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Motivations for Unsupervised Learning:                                                                                       
Given data set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑚} what types of patterns or structure occur. 

Insights into how features xi = (xi
1,xi

2,…,xi
N) relate to one another.

Insights into low-dimensional structure inherent in data.

Insights into groupings or clustering of data (number of classes).

Many methods to consider depending on aims:

• Clustering Methods (K-means)

• Principal Component Analysis (PCA / KPCA)

• Manifold Learning + (many more methods)

Overall methods share some common features.

Abstractly trying to learn characteristics of D ~ X.

Dimension Reduction K-Means Clustering

Manifold Learning Principal Component Analysis
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Motivations

Lherranz

2018

input 

noise

open.ai

Generative Modeling

Manifold-like structures in high dimensional spaces (natural images, audio, physical fields, PDE solutions).

Challenge: How to learn high dimensional probability distributions, generators G(z) for sampling?

Approaches for learning models:

- Bayesian Methods

- Maximum Likelihood Estimation (MLE)

- Generative Adversarial Networks (GANs)                            

(discussed in later lecture)

- … and many other approaches.

Challenge: How to do this in a tractable way?

http://atzberger.org/


Clustering:
K-Means
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K-Means Clustering K-Means Clustering

Task: Given data set 𝑆 = {𝒙1, 𝒙2, … , 𝒙𝑚} find partition into k sets Ω = {Ω1, Ω2, … , Ω𝑘}.

K-Means Clustering Optimization Problem:

argmin
Ω

෍

𝑙=1

𝑘

෍

𝑥∈Ω𝑙

𝒙 − 𝜇𝑙
2

Challenge: Exact solution is NP-hard (requires considering all partitions).

Need to use approximate methods.

Voronoi Iteration (Lloyd’s Algorithm):

• Randomly choose k initial seed points.

o Compute Voronoi Cells of seed points and centroids.

o Move seed points to centroid of points in each Voronoi Cell.

o Repeat until termination criteria (seed points move less than 𝜀).

Voronoi iteration yields seeds tending toward distribution w/ more uniform cells.

Seed points tend to migrate toward cluster centers giving approximate solution.

Voronoi Diagram

𝜇1

𝜇3

𝜇2
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K-Means Clustering: Example
Example: 𝑘 = 3 clusters, std. dev. σ = 1.0, 𝑚 = 1.5 × 103 samples.

K-Means Clustering
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K-Means Clustering: Example
Example: 𝑘 = 3 clusters, std. dev. σ = 1.0, 𝑚 = 1.5 × 103 samples.

K-Means can be sensitive to hyperparameters and data distribution.
• Positing the wrong number k of clusters.
• Anisotropic cluster distribution.
• Unequal variance or size of clusters.

Cross validation can be used to help determine good hyperparameters.

Strong assumption that data is distributed in distinct clusters.

Wrong Number Clusters (k=2)

Anisotropic Clusters Unequal Cluster SizeUnequal Variance Clusters
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Singular Value Decomposition (SVD)
and

Principal Component Analysis (PCA)
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Singular Value Decomposition (SVD)
Task: Given matrix C find the best approximating rank r matrix Ar.

Optimization Problem:
min
𝐴

𝐶 − 𝐴 2

subject 𝑟𝑎𝑛𝑘(𝐴) = 𝑟.

Solution:
Singular Value Decomposition (SVD): C = 𝑈𝛬𝑉𝑇 → 𝐴𝑟 = 𝑈𝛬𝑟𝑉

𝑇

Features:
𝑈,𝑉 are orthonormal matrices.

𝛬 is diagonal matrix of singular values 𝛬 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑛).

Rank r matrix 𝐴𝑟 = 𝑈𝛬𝑟𝑉
𝑇 where 𝛬𝑟 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑟, 0, … 0) matrix of largest r singular values.

Best approximation in sense 𝐶 − 𝐴𝑟 2 ≤ 𝐶 − 𝐴 2 for any A with 𝑟𝑎𝑛𝑘(𝐴) = 𝑟.

Many useful applications.

wikipedia

Singular Value Decomposition
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Example: Image Compression using SVD
Task: Given matrix C find the best approximating rank r 
matrix A?

Optimization Problem:
min
𝐴

𝐶 − 𝐴 2

subject 𝑟𝑎𝑛𝑘(𝐴) = 𝑟.

Image Compression:

View image as matrix C of column vectors xi.  

