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Motivations: Image Generation
GANS: CIFAR-10, 32x32 B GANSs: LSUN, 256x256

[)/ "1F7 U(](M

Zhu 2018 Many other applications...
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Motivations

Manifold-like structures in high dimensional spaces (natural images, audio, physical fields, PDE solutions).
Challenge: How to learn high dimensional probability distributions, generators G(z) for sampling?

Training data Sampling
generated distribution true data distribution (e.g. 64x64x3=12K dims)

p(x)

- x =
input noise ?""1 P( )}\
L] 4 7\
generative Q ;
e
Q f— Learning
2 || (neural net) ‘\\ loss| .7 CD

image space image space

open.ai

Lherranz 2018

Generative Modeling

: Prmodel (Z; 0
. Pmodet(2 6) generated data Paata(2) ~ )
Approaches for learning models: — AP
- Bayesian Methods | JEPOR °e
- Maximum Likelihood Estimation (MLE) data paata(2) ° © /e

- and many more... o
L .

Challenge: How to do this in a tractable way? Pista(z)  Pmodel(2; )
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Generative Modeling
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Generative Modeling

Generative Models P2 6)

generated data
—_—

— _—

.

data Pdata (z)

o ©
* ®* o0 *

Learn a model distribution pmodel(z; @) approximating the data distribution

Pdata (Z) .

Classification: For input x assign the class y* = arg-maxypmode|(y|x; 0) (approximates the Bayes classifier).

For z = (x, y) this is typically broken down using p(x,y) = p(y|x)p(x). The model distribution with parameter
0 is then pmodel(X, y; 0) = p(y|x; 0)pdata(Xx), Where pgata(x) = fpdata(x,y)dp,y.

Optimization Formulation

For an objective function J[pmodel,6, Pdata], find

9* = arg—ming.j[pmodel,é'a Pdata]-

Maximum Likelihood is a widely used approach, corresponds to the objective ()  Pmod(2;0)
atalZ ’,’ @ \\
J[G] — J[Pmodel,f?: Pdata] — _E(X,y)NPdata_[log (Pmodel (Xa Y 9))] ' 92{20.' .: \)
This is equivalent to minimizing the Kullback-Leibler Divergence Dg; with O o tuin
J[Q] = Dkt (Pclata“PmodehQ) . Pdata(Z)  Pmodel(2; 0) "
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Generative Models Generative Modeling

Pmodel (z; 9)

generated data
—_—

In practice: We do not have data distribution but only training samples {z }/Z;.

We construct the empirical data distribution ;
1 T data Pdata(2)
D y o ©
Baaa(2) = 0 D 0(z = 21, R
i=1

Goal (empirical distribution)

Learn a model distribution pmodel(z; @) approximating the data distribution Pyata(2).
Find
0" = arg-mingyJ[Pmodel,0; Pdata) -

Maximum Likelihood (empirical data distribution): For fyata becomes o) 0

J0] = —E(x,y)~pyara [108 (Pmodel(x, y: 0))] = —% > log (Pmodel (xi, i 6)) -
i=1 Pdata(Z)  Pmodel(2; 0)

In practice: pq.ta often high dimensional requiring rich class of pmodel.o. Above requires some way to compute

the log-likelihood function. To get good gradient need overlap of distributions (absolute continuity). Often

difficult to compute functional form of pnoder. Need for alternatives.
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Generative Adversarial Networks (GANSs)

lan Goodfellow

Goodfellow 2014: Generative Adversarial Networks (GANs).
GANs: Utilizes deep learning with DNNs for generators G(z; 0).

Key idea: Use properties of supervised learning and generalization
behaviors of classifiers D to train generators G (z; 9).

Synthetic data distribution mixture of “real” and “fake” samples.

Two player-game:
(i) D aims to classify x as “real” or “fake.”
(ii) G aims to generate “fake” samples so well D can not tell difference.

III

Successes: image generation, video augmentation, and
other applications. Challenges (counting, spatial alignment,...)

early work on GANs
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Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANS)

-----------------------

Learn generative models using: Classify

training

target data > ~ :{ target data
F: generated

data

. .nG -
Generator G Samples X~ pmodeI(X. 9 ) noise Generator G(z)

Discriminator D(x): binary classifier for if : .
(i) input x is sampled from pgata(x), or - —— | generated data
(ii) generated from pmodel(x; 0¢). ' ’

Remark: Two-player game with G generating samples
so well that the discriminator D can not distinguish from samples of the data distribution.

