—1)---2-1forn £ 0and 0! = 1.
Compute the absolute error and relative error in the following approximations of e:

Let

i1

10
1
o b. > —
nt n:
=

=l

XCOsXY —sinx

flx) =

X —sinx

Find lim, g f(x).
Use four-digit rounding arithmetic to evaluate f{0.1).
Replace each trigonometric function with its third Maclaurin polynomial and repeat part (b).

The actual value i1s f(0.1) = —1.99899998. Find the relative error for the values obtained in
parts (b) and (c).

X _f_-t

f[_r]: E—
X

Find lim, _q4(e* — ™) /x.
Use three-digit rounding arithmetic to evaluate f(0.1).
Replace each exponential function with its third Maclaurin polynomial and repeat part (b).

The actual value is f(0.1) = 2.003335000. Find the relative error for the values obtained in
parts (b) and (c).
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Use four-digit rounding arithmetic and the formulas (1.1), (1.2), and (1.3) to find the most accurate
approximations to the roots of the following quadratic equations. Compute the absolute errors and
relative errors.

a. —-x——x+-=1
3 4 6
1 123 1

b x4 —"—x—-—=
3 4 6

c. 1.002x2 —11.01x +0.01265=0
d. 1.002x2 4+ 11.01x +0.01265=0

Use four-digit rounding arithmetic and the formulas (1.1), (1.2), and (1.3) to find the most accurate
approximations to the roots of the following quadratic equations. Compute the absolute errors and
relative errors.

a ¥—-JIx+J2=0

b. 7x'4+13x4+1=0

c. ¥4+x—e=0

d. ¥ —35x-2=0

Repeat Exercise 15 using four-digit chopping arithmetic.
Repeat Exercise 16 using four-digit chopping arithmetic.

Use the 64-bit-long real format to find the decimal equivalent of the following floating-point machine
numbers.

a. 010000001010 1001001 100000000000000000000000000000OM00000000000000
b. 1 10000001010 1001001 100000000000000000000000000000A00000000000000
c. O0OI111111111 O101001 100000000000000000000000000000000000000000000
d. OOIITI111111 O101001 10000000000000000000000000000000000000000000 1

Find the next largest and smallest machine numbers in decimal form for the numbers given in Exer-
cise 19.
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Suppose two points (xg, vp) and (x;, v;) are on a straight line with y; 5 v. Two formulas are available
to find the x-intercept of the line:

Xo¥1 — X1 Y0 (x; — xp)yo
y=— " and x=xj— —————

Yi—M ¥i— M

a. Show that both formulas are algebraically correct.

b. Use the data (x;, vy) = (1.31, 3.24) and (x,, v;) = (1.93, 4.76) and three-digit rounding arith-
metic to compute the x-intercept both ways. Which method is better, and why?

The Taylor polynomial of degree n for f(x) = e*is ¥ |_,(x'/i!). Use the Taylor polynomial of degree
nine and three-digit chopping arithmetic to find an approximation to e~ by each of the following
methods.

9

_ (=5  — (=1)i5
a. e 3 = Z T =§

i!
i=0
|

1
E,jﬁ"g—ﬁr‘

i=0 37

T

bh. e

c. An approximate value of e~ correct to three digits 1s 6.74 x 10~*. Which formula. (a) or (b),
gives the most accuracy, and why?



23. The two-by-two linear system

ax + by =e,

cx +dv=F,

where a, b, ¢, d, e, { are given, can be solved for x and v as follows:

set m = E, provided a = (;
a
dy=d — mb:
fi = f —me;
v ﬂ;
: d;
(e — bv)
x=
a

Solve the following linear systems using four-digit rounding arithmetic.

a. 1.130x — 6990y = 14.20 b. 8.110x + 12.20y = -0.1370
1.013x — 6.099y = 14.22 —=18.11x 4+ 1122y = —-0.1376

24. Repeat Exercise 23 using four-digit chopping arithmetic.

25. a. Show that the polynomial nesting technique described in Example 6 can also be applied to the
evaluation of

fix) = 1.01e* — 4.62¢™ — 3.11e™ + 12.2¢* — 1.99.

b. Use three-digit rounding arithmetic, the assumption that ¢'* = 4.62, and the fact that ¢** =
(e*)" to evaluate f(1.53) as given in part (a).

c. Redo the calculation in part (b) by first nesting the calculations.
d. Compare the approximations in parts (b) and (c) to the true three-digit result f{1.53) = —7.61.
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CHAPTER 1

26.