Singular Value Decomposition: C = 𝑈𝛬𝑉𝑇 .

Compression → find p-vectors that span columns of C.

Keep only first p singular vectors of U.

Many other compression techniques for images (better).

Cumulative Percentage Variance

number singular values psingular value Index 

Singular Values
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image 800x500 pixels

Gibiansky 2015
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Example: Image Compression using SVD
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Gibiansky 2015

Task: Given matrix C find the best approximating rank r 
matrix A?

Optimization Problem:
min
𝐴

𝐶 − 𝐴 2

subject 𝑟𝑎𝑛𝑘(𝐴) = 𝑟.

Image Compression:

View image as matrix C of column vectors xi.  

Singular Value Decomposition: C = 𝑈𝛬𝑉𝑇 .

Compression → find p-vectors that span columns of C.

Keep only first p singular vectors of U.

Many other compression techniques for images (better).
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Example: Image Compression using SVD Rank Full

Rank 50

Rank 10
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Rank 50 ~ 16% original size

Task: Given matrix C find the best approximating rank r 
matrix A?

Optimization Problem:
min
𝐴

𝐶 − 𝐴 2

subject 𝑟𝑎𝑛𝑘(𝐴) = 𝑟.

Image Compression:

View image as matrix C of column vectors xi.  

Singular Value Decomposition: C = 𝑈𝛬𝑉𝑇 .

Compression → find p-vectors that span columns of C.

Keep only first p singular vectors of U.

Many other compression techniques for images (better).
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Principal Component Analysis (PCA)
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Task: Given data set 𝑆 = {𝒙1, 𝒙2, … , 𝒙𝑚} with 𝒙𝑖 ∈ ℝ𝑁 and σ𝑖=1
𝑚 𝒙𝑖 = 0

find the best approximating hyperplane h = span{w1,w2,…wp}.

Optimization Problem:

min
𝑊,𝑍

෍

𝑖=1

𝑚

𝒙𝑖 −𝑊𝒛𝑖 2
2

subject W𝑇𝑊 = 𝐼𝑝×𝑝, 𝑊 ∈ ℝ𝑁×𝑝.

Finds optimal orthonormal basis wi best accounting for covariance 𝐶 =
1

𝑚
σ𝑖=1
𝑚 𝑥𝑖𝑥𝑖

𝑇 ~σ𝑎=1
𝑝

𝜆𝑎𝑤𝑎𝑤𝑎
𝑇 .

Closely related to the Singular Value Decomposition (SVD): C = 𝑈𝛬𝑉𝑇 .

Solution: W= [u1,u2,…,up] first p singular vectors of U and 𝐳i = ℘W𝐱i ≔ WT𝐱i, ෥𝐱i = W𝐳i = WWT 𝐱i.

Selects p directions of data {xi} with greatest variation.

Projects data xi to the nearest hyperplane point to yield zi.

Low-dimensional linear structure then expect good fit for p << N.

Principal Component Analysis (PCA)

u1

u2

Principal Component Analysis
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Task: Given data set 𝑆 = {𝒙1, 𝒙2, … , 𝒙𝑚} with 𝒙𝑖 ∈ ℝ𝑁 and σ𝑖=1
𝑚 𝒙𝑖 = 0

find the best approximating hyperplane h = span{w1,w2,…wp}.

Optimization Problem:

min
𝑊,𝑍

෍

𝑖=1

𝑚

𝒙𝑖 −𝑊𝒛𝑖 2
2

subject W𝑇𝑊 = 𝐼𝑝×𝑝, 𝑊 ∈ ℝ𝑁×𝑝.

Finds optimal orthonormal basis wi best accounting for covariance 𝐶 =
1

𝑚
σ𝑖=1
𝑚 𝑥𝑖𝑥𝑖

𝑇 ~σ𝑎=1
𝑝

𝜆𝑎𝑤𝑎𝑤𝑎
𝑇 .

Closely related to the Singular Value Decomposition (SVD): C = 𝑈𝛬𝑉𝑇

Solution: W= [u1,u2,…,up] first p singular vectors of U and 𝐳i = ℘W𝐱i ≔ WWT𝐱i.  

Example: m = 3x103 data points, exact: u1 = [𝑐𝑜𝑠(𝜋/8), sin(𝜋/8)], u2 = [−𝑠𝑖𝑛(𝜋/8), c𝑜𝑠(𝜋/8)], 𝛬 = 𝑑𝑖𝑎𝑔(36.0,1.0).