Remark: The objective is similar to a counterfeiter G printing money so that the police D can not tell if the

bills are real or fake. ==X rea!
G — %C‘ iit i — D 4[
£ (5 & fake

Key ldea: Replaces the problematic calculation using Dk -objective by instead using the discriminator D to
serve to drive the model distribution pmodel toward pgata. Leverages capabilities of supervised learning methods.
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Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANSs)

Discriminator D(x)

Learn generative models using: R—

training .
target data :{ target data
generated

data

Generator G: samples x ~ pmodel(X; 6’6). noise ;| Generator G(2)

Discriminator D(x): binary classifier for if
(i) input x is sampled from pgata(X), or
(i) generated from pmodel(x; 6°).

—‘-‘* —— | generated data

y ______________________

Synthetic Labeled Data: Create a synthetic labeled set of data as follows: W
(i) with probability 1/2 sample x from the data distribution pgata(x) and assign the label 1, — °Z° Iy
(ii) with probability 1/2 sample x from the model distribution pmodel(X; QG) and assign the label 0. ° o

Binary Classifier: Consider generative classifier that assigns the probability D(x) that x was sampled from the
data distribution. Then 1 — D(x) is the assigned probability that x was generated from the model distribution.

D(x) =po(y =1|x) = Pr{Y =1|X=x}, 1—D(x)=po(y =0|x)=Pr{Y =0|X = x}.

Classification: For input x assign the class y* = arg-max, Pr{Y = y|X = x} (approximates Bayes classifier).
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Generative Adversarial Networks (GANs) Prmodel(Z; 0)

Pdata(2) o
Synthetic Labeled Data: This has the data distribution psynth-i given by OO QOO - 2
1 1 c ® \© @
Psynth-1(X, ¥) = 1,-1 §pdata(x-,~y) + 1,0 §Pmode|(X,y; 07). o) S @ /e
For this distribution we have
Pr{Y =1|X = x} = Paata )

Pdata (X) + pmodel(x) ‘

»

Pdata(Z)  Pmodel(Z; 0)

Thus, D(X) = pdata(X)/ (Pdata(X) + Pmodel(X)) would give us the best possible discriminator (Bayes classifier).

Remark: If we were successful in getting our model distribution to exactly match the data distribution then
Pmodel = Pdata and D(X) — 1/2

Remark: When D(x) = 1/2 the discriminator can not tell if the sample was more likely to come from the dat
distribution or from the generator. For generative discriminator, let pp(X, y; 6’9) .= po(y|x; GD)psynth_(x).

We aim to achieve this outcome by learning simultaneously #° for the optimal discriminator D and learning 6°
for an optimal generator G. Let C(QG) term be entropy of the synthetic distribution.

We formulate the classification problem for D using cross-entropy loss with objective function

" 1 1
JD(QD: 96) — _Ex,ywpsynth—l, 0G [Iong(Xa Y GD)] — _EEXNPdata [log(D(X))]_EEX’WOmodeI,6'G [|0g(1 - D(X))]+C(9G)
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Generative Adversarial Networks (GANs)

Discriminator D
Find 0°* = arg-min JP(6°,6°) with

1 1
JP(0°,0°) = ~Bymny iy g0 [108PD(Y1507)] = =2 B, 108 (DO = 5B o 108 (1 = DG

Entropy term C(6°) not used. Generator G aims for distribution close to data distribution.

Generator G: Approach |
Find 6¢* = arg-max J®(0",0°) with J®

_ JD Generative Adversarial Networks (GANSs)

Discriminator D(x)
Classify

{ target data
generated

data

training
target data
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Generative Adversarial Networks (GANs)

Discriminator D
Find 0°* = arg-min JP(6°,6°) with

1 1
IP(0°,6°) = ~Eynyn g |108PO(1:07)] = =2 Exnpyy, 108 (DO = 5Exnp, oy e o8 (1 = D).

Entropy term C(6°) not used. Generator G aims for distribution close to data distribution.

Generator G: Approach | 7 . AN
Sin A
Find 0¢* = arg-max J®(0",0°) with J¢ = JP. R o o 2
.'::'.. g’j??:-'é.\'f:?‘t ::',
This gives a zero-sum game, so has valuation function V(0°,0°) = J® = J°. j%{
Remark: Deep Neural Networks will be used to learn D(x; #°) and G(z;6°). Deep Neural Network

Remark: Notice the objective functions now no longer require evaluating the expression of the model probability
distribution. They only require expectations, which can be approximated from sampling x ~ Pmodel-

We use the reparameterization technique to generate X ~ Pmodel Using x = G(z; OG), where z ~ Pmodel With
Pmodel @n easy to generate distribution. The challenge is shifted to learning the function G(z; 96).

