
Introduction to
Machine Learning

Foundations and Applications

Paul J. Atzberger
University of California Santa

Barbara

http://atzberger.org/

Recurrent Neural Networks (RNNs)

http://atzberger.org/

Recurrent Neural Networks (RNNs)
Processing and generating variable-sized

inputs/outputs.

Motivation: Neural networks with stateful

processing of data in stages over time.

Mappings: sequences-to-sequences, sequence-

to-vector, vector-to-sequence.

Applications: in Natural Language Processing

(NLP), Audio Signals, Image Captioning, Language

Translation, Handwriting Recognition.

Network architectures share weights but are

dynamic depending on input/output length.

Recurrent connections pass state information

from stage to stage.

Neural Network (NN): Fixed Input / Output Size

Variable Length Inputs/Outputs

Karpathy 2016

http://atzberger.org/

RNNs: Common Architectures
RNNs can vary on how information

transmitted to later times:

(i) hidden-to-hidden coupling

(ii) output-to-hidden coupling

(iii) hidden-to-hidden single-output

Architecture (i): Can realize universal

Turing machine.

Architecture (ii): provides possible parallel

training via teacher-forcing using target data output y.

Architecture (iii): similar to MLP, but with shared

weights.

Training: Backpropagation Through Time (BPTT).

(i) (ii)

(iii)

Goodfellow 2017

http://atzberger.org/

RNNs: Common Architectures
Architecture (i): hidden-to-hidden coupling.

The g(z) = tanh(z) typically used as activation in RNNs.

State updates:

𝑎(𝑡) = 𝑏 +𝑊ℎ(𝑡−1) +𝑈 𝑥(𝑡)

ℎ(𝑡) = 𝑔(𝑎(𝑡))

𝑜(𝑡) = 𝑐 + 𝑉ℎ(𝑡)

Proceeds from initial state ℎ(0) over the steps t = 1,2,⋯ , 𝜏.

Output: ෥𝒚 = softmax(𝒐(𝑡)), ෤𝑦𝑗= probability of class j.

Training: Cross-Entropy loss 𝐿 𝑆 = σ𝑡 𝐿
𝑡 𝑆

𝐿 𝑡 𝑆 =
1

𝑚
෍

𝑖=1

𝑚

෍

𝑗=1

𝑘

−𝑦𝑗
𝑖
log 𝑝(𝑦𝑖 = 𝑗 𝑥 1 , 𝑖 , 𝑥 2 , 𝑖 , … , 𝑥 𝑡 , 𝑖)

Expressive, but expensive to train, scales ~ 𝑂(𝜏),
BPTT, hard to parallelize.

g(z) = tanh(z)

y =

0
1
0
0
0

𝑘𝑡ℎ class

1 − hot vector

Goodfellow 2017

=
1

𝑚
෍

𝑖=1

𝑚

෍

𝑗=1

𝑘

−𝑦𝑗
𝑖
log ෤𝑦𝑗

𝑖

http://atzberger.org/

RNNs: Common Architectures
Architecture (ii): output-to-hidden coupling.

State updates:

𝑎(𝑡) = 𝑏 +𝑊𝑜(𝑡−1) + 𝑈 𝑥(𝑡)

ℎ(𝑡) = 𝑔(𝑎(𝑡))

𝑜(𝑡) = 𝑐 + 𝑉ℎ(𝑡)

Proceeds from initial output 𝑜(0) over the steps t = 1,2,⋯ , 𝜏.

Output: ෥𝒚 = softmax(𝒐(𝑡)), ෤𝑦𝑗= probability of class j.

Training: Cross-Entropy loss 𝐿 𝑆 = σ𝑡 𝐿
𝑡 𝑆

𝐿 𝑡 𝑆 =
1

𝑚
෍

𝑖=1

𝑚

−𝑦𝑗
[𝑖]
log 𝑝 ෤𝑦𝑗

[𝑖]
𝑥 1 ,[𝑖], 𝑥 2 ,[𝑖], … , 𝑥 𝑡 ,[𝑖]

Trainable in parallel by replacing for step 𝑜(𝑡) ~ 𝑦(𝑡),

Teacher-Forcing Training.

y =

0
1
0
0
0

𝑘𝑡ℎ class

1 − hot vector

g(z) = tanh(z)

Goodfellow 2017

=
1

𝑚
෍

𝑖=1

𝑚

෍

𝑗=1

𝑘

−𝑦𝑗
𝑖
log ෤𝑦𝑗

𝑖

http://atzberger.org/

Teacher-Forcing Training
Architecture (ii): output-to-hidden coupling.