27.
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APPLIED EXERCISES

The opening example to this chapter described a physical experiment involving the temperature of a
gas under pressure. In this application, we were given P = 1.00 atm, V =0.100 m*, N =0.00420 mol,
and R = 0.08206. Solving for T in the ideal gas law gives

PV (1.00)(0.100)
NR ~ (0.00420)(0.08206)

T= =290.15K = 17°C.

In the laboratory, it was found that T was 15°C under these conditions, and when the pressure was
doubled and the volume halved, T was 19°C. Assume that the data are rounded values accurate to the
places given, and show that both laboratory figures are within the bounds of accuracy for the ideal
gas law.

THEORETICAL EXERCISES

The binomial coefficient

(m _ m!
.i:) Tk (m—k)!

describes the number of ways of choosing a subset of k objects from a set of m elements.

a. Suppose decimal machine numbers are of the form

+0.d dadsdy x 10", withl <d, <9, 0<d; <9,

ifi=2,3,4 and |n| < 15.

What is the largest value of m for which the binomial coefficient {T:} can be computed for all &
by the definition without causing overflow?

b.  Show that () can also be computed by

(1) = (%) (2=1) - (=),
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The binomial coefficient

(m _ m!
k) Tk (m — k)

describes the number of ways of choosing a subset of k objects from a set of m elements.

a. Suppose decimal machine numbers are of the form

H0.dd dridsdy = “.TTf withl =d, =9, 0=d, =9,

ifi =2.3.4 and |n| < 15.

What is the largest value of m for which the binomial coefficient {T} can be computed for all &
by the definition without causing overflow?

b.  Show that () can also be computed by

m (m) m—1 m—k+1
k) " \k)\k-1) 1 '
c.  What is the largest value of m for which the binomial coefficient {‘;} can be computed by the
formula in part (b) without causing overflow?

d. Use the equation in (b) and four-digit chopping arithmetic to compute the number of possible
five-card hands in a 52-card deck. Compute the actual and relative errors.

Suppose that fI(v) is a k-digit rounding approximation to y. Show that

y— fl(y)
—y

= 0.5 x 107,

[Hint: 1 dyy = 5, then fl(y) =0dd>...dy x 10" I dyyy = 5, then fI(y) = 0.dyd> ... dy x 10"+
1075 ]
Let f € Cla. b] be a function whose derivative exists on (a, b). Suppose f is to be evaluated at x; in

{a, b), but instead of computing the actual value fi{x;), the approximate value, f {xg), 1s the actual
value of [ at xy + € that is, f{xg} = fl{xp+ €).

a. Use the Mean Value Theorem 1.8 to estimate the absolute error | f{xg) — f (xg)| and the relative
error | f(xo) — f(xo)l/].f (xo)]. assuming f(xo) % 0.

b. Ife =5 x 107" and xy = 1, find bounds for the absolute and relative errors for
i flxy=¢é
ii. fix)=sinx

c. Repeat part (b) with e = (5 x 10~®)x, and x, = 10.
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DISCUSSION QUESTIONS

Discuss the difference between the arithmetic performed by a computer and traditional arithmetic.
Why is it so important to recognize the difference?

Provide several real-life examples of catastrophic errors that have occurred from the use of finite
digital arithmetic and explain what went wrong.

Discuss the various different ways to round numbers.

Discuss the difference between a number written in standard notation and one that 1s written In
normalized decimal Hoating-point form. Provide several examples.