Paul J. Atzberger, UCSB Machine Learning http://atzberger.org/


http://atzberger.org/

Generative Adversarial Networks (GANs)
Discriminator D

Find 0°* = arg-min JP(6°,6°) with

1 1
JD(GD’ 96) - _Ex’ywpsynth-l, 6G [Iogpo(y|x; GD)] 2Ex""Pdata [log (D(x))] — X"‘pmodel oc [10g (1 — D(x))].

Entropy term C(6°) not used. Generator G aims for distribution close to data distribution.

Generator G: Approach |
Find 6¢* = arg-max J®(0",0°) with J®

= JP.

Vanishing Gradient Issue: For bad generators the discriminator can become very good at just rejecting
samples from the model distribution resulting in vanishing gradient in 8¢ and no learning.

Alternative Formulation: We aim for generator to make the discriminator probability D(x) as large as possible
(hence fooling it). We use

Generator G: Approach |l

Find 6°* = arg-max J®(0",0°) with J¢ = B prodel. 06 [log (D(x; 6°))].

Paul J. Atzberger, UCSB Machine Learning http://atzberger.org/
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Generative Adversarial Networks (GANs)

Discriminator D
Find 6°* = arg-min J®(0°,0°) with

1 1
JP(0°,0°) = By o [108P0(y16 67)] = =5 B, 108 (DOO)] = 5By o 08 (1 = D).

Generator G: Approach Il
Find 6°* = arg-max J®(0°,0°) with J® =E.p__ . ¢ [log (D(x;67))].

No longer a zero-sum game, the solution (GD*,GG*) now characterized as a Nash Equilibrium.

Training Protocol: Alternate minimizing discriminator objective with maximizing the generator objective.

Remark: This can result in oscillatory learning dynamics. Current area of research on best ways to address
(likely this is application dependent).

Paul J. Atzberger, UCSB Machine Learning http://atzberger.org/
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JS-GANSs: Jensen-Shannon Distance

1
Pdata ‘;pmodel ) + “ KL (Pmodel

1 ata + mode
Js(pdataa pmodef) ES §KL (pdata > Pdat Pmodel )

2

JS(p,q) > 0 and JS(p,q) =0 = p=q (a.5). KL(p||q) = Exv, [log (2)].

Pdata(X)
Pdata (x)+pmode| (x)

The optimal discriminator is D*(x) = . Substituting, we have

% 1 Pdata (X) 1 medF‘—'(X)
JP(0°*,0°) = —ZE, . [Io ( )} — ZEyn [Io ( .
( ) 2 Pdata ° Pdata (X) + pm0d9|(x) 2 medel’QG ° Pdata (X) + Pmodel(x)'

This gives

JD(HDS*J QG) — _Js(pdafav pmodelﬁc) -+ |Og(2)

As a result, when J¢ = JP, we have §¢* = arg-maxgc JD(QD’*, GG) = arg-mingc JS(Pdstas Pmodel .06 )-

Shows that original GANs with optimal discriminator D*(x) is equivalent to following gradients to minimize the
JS5-Distance between the model distribution pmoder and pyata-

GANs have been successfully applied in many practical applications: Image Synthesis, Super-Resolution Imaging,
Generative Art, Face and Video Synthesis. Other formulations of GANs (Wasserstein WGANs, E-GANs, etc...)
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Example: Gaussian Target Distribution

GANs et TTTITTT s . Generator
Discriminator D(x) .
training Classify
target data - target data A p(Z)
: \ ; 1
" ' generated
....................... » . data
noise ! Generator G(z) _ R :
Y IR LR LRI e LRI EEEL —>
: 0 1
e

—— | generated data

Task: Use GANs to learn Gaussian target data distribution pg,:q ().
Generator 2 Approximated by Deep Neural Network (DNN) and SGD.
Training: Alternate between minimization for D(x) and maximization for G(z).
Remark: Cumulative Distribution Function (CDF) = Inverse gives a generator.