State updates:

𝑎(𝑡) = 𝑏 +𝑊𝑜(𝑡−1) + 𝑈 𝑥(𝑡)

ℎ(𝑡) = 𝑔(𝑎(𝑡))

𝑜(𝑡) = 𝑐 + 𝑉ℎ(𝑡)

Trainable in parallel by replacing for step 𝑜(𝑡) ~ 𝑦(𝑡),
Teacher-Forcing Training.

The network is trained in parallel by feeding into the next layer

𝑜(𝑡−1) ~ 𝑦(𝑡−1) to the hidden unit ℎ(𝑡) (decouples times).

Testing is assessed by reintroducing recurrence feeding 𝑜(𝑡−1) to ℎ(𝑡).

Works well in practice in many applications.

However, issues if training y ’s not representative of o ’s generated.

Training Time

Test Time

Goodfellow 2017

http://atzberger.org/

Sequence-to-Sequence RNNs
Sequence-to-Sequence Maps: Two RNNs combined to map sequences

𝑥(1), 𝑥(2), … , 𝑥(𝑛𝑥) to 𝑦(1), 𝑦(2), … , 𝑦(𝑛𝑦) with typically 𝑛𝑥 ≠ 𝑛𝑦 .

First RNN (encoder) extracts a feature vector C from the sequence

𝑥(𝑖) called the context.

Second RNN (decoder) is driven by the context C to generate a new

sequence 𝑦(𝑖) .

Context C is typically taken to be the last hidden state value ℎ(𝜏).

Limitations if fixed-sized C chosen too small. Variable-sized C is

sometimes used, or an intermediate sequence.

Attention mechanisms also are used in practice.

Applications: Natural Language Processing (NLP), Language

Translation, Image Captioning, and more.

Goodfellow 2017

http://atzberger.org/

RNNs and Deep Neural Networks
Deep neural network ideas can be combined with RNNs.

Aim: achieve general transformations between states and steps.

A few ways this is done:

(i) stack in layers new hidden states (MLP or other hypothesis spaces)

(ii) process using MLP input-to-hidden, hidden-hidden, hidden-output

(iii) introduce skip steps to help information flow

Trade-off: representation capacity vs optimization difficulty.

Optimization difficulty linked to depth increasing path-length

between the states at the different steps (exploding/vanishing gradients).

Skip steps can be used to reduce path-length.

Goodfellow 2017

RNN + new hidden

RNN + MLP RNN + MLP + skips

http://atzberger.org/

Exploding/Vanishing Gradient Problem for RNNs
Exploding/vanishing gradient problem (illustration linear model):

ℎ(𝑡+1) = 𝑊ℎ(𝑡) → ℎ(𝑡+1) = 𝑊𝑡+1ℎ(0)

For W symmetric, 𝑊 = 𝑄Λ𝑄𝑇 with Q orthogonal, Λ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑛)
𝑊𝑡+1= 𝑄Λ𝑡+1𝑄𝑇.

Gradients are
𝜕ℎ(𝑡+1)

𝜕ℎ(𝑡)
= 𝑊 and

𝜕ℎ(𝑡+1)

𝜕ℎ(0)
= 𝑊𝑡+1 = 𝑄Λ𝑡+1𝑄𝑇.

Eigenvalues 𝜆 > 1 the gradient explodes, and 𝜆 < 1 vanishes.

Non-linear setting: for NN we have similar behaviors.

Causes trouble for learning associations over long enough

time-scales in RNNs.

Remedies: leaky units, removing/skip connections, gated units.

Gated units work well in practice for many tasks: LSTM, GRU Cells.

Goodfellow 2017

RNN + new hidden

RNN + MLP RNN + MLP + skips

http://atzberger.org/

Gated Units: Long-Short Term Memory (LSTM)
Long-Short Term Memory (LSTM) introduces control

units for

(i) level ℎ 𝑡 state contributes to 𝑐(𝑡), (input gate),

(ii) level 𝑐(𝑡−1) state contributes to 𝑐 𝑡 , (forget gate),

(iii) level 𝑜(𝑡) state contributes to ℎ(𝑡), 𝑦(𝑡), (output gate).

LSTM Update:

Mitigates exploding/vanishing gradient problem

NN determines time-scales / key steps over which to

retain information or to purge history.

Successful in practice on handwriting recognition, language

processing, sentence generation, and other applications.