Results: 𝛬 = 𝑑𝑖𝑎𝑔(37.68, 1.01), w1 = [-0.926, -0.378], w2 = [-0.378,  0.926],                                                                                           
𝑐𝑜𝑠(𝜋/8) = 0.924, 𝑠𝑖𝑛(𝜋/8) = 0.383 → u1=[0.924, -0.383], u2 = [-0.383, 0.924].
Assumptions: Variation is indicative of importance of a feature, data distributed within a linear subspace.

Principal Component Analysis (PCA)

u1

u2

Principal Component Analysis
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Kernel Principal Component Analysis (KPCA):
Task: Given data set 𝑆 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎} with 𝒙𝒊 ∈ ℝ𝑁, Φ feature map of K. Find in                                                             
feature space HRKHS the best approximating hyperplane h = span{v1,v2,…vp} of                                                              
ሚ𝑆 = Φ 𝒙𝟏 , Φ 𝒙𝟐 , … , Φ 𝒙𝒎 .

Optimization Problem:

min
𝑊,𝑍

෍

𝑖=1

𝑚

Φ(𝑥𝑖) − 𝑊𝑧𝑖 2
2

subject W𝑇𝑊 = 𝐼𝑝×𝑝, 𝑊 ∈ (HRKHS)
𝑝.

New Feature Space

Input Feature Space
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Kernel Principal Component Analysis (KPCA):
Optimization Problem:

min
𝑊,𝑍

෍

𝑖=1

𝑚

Φ(𝑥𝑖) − 𝑊𝑧𝑖 2
2

subject W𝑇𝑊 = 𝐼𝑝×𝑝, 𝑊 ∈ (HRKHS)
𝑝.

New Feature Space

Input Feature Space
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Kernel Principal Component Analysis (KPCA):
Task: Given data set 𝑆 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎} with 𝒙𝒊 ∈ ℝ𝑁, Φ feature map of K. Find in                                                             
feature space HRKHS the best approximating hyperplane h = span{v1,v2,…vp} of                                                              
ሚ𝑆 = Φ 𝒙𝟏 , Φ 𝒙𝟐 , … , Φ 𝒙𝒎 .

KPCA Reformulation with Centering:

Kc 𝜶𝑎 = ሚ𝜆𝑎𝜶
𝑎 where 𝐾𝑐(𝒙𝑖, 𝒙) = 𝐾(𝒙𝑖, 𝒙) − 𝜿𝑇(𝒙𝑖)𝟏 − 𝜿𝑇 𝒙 𝟏 + 𝟏𝑻𝒌𝟏,

Notation: 𝐾𝑐
𝑖𝑗 = 𝐾𝑐 𝒙𝑖, 𝒙𝑗 with 𝜿 𝒙 𝑙 =

1

𝑚
𝐾 𝒙𝑙, 𝒙 , 𝒌 𝑝𝑙 =

1

𝑚2𝐾𝑝𝑙 and 𝟏 𝑙 = 1.

Principal components: 𝒖𝒂 = σ𝑖=1
𝑚 𝛼𝑖

𝑎 Φ(𝒙𝑖) with 𝒖𝑎
𝑇Φ 𝒙 = σ𝑖=1

𝑚 𝛼𝑖
𝑎 𝐾𝑐(𝒙𝑖, 𝒙) ,

𝐾𝑖𝑗
𝑐= 𝐾𝑖𝑗 − 𝜿𝑖

𝑇𝟏 − 𝜿𝑗
𝑇𝟏 + 𝟏𝑻𝒌𝟏

Derivation: 𝐾𝑖𝑗
𝑐 = Φ(𝒙𝑖) −

1

𝑚
σ𝑘=1
𝑚 Φ(𝒙𝑘)

𝑇
Φ(𝒙𝑗) −

1

𝑚
σ𝑙=1
𝑚 Φ(𝒙𝑙)

New Feature Space

Input Feature Space
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Kernel Principal Component Analysis (KPCA): Example
Task: Given data set 𝑆 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎} with 𝒙𝒊 ∈ ℝ𝑁, Φ feature map of K. Find in                                                             
feature space HRKHS the best approximating hyperplane h = span{v1,v2,…vp} of                                                              
ሚ𝑆 = Φ 𝒙𝟏 , Φ 𝒙𝟐 , … , Φ 𝒙𝒎 .