Remark: Gaussians this diverges to give small probability for tails. Noise sources
type important consideration in practice.

x = G(z)

4 Pmodel (x) Pdata (x)

Inverse CDF (zoomed) Glz) =F~1(2)

v

00 02 04 06 08 10
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Example: Gaussian Target Distribution

GANS e .
’ Discriminator D(x)
- : Classi
training o ' v
target data ~! : [target data
. ' generated
________________________ b X data
noise Generator G(z) :
'—:—* d ' - |——— | generated data
Results:
Densities Densities
1.0 1.0
06 - 0.8 06 4 0.8 o
- 0.6 06  _
—_ = b
% 041 Q 304 o x04
- 0.4 - 0.4
. | 0.2
0.2 oo 0.2 0o
0.0 ; ' T . . 0.0 0.0 - : 0.0 0.0
1] il 4 5 6 7 8 0 7 8
X X

o generated p, e D(x)
target py *  DIG(2))

W generated pg ®  D(x)
target py = D(G(2))

Atzberger, UCSB

Generator

p(z)

Densities

Machine Learning

[ generated py .

target pg -

D(x)
D(G(z))

0.6 A

0.2

\ Pmodel (x) Pdata (x)

0.0 1

[ generated pg
target py

D(x)
D(G(2))
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Example: Gaussian Target Distribution

0.6

0.2 +

Densities

0.0

1.0

T
o
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T
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Task: Use GANs to learn Gaussian target data distribution pgg:4(x).
Generator = Approximated by Deep Neural Network (DNN) and SGD.
Training: Alternate between minimization for D(x) and maximization for G(z).
Remark: Cumulative Distribution Function (CDF) = Inverse gives a generator.

Remark: Gaussians this diverges to give small probability for tails. Noise sources

generated pg
target pg

D(x)

D(G(2))

(e}
e
o

D

1/23.a/t3

Generator

p(2)

Losses
9x 10711
8x 107!
7x1071 generator
discriminator
T T T T
-4 -2 0 4
step le—2
Atzberger 2020

type important consideration in practice.

x = G(z)

4 Pmodel (X) Pdata (x)

Inverse CDF (zoomed) Glz) =F~1(2)

20

15 4

104

-1.0

00 02

04

06 08
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GANSs Celeb-HQ
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Image Generation Training data Sampling

(e.g. 64x64x3=12K dims)

image

Karras 2018

Lhewan22018 transpose
convolutions

Task: Use GANs to generate images similar pggeq(X). G(z): transpose
fully convolutions
Generator G(z): maps noise from latent space Z = images X. codez connected
DNN Generator: Generate images using deep Transpose Convolutional Neural \_' l -
Networks (T-CNNs).
D(x):
Discriminator D(x): Image classifier based on Convolutional Neural Networks image  convolutions

Important Considerations: architecture, regularizations (batch normalization),
data quality, training protocols (balancing D and G),...

CNNs). fully
( s) max pool connected

— real
GANs: Use SGD to learn both classifier and generator at the same time. r F —

— fake
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CycleGANs

Zhu 2018

Paul J. Atzberger, UCSB Machine Learning http://atzberger.org/
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CycleGANs

Monet Z_ Photos

photo —»Monet

horse — zebra

Summer {_ Winter

winter —» summer

Task: Use input image to generate image of another class.

GANs trains two generator maps G(X) and F(Y).

Zhu 2018

Two discriminators: Dy and Dy try to keep in space of natural images.

Reconstruction condition: X - Y — X for information preservation.

Training: SGD over a large corpus of images or videos.

Results:

- image-to-image conversions (style, time-of-year, object class).
- video-to-video conversions (style, time-of-year, object class).

Training Protocol

Dx Dy
e
x| [y
~_
F
¢
SN "
N Y N~ *
F
X Y
cycle—c?;;zistency et \.&
EAe
N P N
Y I~ X y
F
X Y cycle-consistency
'——"‘.\... loss
9
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CycleGANs

summer Yosemite = winter Yosemite

Paul J. Atzberger, UCSB ey pro—
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CycleGANs

app e — orange

() N
| o~y

orange — apple

Cezanne Ukiyo-e

& .- -" \
Wilitaa:
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Summary

Discriminator D(x)

- Classify
training
target data ‘ H ‘ H target data
]
generated
data

noise Generator G(2)

generated data

‘_f"' m - .

horse — zebra Zhu 2018

Karras 2018

GANs provides approach for training Generative Models.
JS-GANs uses properties of supervised learning for discriminator D to obtain loss functions related to classifier behaviors.
Many variants of GANs: Wasserstein (WGANSs), Gradient Penalty (GP-GANs), Energy-based (E-GANs), ...

Provides representations and parameterizations for subsets of manifold-like structures. Losses
Challenges remain: i _— N

- computationally expensive (involves training DNNs). ~ =r=coe

- learning full probability distribution (mode collapse). ........ o - : . -

- reliable training (oscillations, lack of convergence). W S T s T

Successes in image processing / video (interpolation, super-resolution, reconstruction, augmentation).

Emerging applications in the sciences and engineering (surrogate models, subgrid models, model reductions).
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