Long-Short Term Memory (LSTM)

Geron 2017

FC: Fully Connected

logistic x = 𝜎 𝑥 =
1

1+ 𝑒−𝑥 tanh x =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

= 2𝜎 2𝑥 − 1 Hochreiter /

Schmidhuber (1995)

http://atzberger.org/

Examples and Applications

http://atzberger.org/

Image Processing with RNNs
Even non-sequential data can be processed by

RNNs.

Process sub-parts of the data as a sequence.

Attention mechanism: NN positions the location

of sub-regions to read/write each stage.

RNNs can be used to generate data in parts.

Example: Reading address numbers from images

of scenes of houses, buildings, streets.

RNN processes the sub-regions as a sequence of

data to extract features and perform classification

of address.

For large data, avoids processing all at once.

Recurrent Neural Network

Image Processing / Generation (Street Addresses)

Karpathy 2015

reading numbers painting numbers

http://atzberger.org/

RNNs and Text Datasets:

Karpathy 2015

Text Generator: Predict Next CharacterText processing and generation with RNNs.

Predict next character in a sequence.

Alphabet with k symbols {𝜉1, 𝜉2 , … , 𝜉𝑘}.

RNN gives probability 𝒚(𝑡) at stage t.

Probability for symbol 𝑗 is 𝑦𝑗
(𝑡)

.

Example: Consider four letter symbolic set {h,e,l,o}.

Train with sequence “hello.”

Target sequence predictions h→e, e→l, l→l, l→o.

Train with cross-entropy loss.

Generate sequences: Feed an initial input and then

feed the output back as the next input.

http://atzberger.org/

RNNs and Text Datasets: Shakespeare’s Works

GLOUCESTER:

Open them for thy heart, back again. Are you

hope to use? Prithee, let him go, Brutus. So much

it is; count was of day, and I must raise a layful

peace.

CORIOLANUS:

Let us would see our ripe.

MARK ANTONY:

I might have stay'd, and I met your triumphant

cousin;

And in the world,

Whose parties, that it were two bodies, to

discharge

A glumber to a perfect tower.

OCTAVIUS CAESAR:

A part to the tame.

BALTHASAR:

As I have all the very line, that gave me your

highness,

Where you will hear the single spirit of my

business,

Plant down flives on your son, and even

And open with their own conusteries; and thinking

your grave ship should ne'er break Humphrey's

eyes,

I am poor dear party to make his chamber

And hospish shameless frozen pride. Here name,

And light in plot legely in whom I said,

Glimmed by an argument of it sweet fears your

other mouth,

Such a great estimation would be run as this,

'Tis fit for them, 'tis talk before yourselves.

KING HENRY V:

And I must not see her, but go'st with unhappy

woe.

KING JOHN:

By Paris, it was fair.

DUCHESS:

Nay, I'll ever throw his honour.

Karpathy 2015

RNN Generated Dialogue:Text processing and generation with RNNs.

RNN gives probability 𝒚(𝑡) at stage t for next

character symbol 𝜉𝑗 .

Example: Train with cross-entropy loss on the

works of Shakespeare (4.4MB of data).

Generate sequences: Feed an initial input and

then feed the output back as the next input.

RNN only trained at the character level.

RNN samples the speakers names, spells words

reasonably well, inserts commas, somewhat

grammatical, etc…

RNN captures some of the inherent structure

within the corpus of text.

http://atzberger.org/

RNNs and Music Synthesis

guitar chords

Music processing and generation with RNNs.

RNNs two sub-networks used to give probability 𝒚(𝑡) at

stage t for next chord and next duration, (chord expert /

interval expert).

Example: Train with cross-entropy loss on jazz progressions

and music sheets.

To generate music feed an initial input note/chord and then

feed the output chord/duration back as the next input.

RNN only trained at the chord/duration level.

RNN samples melodies with variations, pauses, and other

structures reminiscent of the musical style.

Shows promise of use of RNNs and D-NN in artistic/creative

areas (soundtracks, entertainment, movies, etc...)

[already starting to be used in industry for some tasks].

piano

Johnson 2017

Johnson 2017

RNN Generator: Predicts Next Musical Note

RNN Architecture

Johnson 2017

Generated Music

http://atzberger.org/

Summary

http://atzberger.org/

Summary: RNNs

Useful for processing and generating variable-sized

inputs/outputs.

RNNs perform stateful processing of data in stages over

time.

Mappings: sequences-to-sequences, sequence-to-vector,

vector-to-sequence.

Many Applications: in Natural Language Processing (NLP),

Audio Signals, Image Captioning, Language Translation,

Handwriting Recognition, and other areas.

Image Processing

Karpathy 2015

Music Generation Text Generation

Gating Units

Recurrent Neural Networks

http://atzberger.org/

http://atzberger.org/