Example: Data-set S = {two semi-circles centered around (0,0) and (1,0)},                     
m = 103 samples, noise = 0.075, kernel= Radial Basis Function, 𝛾 = 15.

Nearly one dimensional structure (non-linear).

Radial basis function kernel corresponds to similarity by proximity.

Results:

First component w1 := u1 captures enough information to separate data set.

Kernel methods can be sensitive to tuning of hyperparameters.

Cross-validation to get good hyperparameters but need metric (two common)
• if unsupervised learning can use reconstruction errors.
• if used for supervised learning (classifier) can use validation training errors.

𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2
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Random Projection
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L, Jacques 2019
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L, Jacques 2019

http://atzberger.org/


Manifold Learning
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Manifold Learning

Task: Given data set 𝑆 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎} with 𝒙𝒊 ∈ ℝ𝑁, Find a p-dimensional manifold 

that approximates the data set.

Kernel PCA is one form of manifold learning.

Many other (related) ways to try to approximate data by manifold. 

• Locally Linear Embedding (LLE)

• ISOMAP

• Spectral Embedding (SE)

• t-distributed Stochastic Neighbor Embedding (t-SNE)

Can be viewed in some cases as a form of KPCA (i.e. SE, ISOMAP).

Treats data as having relevant features close to some smooth                                                            

low-dimensional manifold for inference, data exploration, visualization.

LLE

Swiss Roll Dataset

ISOMAP

SE t-SNE
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Manifold Learning: t-SNE Swiss Roll Dataset

t-SNE

Method:
Consider for all distinct pairs of points xi and xj the Gaussian probability distribution

Want mapping 𝑥 ∈ ℝ𝑁 → 𝑦 ∈ ℝ𝑝 into a smaller dimensional 𝑝 ≪ 𝑁.

Consider probability t-distribution for neighbors under mapping

Optimization Problem:

min
𝒚

𝐾𝐿(𝑃| 𝑄 = ෍
𝑖,𝑗
𝑝𝑖𝑗log

𝑝𝑖𝑗

𝑞𝑖𝑗

Finds points yi minimizing Kullback–Leibler (KL) Divergence of pair distributions.

t-SNE used primarily for visualization (good at showing crowding / clustering).
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Manifold Learning: Locally Linear Embedding (LLE) Swiss Roll Dataset

LLE

Method:
Want mapping 𝑥 ∈ ℝ𝑁 → 𝑦 ∈ ℝ𝑝 into a smaller dimensional 𝑝 ≪ 𝑁.

Find for a point xi the k-nearest neighbors xj.

Optimization Problem (step I): 

min
𝑊

෍
𝑖
𝑥𝑖 − ෍

𝑗∈N(𝑥𝑖)

𝑊𝑖𝑗𝑥𝑗

2

2

subject 𝑊 ∙ 1 = 1

Optimization Problem (step II): 

min
𝒚

෍
𝑖
𝒚𝑖 − ෍

𝑗∈N(𝑥𝑖)

𝑊𝑖𝑗𝒚𝑗

2

2

Finds points 𝒚𝒊 so that embedding has similar linear weighting to reconstruct 𝒚𝒊
from nearby points 𝒚𝒋.                                                        
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Method:
Consider for xi the neighborhood of points xj within distance 𝜀.

Form graph G with edges xj in 𝜀-neighborhood of xi.

Compute distance matrix Δ𝑖𝑗 using shortest path in graph between 

points 𝒙𝑖 → 𝒙𝑗. The Δ𝑖𝑗 ~ squared geodesic distance.

Want mapping 𝑥 ∈ ℝ𝑁 → 𝑦 ∈ ℝ𝑝 into a smaller dimensional 𝑝 ≪ 𝑁.

Optimization Problem:

min
𝒚

෍
𝑖,𝑗

𝒚𝑖 − 𝒚𝑗 2

2
− Δ𝑖𝑗

𝟐

Finds points yi so that embedding distance between pairs                                 
is close to Δ𝑖𝑗.

Related to KCPA with kernel                              and                             .

Manifold Learning: Isomap Swiss Roll Dataset

ISOMAPConstruct Graph of

k-Nearest Neighbors 
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Manifold Learning: Spectral Embedding Swiss Roll Dataset

SE

Method:
Consider for xi the neighborhood of points xj within distance 𝜀.

Form graph G with edges xj in 𝜀-neighborhood of xi.

Compute weight matrix 𝑊𝑖𝑗 = 𝑒
− 𝒙𝑖 − 𝒙𝑗 2

2
/2𝜎2

Want mapping 𝑥 ∈ ℝ𝑁 → 𝑦 ∈ ℝ𝑝 into a smaller dimensional 𝑝 ≪ 𝑁.

Optimization Problem: 

min
𝒚

෍
𝑖,𝑗
𝑊𝑖𝑗 𝒚𝑖 − 𝒚𝑗 2

2

subject 𝑦𝑇𝐷𝑦 = 1 with 𝐷 = diag(𝑊 ∙ 𝟏).

Finds points yi so that embedding distance between pairs minimized. Note the                                                         
penalty 𝑊𝑖𝑗 is stronger for closer pairs of points and weaker for further pairs of points.

Related to KCPA with kernel 𝐾𝐿 = 𝐿† where graph Laplacian                                                                       

𝐿 = 𝐷 –𝑊 and 𝐷 = diag(𝑊 ∙ 𝟏). Solution: 𝒀 = 𝑈𝐿,𝑝 from SVD of 𝐿 = 𝑈Λ𝑈𝑇 .

Approximately preserves diffusion commute times on manifold from 𝐱i to 𝐱𝑗.

Construct Graph of

𝜀-Neighborhoods 
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Examples 
Unsupervised Learning 

Manifold Learning / Clustering
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Pendulum Dynamics from Video: Spectral Embedding

Results

Input: Image frames from video.

Kernel for frames

(similarity)

Eigenvalues

Diffusion Process

Atzberger 2020

Spectral Embedding:

min
𝒚

෍
𝑖,𝑗
𝑊𝑖𝑗 𝒚𝑖 − 𝒚𝑗 2

2

subject 𝑦𝑇𝐷𝑦 = 1 with 𝐷 = diag(𝑊 ∙ 𝟏).

Atzberger 2020
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Manifold Learning and Clustering

MNIST Digits Database:

Widely used benchmark for classification methods.

Task: Classify image to digit 0 - 9.

Data: train + test ~ 80K+ images 28x28.

Considered as points in 784-dimensional space.

Dimension reduction methods used to visualize, 
better understand structure, perform tasks.

t-SNE vs Local Linear Embedding (LLE).
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Manifold Learning and Clustering: LLE vs t-SNE

MNIST Digits Database:

Widely used benchmark for classification methods.

Task: Classify image to digit 0 - 9.

Data: train + test ~ 80K+ images 28x28.

Considered as points in 784-dimensional space.

Dimension reduction methods used to visualize, 
better understand structure, perform tasks.

t-SNE vs Local Linear Embedding (LLE).

Fabian Keller 2015
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Manifold Learning and Clustering: LLE vs t-SNE

MNIST Digits Database:

Widely used benchmark for classification methods.

Task: Classify image to digit 0 - 9.

Data: train + test ~ 80K+ images 28x28.

Considered as points in 784-dimensional space.

Dimension reduction methods used to visualize, 
better understand structure, perform tasks.

t-SNE vs Local Linear Embedding (LLE).

Fabian Keller 2015
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Manifold Learning: LLE

Face Database:

Local Linear Embedding (LLE).

Task: Organize data set of faces by “similarity”

Data: 1965 images at 20 × 28.

Considered as points in 560-dimensional space.

Dimension reduction method useful 
to visualize, better understand structure, classify, 
perform tasks.

Red path shows progression through 
embedding space.

Hastie 2017, Chen and Buja 2008.

LLE
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Summary
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Summary: Dimension Reduction

Generative Models

GANs

Spectral Embedding

Motivations for Unsupervised Learning:                                                                                       

Abstractly trying to learn characteristics of D ~ X.

Find Structure and patterns in data 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑚}. 

A few features are often extremal in determining key properties.

Transforms input data allowing for incorporating prior knowledge.

Filtering to capture essential aspects of data, improves generalization.

Methods (depends on the task):

• Clustering Methods (K-means, Spectral Graph)

• Principal Component Analysis (PCA / KPCA)

• Manifold Learning (Isomap, LLE, Spectral)

• Generative Adversarial Networks (GANs).

• (many more methods)

Provides ways to learn structure from data, incorporate prior knowledge, 
improve generalization, improve computational efficiency.
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